TUNL Nuclear Data
Evaluation Home Page

Information on mass
chains and nuclides
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
 
Group Info
Publications
HTML
General Tables
Level Diagrams
Tables of EL's
NSR Key# Retrieval
ENSDF
Excitation Functions
Thermal N Capt.
G.S. Decays
Half-Lives Table
TUNL Dissertations
NuDat at BNL
Useful Links
Citation Examples
 
Home
Sitemap
Directory
Email Us


WWW TUNL

USNDP

20F (1983AJ01)


(See Energy Level Diagrams for 20F)

GENERAL: See also (1978AJ03) and Table 20.3 [Table of Energy Levels] (in PDF or PS).

Shell model: (1978MA2H, 1981EL1D, 1982KI02).

Electromagnetic transitions: (1976MC1G).

Special states: (1978MA2H, 1981EL1D, 1982KI02).

Complex reactions involving 20F: (1978SH18, 1982FR03).

Astrophysical questions: (1979WO07).

Muon and pion capture and reactions: (1979KN1G, 1980TR1A).

Other topics: (1977GR16, 1978MA2H, 1978RA1J, 1979BE1H, 1981EL1D, 1982KI02, 1982QUZY).

Ground state of 20F: (1976MC1G).

μ = +2.094 (2) nm (1978LEZA);

Q = 0.070 (13) b (1978LEZA).

1. 20F(β-)20Ne Qm = 7.0259

The half-life of 20F is 11.00 ± 0.02 sec: see (1978AJ03). See also (1975SA1D, 1978CA02). 20F decays principally to 20Ne*(1.63): see 20Ne, reaction 42.

2. 12C(9Be, p)20F Qm = 4.0761

At E(9Be) = 12 to 27 MeV angular distributions are reported (1979JA22, 1981JA09: p0, p1+2+3+4). See also (1978AJ03).

3. 13C(7Li, 7Li)13C Eb = 18.050

See (1976PO02, 1978DR07) and 13C in (1981AJ01). For fusion cross sections see (1981DEZE, 1981DEZW).

4. 13C(9Be, d)20F Qm = 1.3543

At E(13C) = 27.9 MeV angular distributions are reported by (1980BO21: d0, d1+2+3+4).

5. 13C(11B, α)20F Qm = 9.3851

The upper of the two states at 2.97 MeV has an excitation energy of 2968 ± 1.5 keV and γ branching ratios of 61 ± 4 and 39 ± 4 %, respectively, to 20F*(1.97, 0.82) [Jπ = (3-), 4+]: this is consistent with Jπ = (4-) for 20F*(2.968) (1978LE19).

6. 14N(7Li, p)20F Qm = 12.054

The 20F states observed in this reaction at E(7Li) = 16 MeV are displayed in Table 20.7 (in PDF or PS). The cross sections for forming states of known Jπ are proportional to 2Jf + 1 with slopes which are different for the even- and the odd-parity states. Extrapolation of these relationships to states of unknown Jπ leads to the assignments shown in Table 20.6 (in PDF or PS) (1977FO11).

7. 16O(7Li, 3He)20F Qm = -4.743

Angular distributions have been measured at E(7Li) = 24 MeV for the 3He groups corresponding to the states shown in Table 20.7 (in PDF or PS). It is suggested that the states at Ex = 4.20, 4.52, 4.58 and 5.41 MeV have high spin and (sd)4 configurations (1978FO14).

8. 17O(t, p)19O Qm = 3.520 Eb = 14.157
(Additional reactions on which no new work is reported are listed in (1978AJ03).)

See 19O.

9. 17O(13C, 10B)20F Qm = -9.719

See (1979GO17).

10. (a) 18O(d, n)19F Qm = 5.7685 Eb = 12.3699
(b) 18O(d, p)19O Qm = 1.732

Vector analyzing power measurements [reaction (b)] have been carried out at Ed-bar = 10 MeV (1979ST21; p0, p2, p3, p4) and at 14 MeV: see (1978AJ03). See also (1981NE1B; theor.). See also 19O. For reaction (a) see 19F.

11. 18O(d, d)18O Eb = 12.3699

VAP measurements involving the elastic group have been carried out at Ed-bar = 10 MeV (1979ST21) and at 14.8 MeV: see (1978AJ03).

12. (a) 18O(d, 3He)17N Qm = -10.449 Eb = 12.3699
(b) 18O(d, α)16N Qm = 4.246

VAP measurements are reported at Ed-bar = 52 MeV for reaction (a) (1981MA14: to 17N*(0, 1.37, 1.85, 2.53, 5.51, 6.99) and (b) (1982MA25: to 16N*(0, 0.30, 3.36, 3.96, 4.32, 6.17). TAP measurements are reported to reaction (b) at Ed-bar = 8.5 to 11.3 MeV (1978BA43). For excitation functions see (1972AJ02). See also 16N, 17N in (1982AJ01) and (1979SE04).

12. 18O(t, n)20F Qm = 6.1126

See (1978AJ03).

13. 18O(3He, p)20F Qm = 6.8764

States of 20F observed in this reaction are displayed in Table 20.7 (in PDF or PS). For a complete listing of the references see (1978AJ03).

14. 19F(n, γ)20F Qm = 6.6012

The thermal capture cross section is 9.8 ± 0.7 mb (1974SH1E). A number of resonances have been observed: see Table 20.8 (in PDF or PS). See also (1981MUZQ). The primary γ-rays resulting from capture at thermal energies (20F*(6.60); Jπ = 0+, 1+) and at En = 27, 44 and 49 keV (20F*(6.63, 6.643, 6.647); Jπ = 2-, (3, 4) and 1-) have been studied by several groups: see (1972AJ02) and Table 20.9 (in PDF or PS) here. It appears that the thermal capture [20F*(6.60)] is dominated by two intense transitions (probably E1) to 20F*(5.94, 6.02) [thus Jπ = 1-, 2-]. If the ground-state transition is mainly M1, these two E1 transitions are (in terms of W.u.) about 150 times stronger than the M1 transition (1968SP01). It appears also that at 20F*(6.63, 6.64, 6.65) [Jπ = 2-, (3, 4) and 1-] the E1 transitions to the ground state are very weak, even though other E1 transitions in the decay of these two states have approximately normal strengths (1967BE36, 1974KE18). The strongest transitions from the 27 keV resonance appear to be M1. On the basis of the Jπ of the final states involved in the decay of the 44 keV resonance J = 3 or 4, assuming dipole transitions (1974KE18). Branching ratios for other 20F states involved in this reaction are shown in Table 20.4 (in PDF or PS).

Table 20.10 (in PDF or PS) displays excitation energies for 20F states involved in cascade and in primary γ-transitions.

15. 19F(n, n)19F Eb = 6.6012

The scattering amplitude (bound) a = 5.654 ± 0.010 fm, σfree = 3.641 ± 0.010 b (1979KO26). See also (1981MUZQ).

The total cross section has been measured for En = 0.5 to 29.1 MeV: see (1978AJ03). Observed resonances are displayed in Table 20.11 (in PDF or PS). See also 19F.

16. 19F(n, n')19F* Eb = 6.6012

Observed resonances in the excitation functions involving 19F*(0.11, 1.5 [u]) are displayed in Table 20.12 (in PDF or PS). See also (1978CO18, 1980CO1U) and (1978AJ03).

17. 19F(n, 2n)18F Qm = -10.4313 Eb = 6.6012

Cross sections have been measured for En = 10 to 37 MeV [see (1978AJ03)] and at En = 14.7 - 19.0 MeV (1978RY02) and 16.2 - 21.8 MeV (1978CO18, 1980CO1U). See also (1979HA60).

18. 19F(n, p)19O Qm = -4.036 Eb = 6.6012

The differential cross section at 92° for production of the 96 keV γ-ray has been studied by (1976MO13: En = 4.0 to 18.6 MeV): the cross section increases sharply at En = 6 MeV and then gradually decreases beyond En = 12 MeV. Cross sections have also been measured for En = 12.6 to 21 MeV: see (1972AJ02) and the summary in (1976GAYV). See also (1978SM1E, 1979BR08, 1979HA60).

19. (a) 19F(n, d)18O Qm = -5.7688 Eb = 6.6012
(b) 19F(n, t)17O Qm = -7.556

For reaction (a) see (1978CO18, 1980CO1U). For reaction (b) see (1978QA01). For both see also (1978AJ03).

20. 19F(n, α)16N Qm = -1.522 Eb = 6.6012

Reported resonances are shown in Table 20.13 (in PDF or PS): see graph in (1976GAYV). See also (1978SM1E, 1979BR08).

21. 19F(p, π+)20F Qm = -133.748

Cross sections at 5.3 and 10.4 MeV above threshold are reported by (1979MA39).

22. 19F(d, p)20F Qm = 4.3765

States of 20F observed in this reaction are displayed in Table 20.14 (in PDF or PS). Angular distributions have been measured at Ed = 0.6 to 16 MeV [see (1978AJ03)] and at 12 MeV (1977MO16). See (1978AJ03) for a discussion of the earlier work. See also (1980HU1D, 1980HU1J).

23. 19F(13C, 12C)20F Qm = 1.6548

See (1978AJ03).

24. 20O(β-)20F Qm = 3.816

See 20O.

25. 20Ne(π-, γ)20F Qm = 132.541

The branching ratio to 20F*(1.06) [Jπ = 1+] is compared to the analogous M1 decay width 20Ne*(11.24) [Jπ = 1+] → 20Neg.s.. The M1 amplitude contains (47 ± 16)% spin flip, in agreement with shell-model calculations. The population of 20F*(0, 1.31, 1.84) [Jπ = 2+, 2-, 2-] is also reported (1981MA04). See also (1979TR1B, 1982RI1B).

26. 21Ne(d, 3He)20F Qm = -7.511

The 20F states observed at Ed = 26 MeV in this reaction and analog [T = 1] states observed in 20Ne in the (d, t) reaction are displayed in Table 20.15 (in PDF or PS). The spectroscopic factors of analog states are consistent to within 20% for states excited by a single l-transfer (1974MI13).

27. 22Ne(p, 3He)20F Qm = -15.6513

At Ep = 43.7 to 45.0 MeV analog states have been studied in 20F and 20Ne [the latter via 22Ne(p, t)20Ne]. Angular distributions for the 3He ions and the tritons corresponding to the first T = 2 states (Jπ = 0+) [20Ne*(16.722 ± 0.025) and 20F*(6.513 ± 0.033)] have been compared. There is indication also for the excitation of the 2+; T = 2 states [at Ex = 8.05 MeV in 20F and at 18.5 MeV in 20Ne (estimated errors ± 0.1 MeV)] (1964CE05, 1969HA38).

28. 22Ne(d, α)20F Qm = 2.7019

Angular distributions have been obtained at Ed = 10 MeV to all 20F states with Ex < 4.4 MeV: they are generally featureless. Observed states of 20F are displayed in Table 20.16 (in PDF or PS). See also (1978AJ03).

29. 23Na(n, α)20F Qm = -3.866

See (1978AJ03).