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ABSTRACT

Detailed angular distribution measurements on inelastically scattered
protons and de—excitation y—rays in the 50Cr(p,p') and 50Cr(p,p’"{) reactions
were performed for 107 resonmances in San in the proton energy range
3.0-4.4 MeV. An overall resolution of 425 eV was obtained with the tandem Van
de Graaff accelerator and the high resolution system at the Triangle
Universities Nuclear Laboratory.

Spin and parity assignments for the 107 resonances studied were as
follows: 1/27 (4)3 1/2° (6): 3/27 (30); 3/27 (203 s/27 (38); 5/27 (M3 1727
(1)} and 9/27 (1). Mixing ratios for the inelastic decay amplitudes were
uniguely determined for all resonances except those assigned IT7= 1/2+, 1/27,
or 3/2+. For 1/2" and 1/2 7 resonmances there is only one open decay chanmnel.
For 3/2+ resonances, insufficient information is obtained from this experiment
to determine a unique solution for the mixing ratios.

Statistical studies were performed on the set of 3/2 resonances and on
the set of 5/2+ resonances. Strong channel-channel correlations were observed
in the distributions of the reduced widths and the reduced width amplitudes
for 5/2+ resonances. The existence of such correlations is a violation of the
extreme statistical model. The present results agree with the reduced width

amplitude distribution of Krieger and Porter which includes channel-chanmel

correlations,
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Our revels now are ended. These our actors,
As I foretold you, were all spirits and

Are melted into air, into thin air:

And, like the baseless fabric of this vision,
The cloud—-capp’d towers, the gorgeous palaces,
The solemn temples, the great globe itself,
Yea, all which it inherit, shall dissolve

And, like this insubstantial pageant faded,
Leave not a rack behind. We are such stuff
As dreams are made on, and our little life

Is rounded with a sleep, ——Sir, I am vex'd:
Bear with my weakness; my old brain is troubled.
Be not disturb'd with my infirmity.

If you be pleas’d, retire into my cell

And there repose: a turm or two I'll walk,

To still my beating mind.

The Tempest 4. 1. 14863
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CHAPTER 1

INTRODU CTION

Numerous high resoluntion proton scattering experiments have been
performed at the Triangle Universities Nuclear Laboratory with both the tandem
Van de Graaff accelerator and the 3 MV Van de Graaff accelerator. With few
exceptions, compound nuclei formed by the addition of a proton to even—even
nuclei have been studied. Resomance information such as energy, angular
momentum, parity, and elastic and inelastic partial widths, obtained in high
resolution proton scattering experiments, are used in the study of statistical
properties and of special states of the compound nucleus.

The present work is one of a series of experiments designed to measure
the magnitudes and relative signs of imelastic decay amplitudes for isolated
resonances. Angular distributions of the inelastically scattered protons and
the subsequent y—ray decay are measured and fit with Legendre polynomial
expansions. The spin and parity of a resomance can be umiquely determined
from the angnlar distributions. In addition, the distributions are functions
of the inelastic decay amplitudes. Ratios of the amplitudes (mixing ratios)
can be conveniently determined from the angular distribontions. From the
mixing ratios and the total inelastic width, which is easily determined, the
inelastic channel reduced widths can be found.

The above technique for the determination of the magnitude and relative

signs of mizxing ratios has been applied successfully to the two, three, and



four channel cases (Dittrich 1976, Wells 1978, Chou 1980, Watson et al. 1980,
Shriner et al. 1982), 1In the present work, two, three, and four channel cases
are studied. Since there are no (=1 or {=2 analog states in the energy range
considered, this ezperiment is suitable for the study of the statistical
behavior of these resomances, Thirty resonances with J™= 3/27 and thirty-
eight resonances with J'= 5/2+ were studied. In addition, twenty resonances
were assigned Jn = 3/2+. Insufficient information is obtained in this
experiment to determine a onique solation for the mixing ratios for 3/2+
resonances. Seven (=3 resonances were found, two of which were determined to
be analog states. Due to the limited size of this sample and to the presence
of analog states, no statistical studies could be performed on these
resonances, Two [=4 resonances were studied.

Knowledge of the relative sign between reduced width amplitudes for
different channels permits tests of aspects of statistical theory. According
to the extreme statistical model, the distribantion of mixing ratios should
obey a Cauchy distribution. For the 3/2°, 5/2%, and 5/2” resonances studied,
there are strong non—random effects, in contradiction to the extreme
statistical model, - The exzperimental results for 5/2+ resonances also disagree
with the prediction (Lane 1971) that the reduced width correlation coefficient
should be approximately equal to the square of the reduced width amplitude
correlation coefficient. The present results are consistent with results
obtained from the previous measurements in this laboratory. Chou (1980)
obtained expressions for the distribution of mixing ratios based on the
probability density function derived by Krieger and Porter (1963) for reduced
width amplitudes. The predicted distribution matches the general trends of
the experimental results.

A brief sketch of the theory of angunlar correlations is presented in



Chapter II. Expressions for the angnlar distributions of the inelastically
scattered protons and de—excitation y-rays from resonances of varions spins
and parities are presented, and the method by which the mixing ratios are
obtained from the measured angular distributions is described. A discussion
of the experimental equipment and procedures is found in Chapter III, In
Chapter IV, the data and preliminary analysis are presented. Statistical and
non-statistical behavior of groups of 3/2 and 5/2+ resonances are discussed
in Chapter V, and Chapter VI is a summary of results and conclusions. The
appendix contains excitation functions for the reactions 50Cr(p.p') and
50C1:(p.p“1f). reproduced from Salzmann (1975) and Salzmann et al. (1977), and a

list of resonances and resonance information for all resonances considered,



CHAPTER 11

ANGULAR CORRELATIONS

A, Theoretical Background

One of the motivations for performing the experiments discussed im this
dissertation was the determination of spinm and parity assigonments for states
in San. From elastic scattering one can determine the [ value of a given
resonance, and it is possible in many cases to assign a J value as well,
However, angular correlation studies on the inelastic protons and y—rays
emitted in the nuclear reaction provide a much more reliable method for
determining the spin of states. Fano (1953) and Coester and Jauch (1953)
developed mathematical methods which greatly simplify the derivation of a
complete angular correlation formula, A brief summary of the major concepts
involved in this derivation are given here, The complete derivation of
angular correlations for inelastically scattered protons and the resulting
y—ray decay is given by Dittrich (1976).

In the method of Fano and of Coester and Jauch, the assumption is made
that the gquantum system is not in a pure state and cannot be represented by a

wave function. Rather, the system has probability Pl' PZ’ P3,...,P , ... of

m

being in the dynamical states |1>, [2>, [3>,...,Im>,..., and its behavior is
described by a density matrix p, defined as p = ¥ |G>Pa<al’ where P is the
a a

probability that the system is in state |a>. The expectation value of an



operator O acting on the mixed state is <0> = Tr(Op). The advantage of the
density matrix description of the system is that it includes by definition the
averaging over unobserved random variables of the system.

In order to represent a realistic experimentél sitmation, a matrix e,
called the efficiency matrix, is introduoced. The efficiency matrix is a
function of the parameters of the detection of the outgoing radiation such as
detector size and position. If a measurement W is made on the system
described by p and e, then W = (g> = Tr(ep). W is the probability that an
event will be recorded in a detector, and in a nuclear scattering experiment
is a function of O, the relative angle between the incident beam and\the
position of the detector,

The density and efficiency matrices can become difficult to treat
mathematically, Tensors, however, have simple angular momentum and rotational
transformation properties, It is therefore convenient to define a
transformation relation between matrices and tensors. If a density matrix

consists of eigenfunctions lBlﬂl) and IBzﬁz) of angular momenta B, and B

1

then the associated statistical tenmsor is defined in terms of its 2k+1

2‘

elements:

- B2—B2 -
Pen (B1By) = Bia (1) (BB ,B,~B,lkn)<B B, lpIB,B,> , (2.1)
2

%
where n = -k, ~k+1,...,k, and Z = 31 - B,. 1In the same manver, efficiency
tensors Ekn(Ble) can be defined in terms of the efficiency matrix e&. Written

in terms of the density and efficiency tensors, the correlation formula

becomes:

*

W= Tr(ep) = X pkn(Ble)akn(Ble) . (2.2)

B1Bykn
In order for egqn. 2.2 to be useful, it must be specialized to nuclear

reactions, Nuclear reactions proceed by a series of transitions, each of



which has an initial and final state. The total angular momentum of the
system is thus formed by a series of vector sums of two angular momenta. It
is convenient to express the vector sums in terms of tensors because of the
symmetry properties of tensors. The vector to temsor conversiom is
accomplished by means of the 'tensor of a vector sum” theorem, stated as

follows., Consider the following angular momentum sum: g = 2 + ?'. In temnsor

notation, this becomes:

y | .k BB (2.3)
(B;By) = X (kon k;in;, lkpnp) k ki .

P
kpng 172
B kcnckj'njr

. C ) B - p (cc) ('ljl) R
12 92 = keng ©1°27Pkjonget 1192

where Py 1 (clc2) and pk.,n.,(jijé) are the statistical temsors of the
¢ ¢ J 3

respective angular momenta, the circumflex over a quantum number signifies,

AN
for example, kc= (2kc+1)1/2, and the quantity in brackets is a Wigner 9-j

coefficient.

In a nuclear reaction in which particle absorption {emissiomn) occurs,
there are three angular momenta involved: the spin of the target (final
state), and the spin and orbital angular momentum of the incidemt (exit)
particle. Conventionally, there are two ways of combining these momenta: the
total angular momentum representation and the channel spin representation.

For the (p,p’Y) reaction the gemneral correlation functions for the
inelastically scattered proton and the subsequent y—-ray decay are given in
both representations for the following system: an isolated resonance with

definite states A (07), B, ¢ (27), and D (07):



B compound state

A target

The following results are from Dittrich,

the total angular momentum representation,

W@ = & D7D Zegke woseion
SCRHES
Z(fljlfzjz.zk) W(JZBJIB,Zk)
- P » N ‘
k(9)(_11><_]2> ’
R
W) = T (-1)7 "2 Z(LiLjizk) W(jBjB;0k)
j'k,
* W(B2B2;j'k)W(2222;0k) (212-1{k0)
. 12
PO 1G>,

and in the channel spin representation,

V() « b (—1)5"%. Z((B{B:ik) Z({’B(’B: s'k)
P »2K) 15k %r 8
[iIES’k

*
Pk(B)(s ll>(s 12> ’

< _y~S1=saHL A, o .1
wy(e) r (1) "1 2 si'sy Z(lBlB.zk)

- W(BséBsi: k) W(sé2s’2]%k) W(2222;0k) (212-1|k0)

1

E
Pk(B)Ik(sll ><32! > .

C excited state ~— target

D ground state —— target

simplified for the above system. In

(2.4)

(2.5)

(2.6)

(2.7)



In eqns., 2.4-2.7, the Z coefficients are the Z coefficients defined by
Blatt and Biedenharn (1952) as corrected by Huby (1954), the W coefficients
are Racah coefficients, the Pk coefficients are Legendre polynomials, and the
Jk coefficients are the cylindrical attenuation coefficients defined in

2 2
Ferguson (1965), Note that here and in equations to follow, g = B, = B, the

1 2

spin of the compound nuclear state,

Consider the matrix elements in egns., 2.4-2.7. If the entrance channel

is 81!1' then
rg — rgr —~ H = H '
S <351’1|°c|351’1> ~ exp[l(gll + gfi)] ig,e{ (2.8)
E - E- il/2
o
where B, = +( r1/% ) and gi = +( rifﬁ,), rs ( and Fs,l, are the partial
5101 1*1 1% 1%1 :

laboratory widths, [" is the total width, and Eo is the resonance energy. The

§{’s are energy dependent phase shifts which contain the Coulomb phase shift

and a hard sphere phase shift:

&l = —tan—l(F /Gl) + 2 tan_l(n/m) , (2.9)

=1

{

where F‘ and G[ are the regular and irregular radial wave functions, and n is
the Coulomb parameter: n = 0.1574 ZOZI(M/E)l/z, where Z0 is the charge of the
target nucleus, Zl is the charge on the incident particle, M is the mass of

the incident particle in amu, and E is the incident particle energy in MeV in

the laboratory frame. The products of matrix elements in eqns, 2.4-2.7 are

therefore:

r r ’ r ‘ ¥ r ! 1 ‘
(s 47>¢s5 05 <lellloc|B51(1><B52(2|OCIB5212> (2.10)

=z cos(gll + glz - é‘i - ali)

(B - B)° + M4

r 1]
£1828187
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Also, definé

Y <let1'I0c|Bs111> (2.11)

<B32l£|OcIB3212)

cos(, +¢&,, - &, —E,) . g8 -

11 11 { [2 1 {
2 S252 2
Now, Flc= ZP(ch' where P‘ is the Coulomb barrier penetrability and ch is

2

the channel redunced width, If 11=£2, s;=s,, and (i=li, then

Y= YS'I/YS'I = §, The mixing ratio & is defined as the ratio of two channel
1 2

reduced width amplitudes, In the case where 11=12, $1=85s but li#l',
1/2

Y= COS(E[, - &lr) P(.(]’_) s (2.12)
1 2 —
P((Z')
= phase ° P]'/2 6,

) -

P(L})

where phase = cos(&l, - 5[,) , and P = P((
1 2

If for two given [’ values P and phase are small, then contributions from the
higher [’ value can be neglected. Values of P are listed in table 2.1 for
p—wave resonances for {’=1 and [(’'=3. Contributions from {’'=3 are neglected in
the calculations for p—wave resonances, Values of phase and P are listed in
table 2.2 for d-wave resonances for ('=0 and [(’'=2, in table 2.3 for f—wave
resonances for {'=1 and [(’=3, and in table 2.4 for g—wave resonances for ('=
and [’=4.- Contributions from {’=4 have begn neglected for d-wave resonances,
contributions from [’=5 have been neglected for f—wave resonances, and
contributions from ['=6 have been neglected for g~wave resonances., For
consistency of notation, all widths, reduced widths, and reduced width

amplitudes will be labeled by representation, {' value, and twice the j or s

value: for example, y(channel spin representation,f’'=0,s=3/2)= Y03 "



TABLE 2.1

VALUES OF THE PENETRABILITY RATIO FOR p—WAVE RESONANCES

Resonance Ep P
Number (MeV) P(3) /P (1)
M1 3.0594 0.021
M3 3.1075 0.022
M4 3.1125 0.022
M5 3.1634 0.023
M6 3.1668 0.023
M7 3.1872 0.023
M8 3.2148 0.024
5 3.2691 0.024
7 3.2923 0.025
9 3.2980 0.025
13 3.3454 0.026
21 3.4095 0.027
32 3.5074 0.028
37 3.5413 0.029
41 3.5538 0.029
417 3.5779 0.030
56 3.6385 0.031
60 3.6503 0.031
63 3.6642 0.031
69 3.6947 0.032

77 3.7399 0.033



TABLE 2.1 (continued)

Resonance Ep P
Number (MeV) P(3)/P(1)

83 3.7600 0.033

87 3.7763 0.034

88 3.7801 0.034

94 3.8051 0.034

95 3.8111 0.034
116 3.9240 0.037
117 3.9329 0.037
125 3.9812 0.038
135 4.0156 0.039
136 4.01717 0.039
143 4.0722 0.040
147 4.0948 0.041
158 4.1893 0.043
162 4.2158 0.044
175 4.2953 0.046

12



TABLE 2.2

VALUES OF THE PHASE FACTOR AND PENETRABIL.ITY RATIO FOR

d-WAVE RESONANCES

Re sonance Ep Phase ) 4
Number (MeV) cos(§0 - &) P (2) /P (0)
2 3.2594 -0.477 0.097
6 3.28617 -0.473 0.098
8 3.2946 -0.472 0.099
16 3.3693 -0.463 0.102
18 3.3745 —0.463 0.103
22 3.4177 -0.457 0.105
26 3.4549 —0.453 0.107
27 3.4697 -0.451 0.108
29 3.4767 -0.451 0.108
33 3.5150 =0.447 0.110
42 3.5554 -0.442 0.112
45 3.5657 -0.441 0.113
48 3.5850 -0.439 0.114
49 3.5958 -0.438 0.115
55 3.6157 -0.436 0.116
59 3.6472 -0.433 0.118
61 3.6532 -0.432 0.118
62 3.6549 —0.432 0.118
65 3.6732 -0.430 0.119
66 3.6750 -0.430 0.119

13



TABLE 2.2 (continued)

Resonance Ep Phase P
Number (MeV) cos(f‘;0 - &,) P(2)/P(0)
68 3.6823 -0.430 0.120
70 3.7074 —0.427 0.121
71 3.7099 —0.427 0.121
73 3.7224 —0.426 0.122
75 3.7321 -0.425 0.123
78 3.7440 -0.424 0.123
80 3.7528 -0.423 0.124
81 3.7540 -0.423 0.124
82 3.7578 -0.423 0.124
84 3.7662 =0.422 0.125
89 3.7876 —0.420 0.126
92 3.7960 ~0.,420 0.127
96 3.,8135 -0.418 0.128
100 3.8314 —0.417 0.129
101 3.833¢6 —0.417 0.129
103 3.8399 -0.41¢6 0.129
106 3.8606 —0.414 0.131
107 3.8635 -0.414 0.131
110 3.8815 —0.413 0.132
114 3.9067 —0.,411 0.134
115 3.917¢6 —0.410 0.134
118 3.9500 -0.408 0.137

14



TABLE 2.2 (continued)

Resonance

Ep Phase P
Number (MeV) cos(é0 - 52) P(2)/P(0)
120 3.9622 -0.407 0.137
121 3.9677 —0.407 0.138
122 3.9703 -0.406 0.138
123 3.9758 -0.406 0.138
130 3.9984 -0.405 0.140
134 4.0133 -0.404 0.141
138 4.0338 -0.402 0.142
141 4.0613 -0.401 0.144
150 4,1302 -0.397 0.149
151 4,1401 -0.396 0.150
152 4.1619 -0.395 0.152
160 4.2036 -0.393 0.155
161 4.2105 -0.393 0.155
164 4.,2200 ~-0.392 0.156
165 4.2355 -0.391 0.157
173 4,2779 —0.390 0.160

15
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TABLE 2.3
VALUES OF THE PHASE FACTOR AND PENETRABILITY RATIO FOR

f-WAVE RESONANCES

Resonance Ep Phase P
Number (MeV) cos(ﬁ1 - §3) P(3)/P(1)
10 3.3149 0.019 0.025
12 3.3323 0.022 0.025
40 3.5518 . 0.060 0.029
86 3.7740 0.092 0.033
98 3.8233 0.099 0.035
169 3.8764 0.106 0.036
144 4.0788 0.130 0.040

TABLE 2.4

VALUES OF THE PHASE FACTOR AND PENETRABILITY RATIOC FOR

g—WAVE RESONANCES

Resonance EP Phase P
Number (MeV) cos(é2 - §4) P(4)/P(2)
1A 3.2461 0.339 0.007

1 3.2587 0.341 0.008
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B. Angular Correlations for Compound Nuclear States

Three transitions are involved in the 5OCr(p,p'y)SOCr reaction. First,

5OCr, in its ground state (0+). captures the incident

proton and forms an excited state in the compound nucleus 51Mn. The compound

the target nucleus

nucleus decays by emission of a proton, leaving the target nucleus im its
first excited state (27). The target nucleus then decays back to its ground
state by emission of a y-ray. The compound nuclear states created in this
reaction can have a variety of angular momenta, and there is usually more than

one inelastic decay channel open for the emitted proton.
1. p-wave Resonances

The angunlar momentum coupling schemes when the incident proton has (=1

are shown in figure 2.1. The angular correlation equations have the form:

WP(O) aop(l + aszz) (2.13)

WY(G) 807(1 + a27P2). (2.14)

where the P's are Legendre polynomials, If (= 1, them resonances may be
formed in "*Mn with spin and parity 1/2 or 3/2 . For 1/2 resonances,
a2p= 327= 0, and there is only one exit channel. For 3/2° resonances, at

least one of the 32 coefficients must be nomzero. There are two open exit

channels, as shown in figure 2.1. The mixing ratio is defined as
6j= Yj13/7j11 in the total angular mcomentum representation, and as

6s= 7315/7513 in the channel spin representation. In terms of the mixing

ratios, the a, coefficients become:
1 2 - 1
= - = + = =

20 5(48j 35j) , B 2Q2 (2.15)

1+ 8% 1 + 82
i ]

in the total angular momentum representation, and
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FIGURE 2.1 Energy level scheme and angular momentum cou\pling
. 50 -1t .
schemes for the reaction Cr(p,p'yY) Cr when the incident proton has

{=1.
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- 1.2 - 1.0 2
8, = 36, - 4, 3y, = 10(1 — 2807 @ _ (2.16)
1+ 82 1+ 82
S S

in the channel spin representation. Q2 is an attennation coefficient
(Ferguson 1965). For the charged particle detectors, the angular spread is so
small that the finite gecmetry effect is neglected. The mixing ratios may be
transformed from one representation to the other with the following

equations:

5. = 2 + 5 , 5 = -2 + 5. (2.17)
J s J

1 - 25 1 + 28,
s J

1

The variable #= tan 5 proves convenient: the range of ¢ is -90° <¢ L 90°,

The transformation from ¢j to ¢s is: ¢.= ¢s - tan—l(—Z). Transformations

J

from one representation to the other thus correspond to rotations by 63.4°.
2. d-wave Resonances

The angular momentum coupling schemes when the incident proton has [= 2

are shown in figure 2.2. The angnlar correlation equations have the form:

WP(O) aop(l + aZPP2 + a4pP4) (2.18)

WY(B) a07(1 + azYP2 + a47P4). (2.19)

51

If (= 2, then resonances may be formed in “"Mn with spin and parity 3/2+ or

+ +
5/2°. For 3/2 resomances, B4p= B4y= 0. There are three open exit channels

for 3/2% resonances, as shown in fignre 2.2, The mixing ratios are defined
H 8. = = = i

as jBA 7j23/7j01’ stA 7j25/7j01' and SjCB 7j25/7j23 in the total

angular momentum representation, and as &

sBA™ 7523775037 Bsca™ Ys25/7503 2nd

SSCB= 7525/7523 in the channel spin representation. Only two of the mixing

ratios are independent. In terms of the mixing ratios, the a, coefficients
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FIGURE 2.2 Energy level scheme and angular momentum coupling

schemes for the reaction 5OCr(p.p"Y

[=2.

)50

Cr when the incident proton has
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become:
_oro 352 _ 4 5.2 4_
ay, = L= $Pip, ~ 33P8iq * 35\ PG 248 ] (2.20)
2 2
1+ Po.py * Péoy
_ .4 2 1/2 _
[58.pp * 5V21 8., 1P “cos(Ey - &)
2 2
1+P6jBA+ stCA
1 5 2
= -_— — .1
"2y 37188l & - (2.21)
) 7
1+ POy, * Poo,

in the total angular momentum representation, and

12 _ 5.2
8y " 2P cos(§0 éZ)BSBA 7P65CA' (2.22)
2 2
1+ PO g, *+ PO oy
1 _3_ .52 _2 5020 2
a5y = 13 7 70788 ~ 33P%ca ORAE TR (2.23)
2 2
1+ P8, + POy

in the chanmel spin representation. By convention, SBA and SCA are nsed in

these definitions. In all four of these equations, P = P(2)/P(0), the ratio
of Coulomb penetrabilities, and cos(é0 - §2) is the phase factor resulting
from the multiplication of matrix elements. These equations and others to

follow were derived by Chou (1980) and by J. F. Shriner, Jr.

= tan_16

) . . . 1 ,
It is convenient to define mixing angles ¢, where ¢BA BA’

-1 -1 , . .
¢CA_ tan SCA,and ¢CB_ tan SCB in each representation, and the range of ¢ is
-90° L% L 900. The transformation between representations is particularly

simple in terms of the mixing angles: ¢jc3= ¢sCB + 66.42°,

+
Since the a, coefficients are identically zero for the 3/2 resonances,

there is only one quadratic equation from each experiment for the two

independent variables 6BA and BCA' Therefore, the experiment provides
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insufficient information to determine a unique solution for the mixing ratios

for 3/2+ resonances,

For 5/2+ resonances, there are two quadratic equations for the two
independent variables BBA and SCA for each experiment. Therefore, unique
solutions for the two mixing ratios can be obtained. There are three exit
channels for 5/2% resonances, as shown in figure 2.2, The mixing ratios are
def ined as SjBA% yj23/yj01, SjCA= 7j25/7j01’ and BjCB= Yj25/7j23 in the total

)

angular momentum representation, and as SsBA% 7323/7505' SCA™ 7525/7505, and

6sCB= 7525/7523 in the channel spin representation. Only two mixing ratios
are independent., In terms of the mixing ratios, the a, and 8, coefficients

become, in the total angular momentum representation:

= - 3 _pg2 4 _pg2 192
aZp [ 35P6jBA + 35P8 CA 245P6jBA6jCA] (2.24)
2
1 + PajBA + PBjCA
16 _ 12 1/2 -
+ 3T 8 o - 1a s 0 P 2eos(y - gy
2 2
1+ PSjBA + Pﬁch
= - 3pg2 _ 12
a4p = 7P8ch 49P8jBA§jCA . (2.25)
2 2
1+ stBA + stcA
_p 4,102 10,2
327 = [ 7 + 49P8 ‘BA 49P6jCA] Q2 , (2.26)
2 2
1 + PSjBA + PSjCA
_r_ 4 32.,.2 _ 18 2
a4y - [= 7 * 35P85py 49 85cal O - (2.27)
2
1+ stBA + PSjCA
In the channel spin representation, the a, and a, coefficients are:
_ 20 2 _s2 _ 4 1/2 _
2y, = 352 ~ Sca) 7\[1—49 cos(E) = £,)8 s > (2.28)
1 + P82+ ps?

sBA sCA



25

482 27 .2
840~ T 29P%pA * 39°%:ca ¢ (2.29)
2 2
1+ BBy, + Pbl,
_ 4 _2_ .2 2_,:2 _ %6
8y, =07 ~ 35P¥pa * 35P8cca ~ 245P0pabscal % - (2.30)
2 2
1 + PssBA + PBsCA
4 2.2 48
= —_— = 4 = - ——— .
a4y S L0 7 TIPS~ 25P8pabscal & - (2.31)
2 2
1 + P8 gy * POy

Again, P = P(2)/P(0), the ratio of Coulomb penetrabilities, cos(ﬁ0 - §2) is
the phase factor resulting from the multipiication of matrix elements, and Q2

and Q4 are attenuation coefficients. It is convenient to define mixing amngles

d such that ¢BA= tan—lﬁBA, ¢CA= tan_lécA, and qCB= tan-18CB in each

representation, and the range of ¢ is -90° L9 < 90°. The transformation

between representations is: ¢ + 53.13°. One can also define a

je" Y

variable 82, which is a2 measure of the ['=2 admixture in the decay:

2. .2 2 2 2 2 2 .
e (Yj23+ 7j25)/(7j01+ Yj23+ 7j25)' Note that for d-wave resomances g~ is

not an independent parameter, and that the penetrability factors have been

removed from its definition,
Due to the requirement that the mixing ratios be real, there are

rostrictions on the physical range of the az and a, coefficients. Figure 2,3

shows a plot of the experimental a, coefficients versus the experimental a

4
coefficients for both the inelastically scattered protons and the y-rays., The

solid lines define the physically allowed region, For inelastically
scattered protons, the origin (azp= 0.a4p= 0) corresponds to 82=0, that is, mno
{'=2 admixture in the decay. For the y-ray coefficients, the point 827= 4/17,

a47= -4/7 (the lower right corner of the triangle) corresponds to 82=0. Since

the ratio of Coulomb pemnetrabilities P(2)/P(0) ranges from 0.097 to 0.161 for
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FIGURE 2.3 Experimental Legendre coefficients for proton and
vY—-ray distributions for the 38 resonances in 51Mn assigned 7= 5/2+.

The solid lines show the physically allowed regions.
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d-wave resonances in the energy range studied, the [('=2 admixture is expected

to be fairly small,

It 1s possible for both a4 coefficients for a 5/2+ resonance to be

zero, If this occurs, the mixing ratios and hence the a2 coefficients are

restricted to certain fixed values, If

a, =0, then

a4p=

2 . .

= -0. + 0. - , =0.4. =0, 1 ;

a2p 0.053 £ 0 853003(&0 §2) and 327 0.4 If 347 O, then g~ is large
that is, there is a large (’'=2 admixture for the resonance. As noted

previously, a large ['=2 admixture is unlikely for resomances in the energy

range studied. No resonmances were found which satisfied the above

condi tions, Therefore, all resomances for which a4p= a47= 0 were assigned 7=

3. f-wave Resonances

The angular momentum coupling schemes for incident particles with [= 3

are shown in figure 2.4, The angular correlation equations have the form

WP(G) aop(l + aszz + a4pP4 + a6pP6) , (2.32)

wy(e) aoy(l + 327P2 + a4yP4). {2.33)

51

If {= 3, then resonances may be formed in Mn with spin and parity 5/2° or

7/2°. For 5/2 resomances aGp= 0. There are four open exit channels, as

shown in figore 2.4, Two independent mixing ratios are defined:

Bij 7j13/7j11 and BjU= Tj37/7j35 in the total angular momentum

representation, and 85L= 7515/7513 and BSU= 7535/7533 in the channel spin

representation. One can also def ine 32, an independent parameter which is a

. —a i . 2_ i 7 .
measure of the admixture of ['=3 in the decay: = (Pj35+ Ij37)/ |p' in the

total angular momentum representation, In terms of the mixing ratios and 32,

the a2 and 2, coefficients are:
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FIGURE 2.4 Energy level scheme and angular momentum coupling

schemes for the reaction 50Cr(p,p"y

(=3.

)50

Cr when the incident proton has
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8p = (1 - 5 17 S:BA ~ 35 JBA]

+
1 5JBA

204 .8 10,2
57135 + 3396 8¢ *+ 7707 a)

2
1+6jCA

2, 2,,1/2.192 108 12
+ [e“(1 - &7)] 2458JBA 245q— JBA JCA {ﬂ] cos(s’;l

172 f
(1 + E’jBA) (1 + 5ch)
e 2,4 _ 2q1/2
ﬁ4p = [e“(1 e°)]
72,
[ 435 8a ~ 27\t 8ica ~ 494? %A% jcal cos(8y — &3)
2 172 172
(1 + ajBA) (1 + 6 CA)
_ 32
73 I3
3 _ o244 10,2 _ 2010 _ 17,2
83y = (1 = eD 7 + 335855,1 @ 8175 ~ 7%l & -
1 + SJBA 1 + Sch
a _ .2yr_4 322 2,_ 18 16 52
84y = (1= NI 7 *T%5Bal &t eTlm g I8l -
y]
1 + SjBA 1 + stA
in the total angular momentum representation, and
N _ g2yr4 _ 3242 2022
Byp = (1 - 275 - 338 5,1 + e7[53 OSSSCA]
2 2
1 +5$BA 1+83(‘.A
— [e%(1 - 1/2; 12 108{- _
[B (l )] q— BSBA SCA] COS(§1 63)'

2 1/2 2 1/2
(14—6£A) (1-+8““)
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(2.34)

§3)

(2.35)

(2.36)

(2.37)

(2.38)
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__32
"4p T T 7° (2.39)
2,1 _ 2y41/2;_ 6 lg{g
+Le®(1 - e 170 V6 + NS 8 o8 ]
1/2 2 .1/2
(1+BSBA) (1+65CA)
005(51-€3).
_ 2 _ 242 92_.2
8y, = (1 - )[ 227 Sepa * 390 mal & (2.40)
2
1+ 35a
2,11 58 2
- s (33 2454— S.ca * 2a3%.cal &>
1+ asCA
_ 16 62
1y, = (1 )[ {Z d5pa” 49 5sal & (2.41)
1+ asBA
2.8 38_.2
+ e 1506 8 ) - 1a700ca) 9
2
1+
1+ 82,

in the channel spin representation,

Shriner, Jr, and W, A. Watson (Watson et al,

tan-lsL

<9y

def ine mixing angles ¢, where ¢Lf

representation, The range of ¢L is -90°

-180° ¢ Py < 180°,

linear in terms of the mixing angles: qu= ¢SL

g ¢+ 61.4°,

jO" "sU
assigned J™= 5/2"

4., g—wave Resonances

1980).
and ¢U=

< 90°,

+ 43.1°,

These equations were derived by J. F,

For convenience, one may

tan—lﬁ

o in each

and the range of ¢U is

The transformation form one representation to the other is

and

All f-wave resomances studied in these experiments were

The angular momentum coupling schemes when the incident proton has [= 4
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are shown in figure 2.5, The angunlar correlation equations bave the form:

Wp(e) aop(l + asz2 + a4pP4 + a6pP6 + aSpPS) , (2.42)

WY(e) a Y(1 + a27P2 *ag, Py (2.43)

If (= 4, then resonances may be formed in San with spin and parity 7/2+ or

9/2%. For 7/2% resonances, 88p= 0, and there are four open exit channels, as

shown in figure 2.5. The mixing ratios are defined as: Sij Yj2517j23 and
= i . i R d

SjU 7j49/7j47 in the total angnlar momentum representation, an

65L= 7525/7323 and 5SU= 7545/7343 in the channel spin representation. One can

also define az, an independent parameter which is a measure of the ['=4

admixture for each resonance: 2. (F J49)/ | , in the total angmlar
momentum representation, In terms of the mixing ratios and 82. the a2, 84,
and a6 coefficients are:
_ _ 24,5 40 10 2
8p = (1 ~-¢ )[ + 4963L 31 JL] (2.44)
2
1 + SjL
2 580 530 2
+ 2
«*13 + 75101l 85y + 5538 5p]
2
1 + SjU
2 _ 22y11/2,_ 20
+ lef(1 - e HE + \raJL 2 3 8,18,
1/2 2 ,1/2
(1 + 87 L) {1 +68 U)

* 003(52 - §4) »
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FIGURE 2.5 Energy level scheme and angular momentum coupling
schemes for the reaction 5OCr(p,p'y)SOCr when the incident proton has

{(=4.
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in the total angular momentum representation. In the channel spin

representation,
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(2.45)

(2.46)

(2.47)

(2.48)
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These equations and the equations for 9/2+ resonances to follow were derived

1
6L

and ¢U= tan—16U in each representation. The ranges of ¢L and ¢U are the same

by J. F. Shriner, Jr. and P. Ramakrishnan, The mixing angles are ¢L= tan

as for f-wave resonances. The transformation from ome representation to the

other in terms of the mixing angles is linear: ¢ _ = ¢

[o]
L + 36.9°, and

sL

_ 0
¢jU— ¢sU + 58.9.

A 9/2+ resonance has three open exit channels, as shown in figaure 2.5.
. ces . 0, 8 .= 7. .
The system is specified by one mixing ratio i YJ49/Yj47 in the total

angular momentum representation and SSU= 7345/7343 in the channel spin
representation, and by 32= (rj47 + 1

is a measure of the [’'=4 admixture for each resonance. The Legendre

j49)/ Fé,, an independent parameter which

polynomial coefficients are:

= 20, _ .2
8y = 32(1 - ed) (2.54)
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in the total angular momentum representation. In the chamnnel spin

representation,
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2
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2
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The mixing angle is ¢U= 1:311'-16U in each representation, and has range
-180° £ ¢U < 1800. The transformation from one representation to the other is

linear in terms of the mixing angle: ¢jU= ¢sU + 46.91°.
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CHAPTER III

EXPERIMENTAL EQUIPMENT AND PROCEDURES

A. The High Resolution System
1. Accelerator Control

The Triangle Universities Nuclear Laboratory FN tandem Van de Graaff
accelerator and its high resolution feedback system were used to perform the
experiments discussed in this dissertation. The high resolution feedback
system permits operation of the accelerator with extreme emergy stability.

For these experiments a total emergy resolution of 400-450 eV for proton beams
in the 3-5 MeV range was routinely obtained. This resolution figure includes
the effects of beam energy fluctuations, the incoherent spread in energy of
particles as they leave the ion source, the spread in energy due to straggling
in the charge exchange canal and in the target, and Doppler broadening due to
motion of the target nuclei,.

A schematic diagram of the high resolution feedback system, or triple
loop system, is shown in figure 3.1. The beam emerges from the high energy
end of the accelerator, is bent through two 90° angles by the 90—-90 analyzing
magne ts, and impinges on two controi slits downstream from the 90-90 magnets.
Current collected by each control slit is sent to a preamplifier, which

converts the current to a voltage, and then to a difference amplifier which
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FIGURE 3.1

system.

Schematic diagram of the high resolution feedback
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generates a control signal. The control signal is sent to a summing amplifier
where it is added to a control signal from the capacitive pickup (CPU) located
in the wall of the accelerator tank. The resulting signal drives the grid of
the corona tube. If no beam impinges on the control slits, the input to the
summing amplifier is auntomatically switched from the output of the control
slit difference amplifier to the output of the gemerating voltmeter (GVM)
amplifier. The GVM is located in the accelerator tank across from the CPU,
This part of the high resolution feedback system is essentially a Gere type
control system (Gere et al. 1967). In addition, however, the control signal
from the difference amplifier is sent through a voltage to current amplifier
to a light emitting diode (LED) mounted in front of a window in the low energy
end of the accelerator. The intensity of light emitted by the LED is
modulated by the inpet current. Once inside the accelerator the light travels
along the accelerator column in a lucite light pipe to the termimal where it
is detected by a photomultiplier tube. Here the signal_is converted back to a
voltage and fed into a high voltage amplifier located in the terminal. The
output from the amplifier is capacitively coupled to the terminal stripper.
Thus as fluctunations in the beam emergy are detected at the control slits, a
correction voltage is applied to the termimal stripper. This feedback loop 1is
capable of responding to high frequency fluctuations in beam emergy. It is
not limited, as is the coronma feedback system, by ion drift time through the
insulating gas. More detailed discussions of the three loop stabilizer system

can be found in Bleck (1978) and Watson (1980).

2. Magnet Control

For the triple loop stabilizer system to function properly, the 90-90

analyzing magnets must be extremely stable. To ensure this stability and for
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accuracy and reproducibility of results, the 90—-90 analyzing magnets are

vol tage programmable and are field locked with standard NMR techmigues.

Figure 3.2 is a schematic diagram of the analyzing magnet programmable power
supply and the field control equipment. The master proportionality control
determines the current sent to power supplies for the 90-90 magnets, the 70-70
switching magnet, and the quadrupoles and sextupoles located along the beam
line. The control voltage for the master control is supplied by a pair of
mercury batteries through two voltage dividing potentiometers, one coarse and
one fine, The fine pot is turned by a stepping motor which is normally
computer controlled.

As described by Watson, the field locking of the magnets is accomplished
by sending an RF signal to an NMR probe in the magnet, The frequency of the
RF signal must be changed for every energy step. A computer—controlled
digitally programmable frequency synthesizer (Fluke model 6039A), which nses a
5 MHz frequency standard, varies the RF frequency. Thus, both the magnet
programming voltage and the NMR frequency are incremented under computer
control, reducing the possibility of pon—miform emergy steps due to operator
error or energy drift.

A small fraction of the data at low energy presented in this
dissertation was measured with the Triangle Universities Nuclear Laboratory
3 MV Van de Graaff accelerator and its associated high resolution system. A

de scription of the accelerator and data acqumisition systems used in this work

is given by Chou (1980).

B. Scattering Chambers and Counting Electronics

Two scattering chambers were used for these experiments. The proton
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FIGURE 3.2

system.

Schematic diagram of the analyzing magnet control
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experiment was performed in the large (23.5"” i.d.) aluminum scattering chamber
on the 60° left port of the 70-70 switching magnet., This chamber is equipped
with freon cooling for detectors on both its top and bottom plates, and with a
turbo—mechanical pump which maintains a vacuum of 2::10_6 torr. Figure 3.3 is
a top view of this chamber showing placement of detectors and collimators.

Fipal beam collimation was accomplished with two sets of collimators,
The first was a rotating ring box with three positions: a 0.,08” hole, a 0.1"
hole, and a blank side. The 0.1"” hole was used for this experiment, The
second set of collimators was a pair of vertical and horizontal slits plaped
4" from the target. Both slits had 0.08" apertures. Signals from all
collimators were monitored in the control room to aid in tuning the beam.

After passing through the target, the beam was collected in a split
Faraday cup, which was divided into quadrants, The signal from each quadrant
was sent to a feedback system which was used to control the beam line steerers
in order to improve beam stability. Signals from all four guadrants together
were used to monitor total beam current.

Six surface barrier detectors were located at the following laboratory
angles: 890, 1120, 1240, 1359, 1500, and 165°. Each detector had its own
collimator holder assembly which held three collimator rings. The collimator
ring closest to the detector defined the solid angle of the detector. Solid
angles for all the detectors were chosen to be equal. The second and third
collimator rings limited the area of the target and its surroundings seen by
the detector, thus limiting the low energy background registered by the
detector. A list of detector and collimator properties is given in table 3.1.

Signals from the detectors were sent to preamplifiers (Ortec model
number 142A) located at the target chamber, and then to spectroscopy

amplifiers (Ortec 572) located in the control room. A block diagram of the
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FIGURE 3.3

chamber.

Top view of the charged particle scattering
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CHARGED PARTICLE DETECTOR PROPERTIES

TABLE 3.1

51

) 89° 112° 124° 135° 150° 165°
lab

Ortec serial 195—-870D 13—-455E 19-870B 20-170C 16—-867D 16—-86 8C
number

Ortec model BA-017- BA-016— BA-017- BA-017- BA-014- BA-014-
number 50-300 50-500 50-300 50-300 50-500 50-500

bias voltage 105, 135, 105, 100. 250. 250.
(volts)

active _area 50. 50. 50, 50. 50. 50.
(mm~)

length of

collimator 3.25 3.25 2.50 2.50 3.25 3.25

holder (in.)

diameter of 0.28 0.28 0.28 0.28 0.28 0.28

ring 1 (in.)

diameter of 0.21 0.21 0.25 0.25 0.21 0.21

ring 2 (in,)

diameter of 0.1875 0.1875 0.21 0.21 0.1875 0.1875

ring 3 (in.)

distance to 4.5 4.5 4.5 4.5 4.5 4.5

target (in.)

solid angle 3.04 3.04 3.04 3.04 3.04 3.04

(msr.)
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counting electronics for the proton experiment is shown in figure 3.4. The
bipolar output of each spectroscopy amplifier was conmected to two timing
single channel amplifiers (TSCA’s). One TSCA functioned as an upper and lower
level discriminator, The second TSCA acted as a window for the carbon or
aluminum elastic peak (depending on the target backing), and was used in
anticoincidence with the signal from the first TSCA to produce a gate signal.
The gate signal was sent from the coincidence module to a linear gate and
stretcher, whose input was connected to the unipolar output of the
spectroscopy amplifier. Signals that corresponded to the carbon or aluminum
peak and signals whose voltages were too high or too low were discarded at the
linear gate and stretcher, Since fewer signals were sent to the ADC, the dead
time in the ADC was reduced. A typical value of the dead time was about 10%.
All linear signals for which there were gates were summed and sent to the
ADC, Gate signals from the coincidence modules were also sent to the router,
The router had an input for each aﬁgle. On receiving a gate pulse, the router
sent a gate to the ADC. This gate enabled the next linear signal which
reached the ADC to be processed. The router also kept track of which angle
generated the linear signal, and enabled the computer to sort events into the
correct spectrum,

The y-ray experiment was performed in a thin-walled scattering chamber
6.63" in diameter located on the 0° port of the 70-70 switching magnet. A
diffusion pump maintained a vacuum of about 2.5x10—6 torr in the chamber. A
top view of this chamber showing placement of collimators and detectors is
presented in figure 3.5.

In order to improve beam collimation, a new beam line collimator was
designed and fabricated based on the beam line collimators in the 3 MV

Laboratory (Wimpey 1974). Spaces for collimating rings of either 0.1" or
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FIGURE 3.4

proton experiment.

Block diagram of the counnting electromnics for the
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FIGURE 3.5 Top view of the y—ray detection chamber, For the
purposes of the present experiment, 135° is equivalent to 450, and

120° is equivalent to 30°,
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0.125" i.d. are provided at distances of approximately 14", 19", and 24" from
the target., A diagram of the assembly is shown in figure 3.6. In practice,
the beam was collimated wsing 0.1” rings at 19” and 24” from the target. Imn
addition, a 0.125" collimating ring with an attached tantalum shield was
inserted into the beam line about 3" from the taréet. The shield prevented
particles scattered by the collimator assembly from reaching the target area,
thereby reducing the background seen by the detectors. After passing through
the target, the beam was collected in a Faraday cup located 9 ft. from the
chamber.

Six 3"x3" sodium iodide (NaI) crystals were used to detect scattered
y—-rays at the following laboratory angles: 90°, 60°, 45°, 371°, 30°, and 23°.
The size of the beam line limited the forward angle to 23°, Attached to each
crystal was a photomultiplier tube. The front face of each detector was
placed 5.5" from the center of the chamber. Over eight hundred pounds of lead
was used to shield the detectors from background radiation. In additiomn to
the Nal crystals, one surface barrier detector was placed in the chamber at an
angle of 1650. The surface barrier detector was used to monitor the elastic
and inelastic proton yield curves to aid in locating resonances. Properties
of the detectors are listed in table 3.2.

The output from the Nal crystals was sent to preamplifiers which
connected directly into the phototube bases. Signals were then sent to
spectroscopy amplifiers in the control room, A block diagram of the y—ray
counting electronics is shown in figure 3.7. The bipolar output of the
amplifier was sent to a TSCA which acted simply as an upper and lower level
discriminator. The unipolar output of the amplifier was sent to a linear gate
and stretcher, where signals were discarded if too high or too low using the

gate from the TSCA. Gates from the TSCA were also sent to the router,
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FIGURE 3.6

Side view of the new 0° leg beam line collimator.
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TABLE 3.2

y—RAY DETECTOR PROPERTIES

o 90° 60° 45° 37° 30° 23° 165°
lab

Serial Nal Nal Nal Nal Nal Nal

number Harshaw Harshaw Harshaw Harshaw Harshaw Harshaw Ortec

EZ-668 CX-656R2 KP521 KP525 JE161 BS-802  19-727D

bias voltage 1300, 190.
(volts)

active area 7.07 in.2 50 mm2

distance to 5.5 2.6

target (in,)

solid angle 0.234 .00845
(sr.)

The 165° charged particle detector (Ortec model TA-023-50-300) was equipped
with a collimator holder 1.2" long which held two collimating rings, the first
next to the detector, with an i.d. of 0.28", and the second at the end of the

collimator holder, with anm i.d., of 0.222".
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FIGURE 3.7

Y—ray experiment,

Block diagram of the counting electronics for

the
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Acceptable signals from the linear gate and stretcher were summed and sent to

the ADC. The computer used the router signals tc sort events into the proper

spectrum.

C. Targets

Two types of targets were used in these experiments. For the y-ray
experiments, a high current evaporator was used to evaporate 2-3.5 p.g/cm2 of

SOCr onto self-supporting 5 pg/cm2 carbon backings (Arizona Carbon Foil Co.).

For the proton experiment, 50Cr was evaporated onto self-supporting aluminum

foils ranging from 14-22 pg/cm2 in thickness. At some point in the energy

50

range studied the Cr inelastic peak was overlapped completely by the carbon

elastic peak at elab = 1650, 150°, 1350, and 124°. It was therefore necessary
to use aluminum—backed targets for the proton experiment. A small amount of
carbon, deposited by pump oil vapor and alcohol fumes, remained on the
aluminum—backed targets., Aluminum—backed targets had less carbon, were much
stronger, and lasted longer in the beam than did targets backed with thin
(1 pg/cmz) carbon foils.

Alunmipum backings were produced in the following manner: first, a layer
of cesium iodide, a release agent, was evaporated onto clean glass slides.
The CsI and aluminum to be used for the backing were both placed in a 0.01"
thick tungsten boat clamped between the high voltage electrodes, approximately
eight inches from the slides and separated from them by a shutter. The CsI
evaporated at a current of 110 A, corresponding to a temperature of about
600°F, and the alumipum evaporated at 170 A or 1090°F. The thickness of the
deposited layer was monitored using a Sloan deposition meter, and controlled

by manipulation of the shutter., When the evaporation was complete, the slides
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were removed from the evaporator and the aluminum foils were lifted onto
target rings and allowed to dry. Once dry, the prepared aluminum backings
were treated in the same manner as carbon backings: rings were placed in the
evaporator chamber, approximately eight inches from the high current

electrodes. A sample of isotopically enriched (96,.80%) 30

Cr metallic powder,
obtained from Oak Ridge Natiopal Laboratory, was placed in a 0.01" thick
tungsten boat between the electrodes. The chromium evaporated at
approximately 200 A or 1250°F. Targets were stored under vacuum in order to

minimize oxidation.

Typical spectra from both carbon and aluminum—backed targets are shown

in figunre 3.8.

D. Experimental Procedure

Salzmann (1975) performed the 5

0Cr(p.P) and 50Cr(p.p') experiments which
provided certain parameters {spin, energy, elastic width, and in some cases
inelastic width) for the resonances under study. For both of the present
experiments each resomance was first located by taking a short yield curve,
beginning ~ 2 keV below the resomance energy and continuing to ~ 1 keV above
the resonmance energy. These yield curves were generally measured in

100-200 eV steps. For each set of spectra in the yield curve, 90-120 uC of
charge was cqllected, depending on the target thickness. Each set of spectra
was recorded on tape while the fields of the magnets were stepped
automatically and the NMR frequency was incremented. Both the yield curve and
the current spectra were available for inspection by the operator. Once the

resonance was located, the beam energy was tuned to the resonance energy, and

a set of spectra was accumulated with at least 7000-10,000 counts under the
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FIGURE 3.8 Typical spectra for the reactions 50Cr(p,p') and

SOCr(P.P'Y).

The top figure is a y-ray spectrum from a carbon—backed target.
The peak of interest is the 0,7833 MeV y-ray emitted from the first

excited state of 50Cr.

The middle figore is a proton spectrum from a carbon—backed
target. The peak due to the proton inelastically scattered from 50Cr

is beginning to overlap the carbon peak.

The bottom figure is a proton spectrum from an aluminum—backed
target. Both the 16O and the aluminum peak have been removed from the
spectrum electronically, and the scale has been expanded. The carbon
peak is much smaller here than in the spectrum above. Note that the
peak duoe to the proton inelastically scattered from 50Cr is completely
resolved from the carbon peak, even though the two peaks are closer

together in energy at 3.4696 MeV than at 3.2982 MeV in the figure

above.
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peak of interest. Usunally this required the collection of 3000-10,000 uC of
charge.

For the 50Cr(p.p') experiment, a set of gold spectra was taken
immediately following the long spectra. Approximately 300 puC of charge was
collected, yielding ~ 100,000 counts under the 89° elastic peak. The gold
spectra were used for normalization purposes. Rutherford scattering was
assumed to obtain relative efficiencies for the detectors. The laboratory
angular distribution was converted to the center of mass system, and then fit
to a Legendre polynomial expansion.

Normalization factors for the 50Cr(p,p'y) experiment were obtained by
two methods. In the first method, a 22Na source was placed in the target
holder. Normalization factors obtained by this method proved unsatisfactory:
systematic and background effects resulting from the presence of beam on
target were not takenm into account. Excellent normalization factors were
obtained from data taken for 1/2 resonances, which exhibit isotropic angular
distributions. Data for 1/2 resonmances were obtained in exactly the same
manner as data for all other resonances.

For both experiments, the proton beam was tuned through a ring of
0.1" i.d. placed in the target holder. Most data were taken with a beam
intensity of about 4 pA on target. Best results were obtained when the
current on the tuning ring was less than 30 nA and the current on the last

collimator was less than 50 nA,
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CHAPTER 1V

DATA AND PRELIMINARY ANALYSIS

A. Proton Elastic Scattering Experiments

The 50Cr(p,p) and 50

Cr(p,p') experiments were performed by Salzmann et
2l. (1977) in the energy range Ep = 3.2-4.4 MeV, and by Moses (1970) in the
energy range Ep = 1.8-3.3 MeV. In both sets of experiments excitation
functions at various angles %ere measured, and the energy, spin, parity, and
elastic and inelastic widths of many resonances were determined. The
excitation function measured by Salzmann from EP = 3.24-4.42 MeV is presented
for both reactions in the appendix. All 182 resonances observed by Salzmann
plus eight p—wave resonances measured by Moses were studied in the present

work,

B. Preliminary Analysis

Angular distribution measurements on the inelastically scattered proton
and the de—excitation y-ray were performed for most of the 190 resonances.
Resonances with insufficient inelastic strength and resonances for which
interference from nearby states led to inconsistencies were omitted from
further amalysis. In all, 107 resonances were analyzed in detail., The spin

and parity assignments were as follows: 1727 (43 1/27 (6); 3/27 (30); 3/2"
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(2003 5/2% (38); 5/27 (13 7/2% (1)% and 9/27 (1). Resonance parameters
(energy, spin, parity, elastic and total inelastic laboratory width, and
reduced widths) for all resonances are presented in the appendix. Changes in
spin assignments or widths are denoted by an asterisk: Uncertain spin
assignments are indicated by parentheses.,

To obtain an angular distribution from the raw data, the following
procedure was adopted, First, a set of spectra was measured at various angles
at the resomance energy. The peak of interest in both the y—ray and proton
spectra was fit with a Gaussian function, and the area under the peak was
determined. The areas were normalized to correct for differences in detector
efficiencies. The angular distributions of the inelastically scattered
protons and the y-rays were fit with a Legendre polynomial expansion to
de termine the ap and a, coefficients. Fractional errors in the proton data
ranged from 4-6% and in the y-ray data from 3-5%.

As demonstrated in Chapter II, the coefficients of the Legendre
polynomials in the angular distribution equations are functions of the mixing
ratios & or equivalently the mixing angles ¢. In practice the fit to the
angular distribution is performed with ¢ as the free parameter, The absolute
minimum point of 12 as a function of ¢ corresponds to the best solution for
the mixing ratio., The search for the 12 minimum was performed with the
gradient search routine "ROCORD”, Typical plots of the 12 minimum in ¢-space
are given by Chou (1980).

The total inelastic widths for all resomances were determined following

the procedure of Gove (1959) with the relation:

(27 + 1) 7., = 2v , (4.1)

(21 + 1) (2T + 1) [ ACt
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where J = spin of the compound nuclear state,

Io = spin of the target,

I0 = spin of the incident particle,

i’ . . .

|p = proton elastic width in eV,

i’ . . . .

Ip’ = total inelastic width in eV,

_' i3 -

| = total width in eV,

t = target thickness in atoms per square centimeter,

A = center of mass wavelength of the incident
protons in centimeters,

Y = area of the resonance yield curve in units
of reactions times energy(eV) per incident particle.

If contributions from other channels are neglected, the total width is

P~ +01,, anda [, = (7 Y)/(" - ¥'), where
P p P P P
T o= 2Y (2 + 1) (27 + 1) (4.2)

A%t (21 + 1)
Since Pp, must be positive, Y’ must be smaller than the elastic width, rp'
The elastic width was taken from the previons elastic scattering measurements,
and Y' was determined in the present experiment. When Y' was greater than [’ ,
the resonance was refit with "MILTI”, a multilevel, multichannel R-matrix
computer program first developed by Sellin (1969). Channel widths were
obtained from the total width and the mixing ratios. The channel reduced
widths were determined by application of the equation yic= Plclch, where r&c
is the channel laboratory width, and Pc is the Coulomb penetrability. The
penetrabilities were calculated at a channel radians of 1.25(A1/3 + 1)F, where

A is the mass number of the target.
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1. p-wave Resonances

As shown in Chapter II, if the incident protom has (= 1 and the target
has spin zero, then resonances may be formed with spin and parity 1/2 or
3/2 . The angular distribution equations for the inelastically scattered

proton and the de—excitation y—ray have the form:

Wp(e) aop(l + aszz) (4.3)

wy(e) aoy(l + 327P2)' (4.4)

For 1/2_ resonances, a2p= 327= 0. For 3/2_ resonances, at least one of the 82
coefficients must be\non—zero. Thus if the angular distributions are plotted
ver sus cosze, horizontal lines result for 1/2° resonances, and straight lines
result for 3/2° resonmances. Sample angular distributions are shown for a 3/2
resonance in figure 4.1, The solid line is the best fit to the data. In all,
six resonances were assigned 7%= 1/2", and thirty were assigned T"=3/27. A
list of f= 1 resonances with their spin assignments and the measured Legendre
polynomial coefficients is given in table 4.1.

Resonances with J"= 1/2  have only one open exit channel; further
analysis is therefore unnecessary. Most of the 1/2 resonances observed were
used for normalization purposes. The 3/2  resonances have two open exit
channels: in the total angular momentum representation the exit chanmels are
{'=1 j’=1/2, and ['=1 j'=3/2. In the channel spin representation the exit
channels are labeled as ['=1 s'=3/2, and [('=1 s'=5/2. Any ['=3 contributions
are neglected due to penetrability comsiderations. As discussed in Chapter
II, the mixing ratio & is defined as 6j= yj13/yj11 in the total angular
moment um repreéentation, and as 65= 7315/7513 in the channel spin
representation. Also, ¢j= tan—lﬁj, and ¢S= tan_lﬁs. Tables 4.2 and 4.3 list

values of & and ¢ for 3/2 resonances in the total angular momentum
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FIGURE 4.1 Sample angular distributions for a 3/2 resonance.

The top figure is the inelastically scattered proton distribution,

the bottom figure is the y—-ray distribution.

and
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TABLE 4.1

LEGENDRE POLYNOMIAI, COEFFICIENTS FOR (=1 RESONANCES

™ Oy
Resonance b Experiment a
2
Number
Ml 3/2° p -0.545 + 0.026
> 0.062 + 0.036
M3 3/2° p -0.242 + 0.033
Y 0.451 + 0.038
M4 1/2° p -0.062 + 0.036
Y 0.000 + 0.035
M5 3/2° p -0.399 + 0,029
Y 0.400 + 0.038
M6 3/2 p -0,141 + 0.036
Y 0.040 + 0.035
M7 3/2° p -0.149 + 0.042
Y 0.036 + 0.036
M8 3/2° p -0.178 + 0.042
Y 0.029 + 0.035
5 3/2 p -0.760 + 0.014
Y 0.028 + 0.034
7 3/2° p 0.239 + 0.036
Y 0.351 + 0.038
9 1/27 p 0.032 + 0.042
- 0.051 + 0.037
13 3/27 p -0.272 + 0.036
Y 0.398 + 0.039
21 3/2 p 0.169 + 0.044
Y 0.190 + 0.038
32 1/2 p 0.016 + 0.052
” 0.000 + 0.037
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TABLE 4.1 (continued)

Resonance hEl Experiment a
2
Number

37 3/2 p 0.082 + 0.043
Y 0.316 + 0.038
41 3/2° P -0.345 + 0.050
Y 0.094 + 0.039
47 1/2 p 0.063 + 0.054
¥ 0.024 + 0.037
56 3/2° p -0.160 + 0.071
Y 0.046 + 0.038
60 3/2° P -0.468 + 0.073
Y 0.308 + 0.039
63 3/2° p -0.488 + 0.075
Y -0.008 + 0,038
69 /2" P -0.035 + 0.087
Y 0.051 + 0.038
77 3/2° p -0.392 + 0.091
Y -0.017 + 0.039
83 3/2° P -0.185 + 0.085
Y 0.161 + 0.039
87 3/2° P -0.350 + 0.091
Y 0.075 + 0.037
88 3/2° p -0.728 + 0.094
Y -0.003 + 0.038
94 3/2° p -0.544 + 0.033
Y 0.004 + 0.038
95 3/2° p 0.131 + 0.050
Y 0.224 + 0.040
116 3/2° P -0,423 + 0.032
¥ 0.381 + 0.039
117 3/2 P 0.109 + 0.043
¥ 0.294 + 0.039
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TABLE 4.1 (continued)

Resonance .TIt Experiment a
- 2
Number
125 3/2 D 0.118 + 0.059
Y 0.339 + 0.039
135 3/2 p -0.308 + 0,057
Y 0.093 + 0.037
136 3/2° D ~-0.046 + 0.062
v 0.086 + 0.038
143 3/2° p ~0.348 + 0.055
v 0.104 + 0.037
147 /2" p -0.034 + 0.041
Y 0.081 + 0.039
158 3/2" p -0.245 + 0.045
Y 0.079 + 0.040
162 3/2 P 0.013 + 0.043
¥ 0.195 + 0.038
175 3/2° p -0.136 + 0.057
Y 0.388 + 0.039
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TABLE 4.2
MIXING RATIOS AND MIXING ANGLES FOR 3/2 RESONANCES IN 51Mn
Total Angular Momentum Representation
Resonance ¢j j
Nunber (degrees)

M1 -8.07 + 1.42 -14.56 (+ 3,88 - 8.26)
M3 15.22 + 1.63 0.27 (+ 0.03 - 0.03)
M5 24,29 + 1.41 0.45 (+ 0,03 - 0.03)
Mé6 —63.91 + 1.75 -2.04 (+ 0.15 - 0.17)
M7 -64.91 + 2.06 -2.14 (+ 0.19 - 0,22)
M8 ~66.45 + 2.06 -2,29 (+ 0.21 " - 0.25)
5 75.11 + 1.72 3.76 (+ 0.51 - 0.41)
7 -29.68 + 4.10 -0.57 (+ 0.09 - 0.10)
13 17.38 + 2,00 0.31 (+ 0.04 - 0.04)
21 -44.,42 + 2.88 -0.98 (+ 0.09 - 0.10)
37 -41.16 + 3.67 -0.87 (+0.11 - 0.12)
41 -72.49 + 2.77 -3.17 (+ 0.46 - 0.63)
56 -66.20 + 3.03 =2.,27 (+ 0.29 - 0.37)
60 32.47 + 3.40 0.64 (+0.09 - 0.08)
63 -83.15 + 4.18 -8.33 (+ 3.19 -13.11)
77 -78.97 + 3.89 -5.13 (+ 1,38 - 2.85)
83 =60.26 + 3.40 -1.75 (+ 0.22 - 0.27)
87 ~71.92 + 3.78 -3.06 (+ 0.57 - 0.86)
88 81.30 + 6.14 6.54 (+15.82 - 2.76)

17



TABLE 4.2 (continued)
Resonance ¢j Sj
Number (degrees)

94 -86.19 + 2.14 -15.02 (+ 5.42 -19.28)
95 ~44.76 + 3.06 —0.99 (+ 0.10 - 0.11)
116 25.77 + 1.78 0.48 (+ 0.04 - 0.04)
117 -41.69 + 3.26 -0.89 (+ 0.10 - 0.11)
125 -35.14 + 4.60 0,70 (+ 0.11 - 0,13)
135 -70.22 + 2.89 -2.78 (+ 0,39 - 0.51)
136 ~59.58 + 2.71 -1.70 (+ 0,17 - 0.20)
143 -71.89 + 2.94 -3.06 (+ 0,46 - 0.63)
158 -68.09 + 2.38 -2.49 (+ 0,27 - 0.33)
162 -51.60 + 2.57 -1.26 (+ 0.11 - 0.12)
175 10.94 + 3.45 0.19 (+ 0,06 - 0.,06)



TABLE 4.3

MIXING RATIOS AND MIXING ANGLES FOR 3/2° RESONANCES IN San

Channel Spin Representation

Resonance ¢s 65
Number (degrees)

M1 30.50 + 1.42 0.59 (+ 0.03 - 0.03)
M3 -48.22 + 1.63 -1.12 (+ 0.06 - 0.07)
M5 -39.14 + 1.41 -0.81 (+ 0,04 =~ 0.04)
M6 52.66 + 1.75 1.31 (+ 0.09 - 0.08)
M7 51.65 + 2.06 1.26 (+ 0.10 - 0.09)
M8 50.12 + 2.06 1.20 (+ 0.09 - 0.08)

5 11.67 + 1.72 0.21 (+ 0.03 - 0.03)

7 86.89 + 4.10 18.39 (499.99 -10.48)
13 -46.05 + 2.00 -1.04 (+ 0.07 - 0.08)
21 72.14 + 2.88 3.10 (+ 0.63 -~ 0.46)
37 75.41 + 3.67 3.84 (+1.34 - 0.81)
41 44,07 + 2.717 0.97 (+ 0,10 - 0.09)
56 50.36 + 3.03 1.21 (+ 0.14 - 0.12)
60 -30.96 + 3.40 -0.60 (+0.08 - 0.08)
63 33.41 + 4.18 0.66 (+0.11 - 0.10)
77 37.60 + 3.89 0.77 (+ 0.11 - 0.10)
83 56.30 + 3.40 1.50 (+ 0.21 - 0.18)
87 44.65 + 3.78 0.99 (+ 0.14 - 0.,12)
88 17.86 + 6.14 0.32 (+0.12 - 0.11)
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TABLE 4.3 (continued)

Resonance ?s Ss

Number (degrees)
94 30.38 + 2.14 0.59 (+ 0.05 0.05)
95 71.81 + 3.06 3.04 (+ 0.65 0.47)
116 -37.67 + 1.78 ~0.77 (+ 0.05 0.05)
117 74.87 + 3.26 3.70 (+ 1.06 0.69)
125 8&.42 + 4.60 6.63 (+7.77 2.36)
135 46 .34 + 2.89 1.05 (+ 0.11 0.10)
136 56.99 + 2.71 1.54 (+ 0.17 0.15)
143 44,67 + 2.94 0.99 (+0.11 0.10)
158 48.48 + 2.38 1.13 (+ 0.10 0.09)
162 64.97 + 2.57 2.14 (+0.28 0.23)
175 -52.49 + 3.45 -1.30 (+ 0.15 0.18)

80



81

representation and the channel spin representation, respectively., Values of
the two channel reduced widths and the product of the channel reduced width
amplitudes are given in table 4.4 for the total angular momentum
representation, and in table 4.5 for the channel spin representation. The
total inelastic width and the total inelastic reduced width for each resomnance
are listed in table A.,1. Differential and integral plots of the elastic and
total inelastic réduced widths versus energy are shown in figure 4.2. No
unusual structure is visible in these plots. Differential and integral plots
of the channel reduced widths versus energy are presented in figures 4.3 and
4.4 for the total angular momentum and channel spin representations. Figure
4.5 shows the product of channel reduced width amplitudes for both
representations. A non—statistical sign distribution is evident in the plot
of channel reduced width products in both representations, although the effect

is slightly more striking in the plot of Yg13Yg15 VeTsus emergy.
2. d-wave Resonances

If the proton incident on the 30, target has (= 2, then 3/2% or 5/27

resonances are formed in 51Mn. The angular distribution equations for decay

+
from 5/2 resomances are:

Wp(e) aop(l + aszz + a4pP4) (4.5)

WY(G) 307(1 + 327P2 + 347P4). (4,6)

For 3/2+ resonances, a4p= a4y= 0. Plotted versus 00529 the angular

. . . + . . +

distributions for 3/2 resomances are straight lines. For 5/2 resonances,
the a4 terms are not necessarily zero, and the resulting angular distribution
plots are not straight linmes when plotted versus cosze. Sample angular

distribution plots for a 5/2+ resonance are shown in figore 4.6. The solid



TABLE 4.4
INELASTIC REDUCED WIDTHS AND AMPLITUDE PRODUCTS FOR 3/2°
RESONANCES IN °lMn

Total Angular Momentum Representation

Resonance 7? 7% Tiqq7:
j1l j13 j11'j13

Number (keV) (keV) (keV)
M 0.002 0.392 -0.027
M3 1.145 0.085 0.312
M5 2.262 0.461 1.021
Mé 0.157 0.653 -0.320
M7 0.047 0.215 -0.101
M8 0.070 0.369 -0.161
5 0.080 1.125 0.299
7 0.074 0.024 ~0.042
13 0.703 0.069 0.220
21 0.058 0.056 -0.057
37 0.185 0.141 -0.162
41 0.060 0.602 -0.19%
56 0.023 0.117 -0.052
60 0.348 0.141 0.221
63 0.012 0.816 -0.098
77 0.030 0.781 -0.152
83 0.386 1.184 -0.676
87 0.148 1.386 ~0.452

88 0.036 1.554 0.238



TABLE 4.4 (continmed)

Resonance 7? 7? Yiq47:
j1 j13 j11'j13

Numbe r (keV) (keV) (keV)
94 0.001 0.312 -0.021
95 0.133 0.130 -0.132
116 1.884 0.439 0.909
117 1,579 1.253 -1.406
125 0.857 0.425 —0.604
135 0.056 0.434 —0.156
136 0.024 0.069 —0.041
143 0.015 0.141 -0.046
158 0.052 0.320 -0.129
162 0.141 0.224 —0.177
175 0.568 0.021 0.110
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TABLE 4.5

INELASTIC REDUCED WIDTHS AND AMPLITUDE PRODUCTS FOR 3/2°

51

RESONANCES 1IN Mn

Channel Spin Representation

Resonance 72 «,-2 Y 127
s13 s15 s13's15

Number (keV) (keV) {keV)
M 0.292 0.101 0.172
M3 0.546 0.684 —0.611
M5 1.638 1.085 -1.333
Mé 0.298 0.512 0.390
M7 0.101 0.161 0.128
M8 0.180 0.258 0.216
5 1.155 0.049 0.239
7 0.000 0.098 0.005
13 0.372 0.400 -0.386
21 0.011 0.103 0.033
37 0.021 0.305 0.079
41 0.341 0.320 0.331
56 0.057 0.083 0.069
60 0.359 0.129 -0.216
63 0.577 0.251 0.381
77 0.509 0.302 0.392
83 0.4383 1.087 0.725
87 0.776 0.757 0.767
88 1.440 0.150 0.46l4
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TABLE 4.5 (continued)

Resonance 72 72 Y Y
s13 s15 s13's15

Number (keV) (keV) (keV)
94 0.233 0.080 0.137
95 0.026 0.237 0.078
116 1.455 0.867 -1.123
117 0.193 2.639 0.713
125 0.029 1.254 0.189
135 0.234 0.257 0.245
136 0.028 0.065 0.042
143 0.079 0.077 6.078
158 0.163 0.208 0.185
162 0.065 0.299 0.140
175 0.218 0.371 —0.285
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FIGURE 4.2 Plots of reduced widths and the cumulative sums of
reduced widths for the elastic and total inelastic decay channels for

3/2 resomances in San.
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FIGURE 4.3

redaoced widths f

resonances in

Plots of reduced widths and the cumulative sums of

or the two inelastic decay channels for 3/2°

1Mn in the total angular momentum representation.
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FIGURE 4.4 Plots of reduced widths and the cumulative sums of

reduced widths for the two inelastic decay channels for 3/2”

51

resonances in Mn in the channel spin representation.
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FIGURE 4.5 Products of inelastic decay amplitudes and
cumulative sums of the products versus emergy for the two imelastic

decay channels for 3/2 resomances imn 5an in both representations.
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FIGURE 4.6 Sample angular distributions for a 5/2+ resonance.
The top figure is the imelastically scattered proton distributiom, and

the bottom figure is the y-ray distribution,
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line is the best 12 fit to the data. A J" value of 3/2+ was assigned to 20
resonances, while 38 resonances were labeled 5/2+. A list of [= 2 resonances
with J© assignments and measured Legendre polynomial coefficients is presented
in table 4.6,

Resonmances with J'= 3/2+ have three open exit chamnels: in the total
angular momentum representation, ['=0 j'=1/2, ('=2 j'=3/2, and ['=2 j'=5/2,
and in the channel spin representation, {'=0 s'=3/2, (’'=2 s'=3/2, and [('=2
s'=5/2. Any ['=4 contributions are neglected because the Coulomb
penetrability is extremely low relative to the (’=0 and ('=2 contributions.
The two independent mixing ratios are taken to be: BjBA% 7j23/7j01 and
SjCA= 7j25/7j01 in the total angular momentum representation, and
6sBA= 7523/7503 and BsCA= 7325/7503 in the channel spin representation. Two
independent mixing angles are also defined: in the total angular momentum
representation ¢jBA= tan_lﬁjBA and ¢jCA= tan_lﬁjCA, and in the channel spin

= tan_15

entation,
representa n ¢sBA

BA 2nd ¢sCA= tan—ISSCA. There is a third mixing
ratio, SCB’ def ined as Yj25/7j23 in the total angular momentum representation,
and as 7525/7323 in the channel spin representation, and a corresponding qCB
in both representations, This third mixing ratio is not independent of the
other two. There is one additional parameter, 82, which is not independent
and represents the ('=2 admixture. Note that for d-wave resonances the
penetrability factors have been removed from the definition of 62.

As explained in Chapter II, since both a, coefficients are zero for 3/2+
resonances, a unigque solution for the mixing ratios cannot be obtained. No
further analysis was performed on these resonances. Both acceptable solutions
are listed in table 4.7 for the total angular momentum representation, and in

table 4.8 for the channel spin representation. The corresponding plots for

the measured mixing angles are shown in figures 4.7 and 4.8, For both



TABLE 4.6
LEGENDRE POLYNOMIAL COEFFICIENTS FOR (=2 RESONANCES IN °lin
Resonance h Experiment a, a,
Number
2 5/2% P 0.212 + 0.036 0.025 + 0.045
¥ 0.405 + 0.031 -0.439 + 0.045
6 5/2% p 0.334 + 0.036 -0.020 + 0.046
Y 0.393 + 0.029 -0.556 + 0.043
8 5/2% D 0.251 + 0.036 —0.039 + 0.045
y 0.445 + 0.029 -0.566 + 0.044
16 3/2% P 0.379 + 0.036
v 0.266 + 0.036
18 372" P 0.342 + 0.040
v 0.216 + 0.038
22 5/2% D 0.330 + 0.040 -0.052 + 0.051
Y 0.437 + 0.037 ~0.510 + 0.054
26 572" P 0.259 + 0.040 -0.009 + 0.052
y 0.353 + 0.037 -0.447 + 0.054
27 5727 P 0.365 + 0.041 0.017 + 0.052
¥ 0.422 + 0.036 ~0.529 + 0.054
29 3/2" p 0.219 + 0.041
v 0.380 + 0.039
33 3/2* p 0.272 + 0.053
¥ 0.383 + 0.039
42 3/2% p ~0.259 + 0.051
y -0.314 + 0.034
45 3/2" p 0.104 + 0.053
¥ 0.309 + 0.039
438 5/2° p 0.145 + 0.166 -0.059 + 0.157
v 0.389 + 0.040 ~0.124 + 0.056
49 5/2F P 0.364 + 0.072 0.058 + 0.080
¥ 0.407 + 0.039 -0.263 + 0.056
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TABLE 4.6 (continued)

Resonance b Experiment a, a,
Number
55 3/2% P -0.238 + 0.073
v 0.374 + 0.038
59 5/2% p 0.246 + 0.070 -0.076 + 0.081
¥ 0.476 + 0.037 -0.458 + 0.055
61 3/2% p -0.264 + 0.071
¥ 0.245 + 0.039
62 5027 P 0.262 + 0.165 -0.124 + 0.159
v 0.351 + 0.037 -0.398 + 0.055
65 3/2% p -0.257 + 0.072
¥ 0.355 + 0.038
66 5727 P 0.140 + 0.069 -0.068 + 0.080
Y 0.415 + 0.037 -0.415 + 0.054
68 5727 P -0.394 + 0.180 -0.006 + 0.164
Y 0.357 + 0.038 -0.251 + 0.055
70 572 p 0.239 + 0.069 -0.043 + 0.080
Y 0.506 + 0.037 -0.619 + 0.054
71 5727 p -0.283 + 0.222 0.027 + 0.178
¥ 0.432 + 0.039 -0.243 + 0.056
73 5/2% D 0.243 + 0.216 -0.174 + 0,188
Y 0.308 + 0.038 -0.262 + 0.055
75 3/2% p 0.410 + 0.060
y -0.112 + 0.036
78 5/2% p 0.377 + 0.201 -0.021 + 0.173
» 0.321 + 0.036 -0.453 + 0.054
80 5/2F D ~0.045 + 0.226 -0.139 + 0.189
¥ 0.301 + 0.037 -0.345 + 0.055
81 5/2% p 0.155 + 0.233 -0.366 + 0.207
¥ 0.211 + 0.037 -0.221 + 0.055
82 3/27 P -0.123 + 0.043
: y -0.047 + 0.037

98



TABLE 4.6 (continued)

Resonance Jr Experiment a a
Number 2 4
84 372" p 0.167 + 0.076
y 0.359 + 0.039
89 32t P ~0.334 + 0.039
¥ 0.078 + 0.038
92 3/2" P -0.014 + 0.046
¥ 0.380 + 0.039
96 572 D ~0.095 + 0.225 —-0.018 + 0.181
y 0.370 + 0.037 —0.413 + 0.055
100 s/2t P 0.040 + 0.239 -0.398 + 0.210
¥ 0.178 + 0.036 —-0.363 + 0.054
101 572 D 0.227 + 0,050 -0.021 + 0.054
Y 0.300 + 0.037 -0.419 + 0.055
103 372" P 0.155 + 0.050
y 0.149 + 0.039
106 5/2F D 0.071 + 0.215 ~0.052 + 0.180
¥ 0.446 + 0.039 -0.238 + 0.056
107 572" p 0.234 + 0.050 0.042 + 0.052
y 0.219 + 0.038 —0.195 + 0.055
110 s5/2% D 0.170 + 0.051 0.057 + 0.054
¥ 0.516 + 0.039 -0.382 + 0.056
114 5/2% D 0.243 + 0.049 ~0.060 + 0.054
y 0.424 + 0.039 -0.288 + 0.056
115 572" P 0.179 + 0.051 0.038 + 0.054
Y 0.447 + 0.038 -0.383 + 0.056
118 5/2% P 0.072 + 0.067 0.098 + 0.078
y 0.364 + 0.039 —-0.423 + 0.063
120 3/2% P 0.514 + 0.053
Y 0.169 + 0.039
121 5/2% P ~0.348 + 0.040 0.087 + 0.050
Y 0.382 + 0.038 -0.307 + 0.056
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TABLE 4.6 (continued)

100

Re sonance h il Experiment a a
2 4
Number
122 372" P -0.208 + 0.056
y 0.391 + 0.038
123 5727 p 0.132 + 0,043 -0.038 + 0.053
y 0.503 + 0.038 -0.437 + 0.056
130 372" P 0.385 + 0.057
y 0.160 + 0.039
134 5/2% p 0.234 + 0.072 -0.152 + 0.083
Y 0.127 + 0.034 -0.519 + 0.052
138 572 p 0.195 + 0.071 -0.003 + 0.082
y 0.519 + 0.038 -0.518 + 0.055
141 3/2% P 0.332 + 0.048
y 0.019 + 0.037
150 5/2% P -0.376 + 0.059 0.248 + 0.076
y 0.458 + 0.041 -0.284 + 0.064
151 3/2% P 0.220 + 0.054
y 0.357 + 0.039
152 5727 p 0.277 + 0.052 -0.057 + 0.058
Y 0.334 + 0.042 0.276 + 0.056
160 5/2" P 0.292 + 0.055 0.025 + 0.069
y 0.417 + 0.037 —0.440 + 0.055
161 5727 P 0.315 + 0.050 ~0.168 + 0.065
y 0.302 + 0.041 -0.075 + 0.063
16 4 5/2% P 0.260 + 0.072 ~0.305 + 0.094
y 0.340 + 0.038 -0.252 + 0.056
165 5/27 P 0.064 + 0.069 -0.020 + 0.089
y 0.459 + 0.037 —0.406 + 0.054
173 5727 p 0.329 + 0.074 0.103 + 0.089
y 0.487 + 0.038 -0.620 + 0.061



MIXING RATIOS, MIXING ANGLES, AND e

TABLE 4.7

2

Total Angular Momentum Representation

FOR 3/2" RESONANCES IN >1Mn
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2
Resonance ¢jBA ¢jCA BA jCA g
Nuamber (degrees) (degrees)

16 13.4 + 16.8 62.0 + 2.4 0.24 + 0.34 1.88 + 0.21 0.78
- 0.30 - 0.18

57.2 + 6.3 57.8 + 3.0 1.55 + 0.46 1.59 + 0.20 0.83
- 0.32 - 0.17

18 -6.1 + 13.3 65.1 + 2.3 -0.11 + 0.23 2.15 + 0.24 0.82
- 0.24 - 0.21

64.6 + 3.6 59.7 + 3.5 2.11 + 0.39 1.71 + 0.27 0.88
' - 0.30 - 0.22

29  -11.8 + 14.7 48.6 + 5.8 -0.21 + 0,26 1.13 + 0.26 0.57
- 0.29 - 0.21

52.1 + 8.3 33.7 + 6.4 1.28 + 0.48 0.67 + 0.17 0.68
- 0.33 - 0.15

33 7.7 +29.4 48.1 + 6.9 0.13 + 0.62 1.11 + 0.32 0.56
- 0.53 - 0.24

44.9 + 16.7 40.5 + 7.1 1.00 + 0.86 0.85 + 0.24 0.63
- 0.46 - 0.19

42 -39.9 + 30.0 ~-85.6 + 1.3 -0.84 + 0.67 -13.10 + 3.05 0.99
- 1.89 - 5.67

-84.4 + 3.7 88.1 + 1.5 -10.16 + 4.05 30.18 + 9.24 1.00
- 19.15 - 13.27

45 -40.6 + 6.6 54.8 + 3.9 -0.86 + 0.18 1.42 + 0.23 0.73
- 0.22 - 0.19

64.5 + 3.3 28.1 + 10.0 2,10 + 0.35 0.53 + 0.25 0.82
- 0.28 - 0.21



TABLE 4.7 (continued)
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2
Resonarnce ¢jBA ¢jCA jBA 6jCA e
Number (degrees) (degrees)

55 36.8 + 22.0 -45.1 + 8.5 0.75 + 0.90 -1.00 + 0.26 0.61
- 0.49 - 0.35

-57.0 + 4.4 13.6 + 25.8 -1.54 + 0.23 0.24 + 0.58 0.71
- 0.30 - 0.46

61 -—-65.5 + 2.6 50.0 + 7.7 -2.20 + 0.24 1.19 + 0.39 0.86
- 0.30 - 0.28

69.3 + 4.3 -35.4 + 16.1 2.65+ 0.75 —0.71 + 0.36 0.88
- 0.50 - 0.55

65 41.6 + 18.0 -46.8 + 9.6 0.89 + 0.81 -1.07 + 0.31 0.66
- 0.45 - 0.44

-59.2 + 3.7 18.3 + 23.7 -1.68 + 0.22 0.33 + 0.57 0.75
- 0.28 - 0.42

75 58.5 + 16.5 77.7 + 1.2 1.64 + 2.12 4.58 + 0.50 0.96
- 0.73 - 0.42

58.5 + 16.5 77.7 + 1.2 1.63 + 2,12 4.58 + 0.50 0.96
- 0.73 - 0.42

82 -66.9 + 2.2 75.6 + 1.4 -2.35 + 0.23 3.90 + 0,45 0.95
- 0.28 - 0.37

84.8 + 2.0 80.2 + 5.2 11.01 + 7.24 5.77 + 6.64 0.99
- 3.14 - 2.05

84 -23.1 + 12.8 49.0 + 4.8 -0.43 + 0.24 1.15 + 0,22 0.60
- 0.30 - 0.18

55.7 + 5.7 29.5 + 9.4 1.46 + 0.37 0.57 + 0.24 0.71
- 0.27 - 0.20

89 -71.8 + 1.5 67.6 + 2.9 -3.04 + 0.24 2.42 + 0.40 0.94
- 0.29 - 0.31

81.1 + 2.0 20.2 + 30.0 6.35 + 1.83 0.37 + 0.83 0.98
- 1.17 - 0.54
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TABLE 4.7 (continued)

2
Resonance ¢jBA ¢jCA ajBA SjCA e
Number (degrees) (degrees)
92 -43.1 + 5.6 39.1 + 7.9 -0.94 + 0.17 0.81 + 0.26 0.61
- 0.20 - 0.21
55.5 + 6.3 -4.6 + 10.7 1.46 + 0.41 -0.08 + 0,19 0.68
- 0.30 - 0.19
103 -39.1 + 6.8 66.0 + 2,0 -0.81 + 0.18 2,24 + 0.22 0.85
- 0.22 - 0.19
71.5 + 2.0 57.8 + 4.8 2.99 + 0.39 1,59 + 0.34 0.92
- 0.32 - 0.26
120 43.8 + 10.3 64.4 + 2.0 0.96 + 0.42 2.09 + 0.20 0.84
- 0.30 - 0.18
43.8 + 10.3 64.4 + 2.0 0.96 + 0.42 2.09 + 0.21 0.84
- 0.30 - 0.18
122 30.9 + 22.0 -40.1 + 7.6 0.60 + 0,72 —0.84 + 0.20 0.52
- 0.44 - 0.26
-51.9 + 5.3 10.5 + 23.5 -1.28 + 0.22 0.19 + 0.49 0.63
- 0.28 - 0.42
130 28.8 + 30.3 64.7 + 2.1 0.55 + 1.12 2.12 + 0.22 0.83
- 0.58 - 0.19
53.7 + 14.8 63.4 + 2.8 1,36 + 1.18 2.00 + 0.27 0.85
- 0.55 - 0.22
141 12.7 + 20.6 71.4 + 1.4 0.22 + 0.43 2.97 + 0.26 0.90
- 0.36 - 0.22
66.8 + 4.4 71.1 + 1.9 2.34 + 0.60 2.92 + 0.35 0.93
- 0.42 - 0.29
151 -6.8 + 15.3 47,5 + 4.7 -0.12 + 0.27 1.09 + 0.20 0.55

49.0 + 7.9 35.8

I+

6.7 1.15 + 0.38 0.72 + 0.19 0.65



MIXING RATIOS, MIXING ANGLES, AND e® FOR 3/2% RESONANCES IN °lMn

TABLE 4.8

Channel Spin Representation
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2
Resonance ¢sBA ¢sCA <BA SCA e
Number (degrees) (degrees)

16 61.2 + 2.2 28.1 + 14.4 1.82 + 0.18 0.53 + 0.38  0.78
- 0.16 - 0.29

64.3 + 2.4 -38.2 + 12.4 2.07 + 0.24 —0.79 + 0.30 0.83
- 0.20 - 0.43

18 62.6 + 2.5 43.8 + 7.5 1.93 + 0.22 0.96 + 0.29 0.82
- 0.19 -~ 0.22

67.5 + 2.5 -51.3 + 6.4 2.41 + 0,33 -1.25 + 0.25 0.88
- 0.27 - 0.34

29 43.7 + 5.0 32.8 + 12.7 0.96 + 0.18 0.65 + 0.37 0.57
- 0.15 - 0,28

48.3 + 5.9 -42.3 + 10.7 1.12 + 0.26 —0.91 + 0.29 0.68
- 0.21 - 0.42

33 47.0 + 4.9 17.9 + 28.4 1.07 + 0.20 0.32 + 0.72 0.56
- 0.17 - 0.51

49.7 + 5.7 -29.8 + 24.9 1.18 + 0.27 -0.57 + 0.49 0.63
- 0.21 - 0.84

42 -85.4 + 1.3 -77.4 + 8.7 -12.35 + 2.74 -4.48 + 1.91 0.99
- 4,90 - 10.27

87.6 + 3.2 87.3 + 3.2 23.75 + 99.99 21.51 + 99.99 1.00
- 13.57 - 11.70

45 43.8 + 5.6 53.5 + 4.3 0.96 + 0.21 1.35 + 0.24 0.73
- 0.17 - 0.20

53.0 + 5.7 -59.6 + 3.8 1.33 + 0.32 -1.71 + 0.23 0.82
- 0.24 - 0.29



TABLE 4.8 (continued)
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2
Resomance  #.p, Psca bsBA sCA e
Number (degrees) (degrees)
55 -31.8 + 23.6 -47.4 + 19.9 -0.62 + 0.48 -1,09 + 0.57 0.61
-~ 0.83 - 1.30
-21,5 + 19.9 56.5 + 6.2 -0.39 + 0.37 1.51 + 0.42 0.71
- 0,49 - 0.31
61 12,1 + 17.5 68.1 + 2.2 0.21 + 0.35 2.49 + 0.30 0.86
- 0.31 - 0.25
22.3 +28.7 -69.8 + 3.0 0.41 + 0.83 -2.71 + 0.38 0.88
- 0.52 - 0.50
65 -31.9 + 26.2 -51.1 + 17.4 -0.62 + 0,52 -1.24 + 0,57 0.66
- 0.98 - 1-30'
-20.1 + 20.3 59.1 + 4.9 -0.37 + 0.37 1.67 + 0.38 0.75
- 0.48 - 0.28
75 78.4 + 1.6 18.5 + 30.0 4.85 + 0.81 0.33 + 0.80 0.96
- 0.61 - 0.53
78.4 + 1.6 18.5 + 30.0 4.85 + 0.81 0.33 + 0.80 0.96
- 0.61 - 0.53
82 69.2 + 2.5 74.9 + 1.3 2.63 + 0.39 3.71 + 0,36 0.95
- 0.31 - 0.30
84.1 + 2.0 -82.7 + 1.9 9.71 + 4.87 -7.79 + 1.61 0.99
- 2.44 - 2.70
84 41.4 + 6.0 40.4 + 8.9 0.88 + 0.21 0.85 + 0.31 0.60
- 0.17 - 0.24
47.9 + 6.1 -48.1 + 7.6 1.11 + 0.27 -1.11 + 0.26  0.71
- 0.21 - 0.35
89 45.1 + 8.2 75.1 + 1.2 1.00 + 0.34 3.76 + 0.36 0.94
- 0.25 - 0.30
70.8 + 7.9 -80.0 + 2.2 2.88 + 2.16 -5.67 + 1.05 0.98
- 0.92 - 1.64



TABLE 4.8 (continued)
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2
Rosonance  §.py ?sca sBA sCA e
Number (degrees) (degrees)

92 20,3 + 9.5 49.8 + 5.3 0.37 + 0.20 1.18 + 0.25 0.61
- 0.18 - 0.20

27.0 +12.0 -53.8 + 5.5 0.51 + 0.30 -1.37 + 0.24 0.68
- 0.24 - 0.32

103 60.0 + 2.9 58.7 + 3.1 1.73 + 0.22 1.64 + 0.22 0.85
- 0.19 - 0.19

69.4 + 2.5 -64.6 + 3.0 2,66 + 0.40 -2.11 + 0.26 0.92
- 0.32 - 0.32

120 66.5 + 1.9 -2.4 +19.1 2,30 + 0.23 -0.04 + 0.34 0.84
- 0.20 - 0.35

66.5 + 1.9 -2.,4 +19.1 2.30 + 0.23 -0.04 + 0.34 0.84
- 0.20 - 0.35

122 -28.1 + 20.9 -41.5 + 21.9 ~0.53 + 0.41 -0.89 + 0.53 0.52
- 0.62 - 1.11

-18.8 + 17.1 51.2 + 7.7 -0.34 + 0.31 1.24 + 0.41 0.63
- 0.38 - 0.29

130 65.2 + 2.8 18.9 + 20.0 2.16 + 0.32 0.34 + 0.47 0.83
- 0.25 - 0.36

67.2 + 2.4 -24.1 + 20.0 2.38 + 0.31 -0.45 + 0.38 0.85
- 0.26 - 0.52

141 70.4 + 1.9 44.5 + 9.9 2.81 + 0.32 0.98 + 0.42 0.90
-~ 0.26 ~ 0.29

74.5 + 1.5 -44.2 + 13.4 3.61 + 0.41 -0.97 + 0.38 0.93
- 0.34 - 0.61

151 43.6 + 4.8 28,6 + 12.5 0.95 + 0.17 0.55 + 0.33 0.55
- 0.15 - 0.26

48.3 + 5.0 -37.5 + 11.1 1.12 + 0.22 -0.77 + 0.27 0.65
- 0.18 - 0.37
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FIGURE 4.7 Plot of ¢CA ver sus dBA for 20 3/2+ resonances in

San in the total angular momentum representation. Data points

indicated by a large circle correspond to the set of solutions with
the smaller ('=2 admixture, and data points indicated by a small
triangle correspond to the set of solutions with the larger [’'=2

admixture, Note that for two resonances the solutions are degenerate.
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FIGURE 4.8 Plot of ¢CA versus dBA for 20 3/2+_resonances in
San in the channel spin representation. Data points indicated by a
large circle correspond to the set of solutions with the smaller {'=2
admixture, and data points indicated by a small triangle correspond to

the set of solutions with the larger {'=2 admixture., Note that for

two resonances the solutions are degenerate.
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figures, data points indicated by an open circle correspond to the set of
solutions with the smaller ['=2 admixture, and data points indicated by a
small triangle correspond to the set of solutions with the larger [’=2
admixture. For two resomances the solutions were degenerate. From figures
4.7 and 4.8 it is evident that the distribution of #'s (and therefore of &'s)
is non—statistical. Particularly striking features of the plots are the
clustering effect and the seemingly excluded region surrounding the origin.
Resonances with J'= 5/2+ alsoc have three open channels, labeled as ['=
j'=1/2, ('=2 j'=3/2, and ['=2 j'=5/2 in the total angnlar momentum
representation, and as ['=0 s'=5/2, ('=2 s’'=3/2, and ['=2 s$'=5/2 in the
channel spin representation, Again, ['=4 contributions are neglected. The
two independent mixing ratios and one dependent mixing ratio are
SjBAz Yj23/7j01’ SjCA= YjZS/YjOI' and SjCBz Yj25/7j23 for the total angular

momentum representation, and ssBA= Ys23/ 7505+ ®sca™ 7325/7305' and

BsCB= 7325/7323 for the channel spin representation. The mixing angles are

! = !
¢jBA_ tan SjBA‘ ¢jCA_ tan SjCA‘ and qjCB— tan SjCB for the total amgnlar

tan 16 and

. -1
omentum representation, and =
m P ¢sBA tan ~ & SCA’

¢

sBA’ "sCA™

quBz tan_ISSCB for the channel spin representation. The 32 parameter again
represents the [’=2 admixture for each resomance., It is not an independent
parameter, and the penetrability factors have been removed from its

def ini tion,

For 5/2+ resonances, the coefficients a4p and 347 may be nop—zero, and
thus a unique solution for the mixing ratios can be obtained. Tables 4.9 and
4.10 list values for 5/2+ resonances in the total angnlar momentum
representation and the channel spin representation, respectively., The

corresponding mixing angle plots are presented in fignres 4.9 and 4.10. As in

the plots for 3/2% resonances, a stromg clustering effect is observed in both
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FIGURE 4.9 Plot of ¢CA versus qBA for 38 5/2+ resonances in

San in the total angular momentum representation.
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FIGURE 4.10 Plot of ¢CA Ver sus ¢BA for 38 5/2+ resonances in

51Mn in the channel spin representation.
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representations, and the region surrounding the origin appears empty. When
the correction for the differences in average reduced width for the two
channels is included, the same qualitative effects are observed in both
representations.

Values of the three channel reduced widths and of the products of the
channel reduced width amplitudes are listed in table 4,11 for the total
angular momentum representation and in table 4.12 for the channel spin
representation. The total elastic and inelastic widths and reduced widths for
each resomance are listed in table A,1. Differential and integral plots of
the elastic and total inelastic reduced widths versus enmergy are shown in
figure 4.11. No unusual structure is evident imn these'plots. Differential
and integral plots of the channel reduced widths versus energy are presented
in figures 4.12 and 4.13 for the total angular momentum representation and the
channel spin representation. No unusual structure is evident in these plots,
except for the large strength exhibited by the 5/2+ resonance at EP =
3.6750 MeV in all channels except 7225. Figures 4.14 and 4.15 show the
products of channel reduced widths in each representation. All three products
in the channel spin representation and the Yj017j25 plot show non—statistical

sign distributions: the integral plot is always positive in all four cases.
3. f-wave Resonances
a. Preliminary Analysis

If the proton incident on the 30¢, target has (= 3, then 5/2 or 7/2

51

resonances are formed in Mn., The angular distribution equations for decay

from 7/2 resonances are:

WP(B) = aop(l + asz2 + a4pP4 + aﬁpP6) (4.7)



TABLE 4.11
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INELASTIC REDUCED WIDTHS AND AMPLTTUDE PRODUCTS FOR 5/27 RESONANCES IN >1¥n

Total Angular Momentum Representation

Resonance Y?01 7?23 Y?25 Tj017523  Yj01¥j2s 1237525
Number (keV) (keV) (keV) (keV) (keV) (keV)
2 0.257 0.016 0.511 —0.064 0.362 -0.090
6 0.584 0.067 1.667 —0.198 0.987 —0.334
8 1.575 0.024 2.667 —0.195 2.049 —-0.254
22 2.390 0.149 4.829 -0.598 3.397 —0.850
26 1.034 0.186 3.076 —0.438 1.784 ~0.755
27 1.814 0.381 3.477 —0.832 2.511 -1.152
48 0.258 1.371 0.019 —0.594 0.071 -0.163
49 0.131 0.437 0.003 -0.239 0.019 -0.036
59 0.328 0.000 0.458 -0.003 0.387 —0.003
62 0.377 0.001 1.278 ~0.023 0.694 -0.043
66 3.573 1.733 4.517 2.488 4.017 2.798
68 0.123 0.475 0.000 0.242 -0.002 -0.005
70 1.211 0.034 0.602 -0.202 0.854 —-0.142
71 0.613 1.808 0.004 1.053 0.050 0.086
73 0.119 0.265 0.326 0.177 0.197 0.294
78 0.770 0.052 2.818 -0.201 1.472 —0.384
80 0.022 0.003 0.095 —0.008 -0.045 0.016
81 0.002 0.003 0.012 -0.003 -0.005 0.006
96 1.369 0.003 3.578 -0.063 -2.213 0.101



TABLE 4.11 (continmued)
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Resonance 7?01 7?23 Y?zs Tjo1¥j23  Yj01¥j25  Yj23Y 25
Number (keV) (keV) (keV) (keV) (keV) (kaV)
100 0.158 0.122 1.223 ~0.139 ~0.440 0.386
101 0.175 0.049 0.655 ~0.093 0.338 ~0.179
106 0.162 0.328 0.116 0.230 0.137 0.195
107 0.063 0.103 0.462 ~0.080 0.170 —0.218
110 0.091 0.070 0.004 -0.080 0.019 ~0.017
114 0.159 0.359 0.016 ~0.239 ~0.050 0.075
115 0.225 0.099 0.231 ~0.150 0.228 ~0.152
118 0.192 0.270 0.399 ~0.227 0.276 —0.328
121 0.123 0.053 0.265 0.080 ~0.180 —0.118
123 0.346 0.189 0.036 ~0.256 ~0.112 0.083
134 0.065 0.010 0.536 ~0.025 0.186 -0.072
138 0.306 0.019 0.105 ~0.077 0.179 ~0.045
150 0.071 0.131 0.015 0.096 ~0.032 ~0.044
152 .0.040 0.594 0.002 ~0.155 ~0.010 0.037
160 0.404 0.097 0.576 ~0.198 0.483 ~0.237
161 0.046 0.273 0.022 ~0.113 ~0.032 0.078
164 0.058 0.133 0.101 -0.088 ~0.077 0.116
165 0.201 0.108 0.104 0.147 0.145 0.106
173 0.083 0.008 0.055 ~0.026 0.068 -0.021



TABLE 4.12
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INELASTIC REDUCED WIDTHS AND AMPLITUDE PRODUCTS FOR 5/2° RESONANCES IN Lyn

Channel Spin Representation

Resonance Yios 7223 Y225 Ys05¥s23  Ys05Ys25  Ys23Ys25
Number (keV) (keV) (keV) (keV) (keV) (keV)
2 0.257 0.246 0.280 0.252 0.269 0.263
6 0.584 0.771 0.964 0.671 0.751 0.862
8 1.575 1.473 1.219 1.523 1.386 1.340
22 2.390 2.329 2.650 2.359 2.517 2.484
26 1.034 1.310 1.952 1.164 1.421 1.599
27 1.814 1.257 2.601 1.510 2.172 1.808
48 0.258 0.349 1.041 -0.300 0.518 -0.603
49 0.131 0.125 0.315 -0.128 0.203 -0.198
59 0.328 0.290 0.168 0.308 0.235 0.221
62 0.377 0.776 0.501 0.541 0.435 0.624
66 3.573 6.200 0.049 4.706 0.420 0.553
68 0.123 0.167 0.309 0.143 -0.195 -0.227
70 1.211 0.261 0.374 0.562 0.673 0.312
71 0.613 0.736 1.076 0.672 -0.812 -0.890
73 0.119 0.586 0.005 0.264 -0.024 -0.053
78 0.770 1.453 1.417 1.057 1.044 1.435
80 0.022 0.077 0.021 -0.041 ~0.021 0.040
81 0.002 0.015 0.000 -0.005 -0.001 0.003
96 1.369 2.588 1.193 -1.808 ~1.278 1.688



TABLE 4.12 (continued)
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Resonance Y205 7223 Yizs Ys057Ys23  Ys057s25  Ys237s25
Number (keV) (keV) (keV) (keV) (keV) (keV)
100 0.158 1.197 0.148 -0.435 -0.153 0.420
101 0.175 0.264 0.439 0.215 0.277 0.341
106 0.162 0.379 0.065 0.248 -0.102 -0.157
107 0.063 0.123 0.442 0.088 0.167 0.233
110 0.091 0.012 0.062 -0.033 0.075 -0.027
114 0.159 0.211 0.163 -0.183 0.161 -0.186
115 0.225 0.038 0.293 0.093 0.256 0.106
118 0.192 0.038 0.631 0.085 0.348 0.154
121 0.123 0.075 0.243 -0.096 -0.173 0.135
123 0.346 0.170 0.055 -0.243 0.137 -0.096
134 0.065 0.277 0.268 0.134 0.132 0.273
138 0.306 0.031 0.093 0.098 0.169 0.054
150 0.071 0.015 0.131 0.032 -0.096 —0.044
152 0.040 0.251 0.345 -0.101 0.118 -0.294
160 0.404 0.177 0.497 0.267 0.448 0.296
161 0.046 0.187 0.108 -0.093 0.071 -0.142
164 0.058 0.223 0.010 ~0.114 0.024 -0.048
165 0.201 0.208 0.005 0.204 -0.031 -0.031
173 0.083 0.018 0.045 0.039 0.061 0.029
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FIGURE 4.11 Plots of reduced widths and the cumulative sums of

reduced widths for the elastic and total inelastic decay channels for

51

+ .
5/2 resonances in Mn,
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FIGURE 4.12 Plots of redoced widths and the cumulative sums of
reduced widths for the three inelastic .decay channels for 5/2+

rescnances in San in the total angular momentum representation.
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FIGURE 4.13 Plots of reduced widths and the cumulative sums of

reduced widths for the three inelastic decay channels for 5/2+

resonances in San in the channel spin representation,
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FIGURE 4.14 Products of inelastic decay amplitudes and

cumulative sums of the products versus energy for the three inelastic

51

decay channels for 5/2+ resonances in Mn in the total angular

momentum representation,
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FIGURE 4.15 Products of inelastic decay amplitudes and
cumulative sums of the products versus energy for the three inmelastic
+
decay channels for 5/2 resonances in 51Mn in the channel spin

representation.
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WY(G) = 807(1 + a27P2 + a4YP4). (4.8)

For 5/2 resomances, a6p= 0. Sample angular distribution plots for a 5/2
resonance are shown in figure 4.16. The solid line is the best fit to the
data. All 7 f-wave resonances studied were assigned TT=5/2", A list of (= 3
resonances, with J7 assignments and measured Legendre polynomial coefficients,
is presented in table 4.13.

Resonances with J™= 5/2  have fcur open exit channels, labeled as [('=
it=1/2, [*'=1 j'=3/2, ('=3 j'=5/2, and ['=3 j'=7/2 in the total angular
momentum representation, and as ['=1 s'=3/2, ['=1 s'=5/2, ('=3 s'=3/2, and
{'=3 s'=5/2 in the chaﬁnel spin representation. All ['=5 contributions are
neglected because the Céulomb penetrability is extremely low relative to the
‘{'=1 and ('=3 contributions, Two independent mixing ratios are defined:

Bij Yj13/7j11 and SjU= Yj37/7j35 in the total angular momentum
representation, and 63L= 7515/7513 and & ;= v_35/7 33 in the channel spin
representation. The mixing angles are ¢ij tan—18jL and ¢jU= tan—lﬁju in the
total angular momentum representation, and ¢SL= tan_lﬁsL and ¢SU= tan—18SU in

the channel spin representation. The 32 parameter now represents the ['=3

admixture for each resomance: 32= (P F

j35+ j37)/ rp' in the total angular
momentum representation. Note that for f-wave and g—wave resomances the range
of ¢L is =90° ¢ ¢L < 90°, the range of ¢U is -180° < ¢U < 180°, and e2 is an
independent parameter.

Unique solutions for the mixing ratios for 5/2" resonances were
obtained. Tables 4.14 and 4.15 list these solutions in the total angular
momentum representation and the chanmel spin representation, respectively.

Plots of the mixing angles versus energy are shown in figure 4.17. Due to the

small sample size, no definite conclusions can be drawn from these plots, but
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FIGURE 4.16 Sample angular distribotions for a 5/2 resomance.

The top figure is the inelastically scattered proton distribution,

the bottom figure is the y—ray distribution.

and
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TABLE 4.13
LEGENDRE POLYNOMIAL COEFFICIENTS FOR (=3 RESONANCES IN > Mn
Resonance 77 Experiment a a
2 4
Number
10 5/2- P ~0.568 + 0.030 -0.043 + 0.037
y 0.340 + 0.033 ~0.355 + 0.051
12 5/2- o 0.338 + 0.036 ~0.043 + 0.046
¥ 0.451 + 0.030 -0.624 + 0.048
40 5/2- p ~0.213 + 0.061 -0.011 + 0.076
y 0.234 + 0.041 0.026 + 0.063
86 5/2- p ~0.104 + 0.224 ~0.051 + 0.183
Y 0.419 + 0.037 ~0.646 + 0.061
98 5/2- p 0.483 + 0.050 ~0.095 + 0.055
Y 0.365 + 0.041 -0.219 + 0.064
109 5/2- P ~0.523 + 0.050 0.103 + 0.061
¥ 0.452 + 0.038 -0.557 + 0.062
144 5/2- p 0.320 + 0.044 ~0.158 + 0.056
Y 0.321 + 0.038 -0.410 + 0.062
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TABLE 4.14
MIXING RATIOS, MIXING ANGLES, AND 82 FOR 5/2 RESONANCES IN San
Total Angular Momentum Representation
Res. ¢jL @ iL g
No. (degrees) (degrees)
10 -24.5 + 1.27 -28.0 + 32,1 -0.46 + 0.03 —0.53 0.60 0.206 + 0.038
- 0.03 1.21 :
12 11.1 + 1.89 -167 .4 + 23.3 0.20 + 0.03 0.22 0.50 0.120 + 0,034
- 0.03 0.22
40 -35.0 + 5.22 -110.8 + 16.6 =0.70 + 0.13 2,63 10.95 0.358 + 0.027
- 0.15 1.32
86 -2.7 + 3.07 -3.8 + 26.9 -0.05 + 0.05 —0.07 0.49 0.150 + 0.038
- 0.05 0.53
98 27.8 + 3.22 -32.3 + 24.7 0.53 + 0.07 —0.63 0.50 0.216 + 0,038
- 0.07 0.91
109 -15.5 + 1.62 -34,9 + 37.1 —.28 + 0.03 -0.70 0.74 0,066 + 0.042
- 0.03 2.39
144 14.4 + 2.63 146.8 + 29,5 0.26 + 0.05 -0.66 0.59 0.288 + 0.060
- 0.05 1.28
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TABLE 4.15
MIXING RATIOS, MIXING ANGLES, AND 52 FOR 5/2  RESONANCES IN San
Channel Spin Representation
2
Res. ¢sL ¢sU sL sU
No., (degrees) (degrees)
10 -67.6 + 1.3 -89.4 + 32,0 -2.43 0.14 -97.44 + 95.88 0.206 + 0.038
0.16 - 99,08
12 -32.0 +1.9 131.1 + 23.3 -0.63 0.04 -1.,14 + 0.67 0.120 + 0,034
0.05 - 1.96
4 -78.1 + 5.2 -172.2 + 16.6 -4.73 1.49 0.14 + 0,32 0.358 + 0.027
3.75 - 0.14
86 -45.8 + 3.1 -65.2 *+ 26.9 -1.03 0.10 -2.17 + 1.38 0.150 + 0.038
0.12 - 29.40
98 -15.3 + 3.2 -93.8 + 24.7 -0.27 0.06 15.26 + 17.87 0.216 + 0.038
0.06 - 13.41
109 -58.6 + 1.6 -96.4 + 37.0 -1.64 0.10 8.96 + 10,65 0.066 + 0.042
0.11 - 7.90
144 -28.7 + 2.6 85.3 + 29.5 -0.55 0.06 12.21 + 14.37 0.288 + 0.060
0.06 - 10.73
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FIGURE 4.17 Mixing angles versus incident proton energy for
5/2° resonances. The top figure is ¢L versus energy in both
representations. The bottom figure is ¢U versus energy in both

representations.



146

5, RESONANCES IN °'Mn
90 T I | | | | | ]
* Total Angulor Momentum Representation
60l 4 Channel Spin Representation _
30 3 -
o 3 [
2 o 3 ]
-
[ ]
5 . :
- 30 Py I 3 -
3
-60- 3 i
'Y
3
90 " 3 p
120~ { { -
60— { .
o
QD
2 O } —
& l {
_60—' ‘IL { —
-120 I { ]
-180 | I ] | I ! | | ‘ \ ‘
32 33 34 35 36 37 38 39 40 4.1 42



147

the mixing ﬁngles do not seem to be uniformly distributed.

Values of the four channel reduced widths and three reduced width
amplitude products are listed in table 4.16 for the total angunlar momentum
representation and in table 4,17 for the channel spin representation, The
elastic and total inelastic widths and reduced widths for each resonance are
listed in table A,1. Differential and integral plots of the elastic and total

inelastic reduced widths versus energy are shown in figure 4.18.
b. Analog States

Interesting relations exist between nuclear states which are members of
isobaric spin (or isospin) multiplets, These states have identical values of
T, the isospin quantum number, but different values of Tz' T is strictly
conserved only in the absence of Coulomb interactions and is approximately
conserved when the Coulomb effects are small compared to nuclear
interactions. Experimentally one normally observes only the two members of
the multiplet which contain the greatest number of neutrons. The member of
the multiplet with the most neutrons, the Tz= T member, is called the ‘parent’
state, and is typically a low energy state. The Tz= T — 1 member of the
multiplet is the isobaric analog resonance (XAR). Of the seven 5/2
resonances studied in 51Mn, two are fragments of an analog state,

There is a 5/2 state in 51Cr at 4,002 MeV. Corresponding to this

parent state, a state of the same T is expected in San at

= AE - B + . . L.

Ep c n Eexc in the center of mass frame, where Bn is the binding
energy of the last neutron in the parent system, AEc is the Coulomb energy
difference between the parent state and the analog state, and Eexc is the

excitation energy of the parent state in the parent nucleus. A semi—empirical

formula for AE_ is given by Jdnecke (1969): AE_ = (1389 Z_ - 2041)/ A™® kev,
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TABLE 4.16
INELASTIC REDUCED WIDTHS AND AMPLITUDE PRODUCTS FOR 5/2 RESONANCES IN 51Mn

Total Angular Momentum Representation

Res. 72.' 72.' 72. 72. Yeq1T: Y:147Y: Yiq17Y:
j11 j13 i35 i37 j11%513  Y311Y535 Y1137
No. (keV) (keV) (keV) (keV) (keV) (keV) (keV)
10 0.19 0.04 1.83 0.52 -0.09 0.59 -0.31
12 0.16 0.01 0.86 0.04 0.03 ~0.37 .08
40 0.06 0.03 0.22 1.55 —0.04 ~-0.12 -0.31
86 0.20 0.00C 1.04 0.00 -0.01 0.45 -0.03
98 0.06 0.02 0.47 0.19 0.03 0.18 -0.11
109 0.10 0.01 0.14 0.07 . —0.03 0.12 -0.08

144 0.32 0.02 2.41 1.04 0.08 -0.88 0.58
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TABLE 4.17
INELASTIC REDUCED WIDTHS AND AMPLTTUDE PRODUCTS FOR 5/2° RESONANCES IN San

Channel Spin Representation

Res, 72 72 72 '{2 R4 Y Y Y Y T
s13 sls $33 s35 s13°s15 s13's33 s13%s35

No. (keV) (keV) (keV) (keV) (keV) (keV) (keV)
10 0.03 0.19 0.00 2.35 -0.08 0.00 -0.28
12 0.12 0.05 0.39 0,51 -0.08 -0.22 0.25
40 0.00 0.09 1.75 0.03 -0.02 -0.08 -0.01
86 0.10 0.10 0.18 0.86 -0.10 0.13 -0.29
98 0.08 0.01 0.00 0.66 —-0.02 -0.01 -0.23
109 0.03 0.08 0.00 0.21 -0.05 -0.01 -0.08

144 0.26 0.08 0.02 3.42 -0.15 0.08 0.95
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FIGURE 4.18 Plots of reduced widths and the cumulative sums of
reduced widths for the elastic and total inelastic decay channels for

5/2 resomances in San.
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where Z  is the proton number of the target and A is the mass of the parent

(or analog) system. For the 4.002 MeV state in 5OCr, this approximation

yields AEc = 8.44 MeV and Ep = 3.24 MeV in the laboratory frame. Two 512
resonances were observed near this energy, one at Ep = 3.3149 MeV and the
‘other at Ep = 3.3323 MeV. The centroid of these two resomnances falls at Ep =
3.32 MeV, which is within 80 keV of the expected value. The two 5/2°
resonances are therefore considered to be fragments of the analog state whose
parent is the E_ = 4,002 MeV level in Sice,

Another way to verify that the two 5/2° resonances are analog states is

to consider the strengths of the parent and resonance states. The

spectroscopic factor for elastic scattering is defined as rpp/ rs , Where rp

p
is the laboratory elastic width and rsp is the single particle width. The

p

elastic width was determined directly from the data obtained in the present
experiment. The analog strength is expected to be omly a fraction 1/(2T; + 1)
of the parent strength. For convenience the analog spectroscopic factor is
usually defimed as S = (2T, + 1)F5p/ Fsp. The single particle width was
determined with the computer code '"HANS" which is based on the theory by
Harney and Weidemm#ller (1969). This method is described in detail in the
review article by Bilpuch et al. (1976). The parameters used in "HANS” are as
follows: the binding energy of the last neutron in the parent nucleus Bn =
-9.264 MeV, the incident proton laboratory energy Ep = 3.3248 MeV, the
excitation energy in the parent nucleus Ex =4,002 MeV, and the excitation
energy of the final target nucleus Egam = 0.7833 MeV. A value of 1.246 keV
was obtained for Fsp/(z T, + 1), and a value of 0.035 keV for

PP I_’ppl * I_'992'
value is slightly less than the value for S

With these two values, Spp was found to be 0.028. This

dp (0.04) given by Robertshaw et

al. (1968). This is consistent with previous results: values for § o are
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generally lower than those for Sdp' The value quoted by Salzmann et al. is
0.05, however, Salzmannm postulated the existence of a third 5/2° resonance at
Ep = 3.3629 MeV. Vhen fit with "MOLTI" in the present experiment, this
resonance was assigned J'= 3/2.

One can also use rpp' and rsp' the inelastic laboratory width and the
single particle width, to obtain the Spp,, the spectroscopic factors for each
of the four exit channels for the 5/2 analog states. These valunes are listed
in table 4.18. I_'pp, is the sum of the channel inelastic widths for both
resonence s, Spectroscopic factors for the inelastic decays provide unique
information, the equivalent of a (d,p) experiment on the excited state of the
target. The experimental values of the inelastic spectroscopic factors are
comparable to the elastic spectroscopic factors, This result is consistent

with previous observations in the same mass—energy region. However, the small

values of the spectroscopic factors prevent any detailed conclusions,
4, pg—wave Resonances

If the incident proton has {= 4, then 7/2% or 9/2% resonances are

formed. Angular distribution equations for decay from 9/2" resonances are:

P_+ a

WP(B) 6pF 6 8pP8) (4.9)

aop(l + a2pP2 + a4pP4 + a

wy(e) aO'Y(l + “27P2 + a4YP4). (4.10)

For 7/2* resonances, a8p= 0. Only two g-wave resonances were studied.
Resonance 1 was assigned I7= 7/2+. Results for resonance 1A were ambiguous
and it was tentatively assigned = 9/2+. Salzmann classified both resonances
as parts of several 9/2+ analog states. Since onme resonance had J'= 7/2" and
the assignment for the other is uncertain, no analysis of the analog state was

performed. The Legendre polynomial coefficients and spin assignments for the
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TABLE 4.18

SPECTROSCOPIC FACIORS FOR 5/2° ANALOG STATES

" Coaf iguration  [" /2t +ny T d" . Sy (Spp)
(keV) (keV)
5/2° 1f5@ 0" 1.2 0.035 0.028
2pi ® 2" 9.6 0.018 0.0019
2p; @2 9.7 0.002 0.0002
1f§ © 2" 0.15 0.003 0.023
1f§ ® 2" 016 0.0007 0.0043
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two g—wave resonances are given in table 4,19. A portion of the analysis of
the g—wave resonances was performed by P. Ramakrishnan with a program written
by J. K. Shriner, Jr.

The 7/2+ resonance had four opemn exit chanmels: in the total angular
momentum representation, f(’'=2 j'=3/2, {'=2 j’'=5/2, [{'=4 j'=7/2, and ['=4
j'=9/2, and in the channel spin representation ['=2 s'=3/2, {’'=2 s'=5/2, ('=4
s'=3/2, and ['=4 s'=5/2. Any {'=6 contributions are neglected because the
Coulomb penetrability is extremely low relative to the ['=2 and ['=4

and &

contributions. 7The mixing ratios are Sj in the

L= Y525 Yj23 50 Y549/ Y547

total angular momentum representation, and & and &

s Ys2577s23 O~ Ysas'Vs43

in the channel spin representation. The mixing angles are ¢ij tan_ISjL and
-1 . . _ -1
qu— tan BjU in the total éngular momentum representation, and ¢sL_ tan SsL
and ¢SL= tan-ISSL in the channel spin representation., The 32 parameter is a
measure of the ('=4 admixture for each resonance.
+

A 9/2 resonance has three open exit channels: in the total angular
momentum representation, f’=2 j’'=5/2, {'=4 j'=7/2, and [('=4 j'=9/2, and in the
channel spin representation [('=2 s'=5/2, ('=4 $'=3/2, and ['=4 s’'=5/2. Again,
{'=6 contributions are neglected. Only one mixing ratio is def ined:
sjU= Yj49/7j47 in the total angular momentum representation and
55U= 7545/7543 in the channel spin representation. The mixing angle in the
total angular momentum representation is qu= tan_15jU, and in the channel
spin representation ¢SU= tan—18SU. The 52 parameter is a measure of the ['=

. . . 2 i i .

admixture for each resonance, and is defimed as 7= ( Ij49)/ Ip' in the
total angunlar momentum representation, Table 4.20 lists values of the mixing
ratios, mixing amngles, and 32 for both resonances in both representations.

Values of the channel reduced widths are listed in table 4,21 for both

resonances in both representations.
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TABLE 4.20
MIXING RATIOS, MIXING ANGLES, AND &2 FOR (=4 RESONANCES IN °lin
Total Angular Momentum Representation
Res. ¢jL ¢jU st 6jU e
No. (degrees) (degrees)
1A -167.1 + 20.8 0.23 + 0.44 0.144 + 0.045
- 0.23
1 20.7 + 2.7 -13.2 + 11.4 ¢.38 + 0.05 -0.23 + 0.20 0.163 + 0.033
- 0.05 - 0.22
Channel Spin Representation
Res ¢ ? ) 5 82
) sL sU sL sU
No. (degrees) (degrees)
1A -60.3 + 24.6 -1.75 + 1.04 0.059 + 0.034
- 9.57
1 -16.1 + 2.7 -72.1 + 11 .4 —0.29 + 0.05 -3.,09 +1.31 0.163 + 0.033

- 0.05
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INELASTIC REDUCED WIDTHS AND AMPLITUDE PRODUCTS FOR (=4 RESONANCES IN Slbtn

Total Angunlar Momentum Representation

Res 2 2 2 2
: Y23 Tj25 1347 Tia9 Yj237j25 Yj237547  Yj237j49
No. (keV) {(keV) (keV) (keV) (keV) (keV) (keV)
1 15.12 2.17 423.6 23.15 5.73 80.04 -18.71
1A 6.79 0.91 164.2 8.63 2.48 -33,.38 -7.65
Channel Spin Representation
Res 2 2 2 2
: Ts23 Ts25 Y543 Y345 ¥5237s525 75237543 Vs237¥s45
No. (keV) (keV) (keV) (keV) (keV) (keV) {keV)
1 16 .00 1.34 42 .35 404.4 -4,62 26 .00 -80.32
1A 8.11 0.35 17.24 53.11 -1.68 11.83 -20.76
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CHAPTER V

STATISTICAL PROPERTIES

A. Introduction

Due to the large number of states present at the excitation energies
involved in these experiments (about 11 MeV), a theoretical consideration of
individual states is inappropriate. Instead, a statistical approach is
employed in the description of properties of levels such as the energy
distribution and the widths and redoced widths of states. 7The theoretical

background of the statistical approach will be summarized briefly.

B. Level Spacings and Proton Strength Functions

A quantum state of a system is specified by a set of observables and
their corresponding operators. In simple systems, all interactions are
specified through the Hamiltonianm H, and the SchrBdinger equation is solved:
H-§£ = Ei-qé’ where the .ﬁﬂ are the wave functions and the Ei are the energy
eigenvalues. The system Hamiltonian H defined for the study of the
statistical properties of compound nuclear states is required to be invariant
under time reversal and rotations: H is therefore real and symmetric
(H = H'I = E). The canonical transformation group which preserves the

properties of a real symmetric Hamiltonian is the orthogonal gronup.

A simple level sequence is one in which all levels have the same
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conserved quantities, such as spin and parity (Mehta 1967). Wigner (1967)
suggested that eigenfunctions W could be chosen as functions of the conserved
quantities. The Hamiltonian can be reduced to a matrix containing diagonal
blocks (Mehta 1967), each of which has the same conserved quantities as a
simple level sequence. The statistical behavior of the simple level sequence
is represented by the eigenvalues of the corresponding block. Interactions
between levels in the same sequence (and therefore in the same block) are
sufficiently strong that other interactions are negligible: therefore no
further diagonalization of the matrix is considered, and levels corresponding
to different blocks are considered statistically uncorrelated. ZEach of the
blocks can be considered separately as an NxN orthogonal matrix whose elements
are random variables with the maximum statistical independence allowed under
the symmetry requirements, where N is a large fixed positive number. The
analytic form of the probability distribution function was derived by Porter
and Rosenzweig (1960). Detailed descriptions of the derivation can be found
in Chou (1980) and Watson (1980). From the gemeral distribution the
corresponding eigenvalne distribution, the Wishart distribution, can be
obtained. The single eigenvalue distribution is derived by integrating over
all but one eigenvalue, this procedure is very complicated. For the nearest
neighbor distributions the result is essentially the same as that proposed by
Wigner. Detailed comparison of spacing data with random matrix theory is
given in the comprehensive review by Brody et al. (1981). The present data
are not sufficiently complete (too few levels and too many missing levels) for
such detailed comparison, However, the same limitation does not apply to
measurements of the width and amplitude correlations. Such measurements are
so new that even fragmentary results are important, since qualitative

properties and trends have not yef been established.
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Average properties also can be obtained, One useful combination of two
average properties is the proton strength function, defined as S= ;Z/D, where
T, is the average reduced width in channel ¢, as previously defined, and D is
the observed average level spacing. Table 5.1 presents the proton strength

functions for 3/2 resonances, and table 5.2 presents the proton strength

functions for 5/2% resonances in San.

C. Reduced Width Amplitudes

The probability distribution function for reduced width amplitudes T in

the case of m channels is the Krieger—Porter distribution:

"L 1T _lMlELE exp (— %(YL'MYK)) . (5.1)

P

cc'

where M is an mxm real symmetric positive definite matrix defined as
M= (Yl X YK) "1 and M| is the determinant of matrix M. The bar indicates
an average over levels. M is equal to the inverse of the covariance matrixz 2,

where T = (YA. X Yl) . The channel correlation coefficient for the redunced

width amplitudes is:

C(Yc.‘Yc.) = chch, » - (5-2)
(;7 ;77)1/2

c c

assuming the random phase approximation (ch = 0)., The reduced width

correlation coefficient is:

2 2. Y
C(Ycl ‘Ycl) - chYKcl ch ch: (5.3)
T TT\2, 4 _ T ,2,,1/2
[(YXc (ch) )(ch' (ylc,) )]
= (Clr,, Yc'))z (5.4)

These equations are from Krieger and Porter {(1963).
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TABLE 5.1

PROTON STRENGTH FUNCTIONS FOR 30 3/2  RESONANCES IN Sllrfn

Channel 272 7_2 S
(keV) (keV)
Y; 34.54 1.151 0.028
Yz, 25.07 0.836 0.020
2 11.13 0.371 0.009
Y‘jll L] - -
72 13.94 0.465 0.011
j13 ° °
72 11.88 0.396 0.010
sl3 y .
2 13.19 0.440 0.011
Ysls - - -

D = 41.2 keV



TABLE 5.2

PROTON STRENGTH FUNCTIONS FOR 38 5/2° RESONANCES IN

51

Channel v 12 S
(keV) (keV)

2
1y 40.48 1.065 0.040
2, 64.40 1.695 0.063

2 19.52 0.514 0.019
onl - . -

2 10.02 0.264 0.010
Yj23 - - [

2 34.84 0.917 0.034
T2 i X i
2 19.52 0.514 0.019

sos . - .

2 24.69 0.650 0.024
Ys23 - - -

2 20.18 0.531 0.020
7325 - ] -

D = 26.9 keV

Mn
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1. p-wave Resonances

There are no 3/2 analog states in the emergy range considered,
Therefore, a statistical approach is appropriate for analysis of the set of
3/2 resomances. If the reduced width amplitude distribution is assumed to be
a Gaussian distribution with zero mean (the Krieger—Porter distribution in the

one channel limit):

1/2

2 B2 (5.5)

P(x) = 1 exp(—12/2). where x = (y°/
(2'1'()1/2

then the reduced width distribution is expected to follow the Porter—Thomas

distribution:

P(y) = 1 exp(-y/2), where y = 12 = 72/ ;I
1/2
(2ny)

Note that this is a singlet distribution and is independent of chanmnel

. (5.6)

correlations. The experimental reduced width histograms are shown in figunre
5.1 for the elastic and total imelastic chanmnels, in figure 5.2 for the
inelastic channels in the total angular momentum representation, and in figure
5.3 for the inelastic channels in the channel spin representation. The solid
curve in each plot is the Porter—Thomas distribution for N levels. A log-log
scale was used to accentuate the effect of missing small levels., The data
agree quite well with the Porter—Thomas distribution, although it is clear

from the ;g and Yp' plots that many small levels were not seen. Approximately

11% of the levels were missed.

2. d-wave Resomances

Since there are no analog states in the energy range considered, the
reduced width distribution for the d-wave resomances is also expected to

follow the Porter—Thomas distribution, The experimental reduced width
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FIGURE 5.1 The distribution of reduced widths for the elastic

51

and total inelastic decay channels for 3/2 resonances in Mn. The

solid line in both cases is the normalized Porter—Thomas distribation.
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FIGURE 5.2 The distribution of reduced widths for the

51Mn in the total

inelastic decay channels for 3/2 resomances in
angular momentum representation, The solid line in both cases is the

normal ized Porter—Thomas distribution,



i
v 7’2 /UNIT INTERVAL

168

>
B\

3/," RESONANCES IN 5'Mn
(Total Angular Momentum
100.0F Representation)
)/2
10.0k ji
Yo 8 \
O.1F
0.01 - | } L
)’ 2
10.0 [ j13
—
[
1.0 \
Ol
0.01 | | |
0.001 Q01 0.1 1.0 100

Y =Ye/<(y2)



169

FIGURE 5.3 The distribution of reduced widths for the

SIMn in the channel

inelastic decay channels for 3/2 resomances in
spin representation. The solid linme in both cases is the normalized

Porter—Thomas distribution.
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histograms for the elastic and total inelastic channels are shown in figure
5.4, for the inelastic channels in the total angular momentum representation
in figure 5.5, and for the inelastic channels in the channel spin
representation in figure 5.6. The solid curve is the theoretical prediction
of the Porter—-Thomas distribution. As in the case of the p-waves, the data
agree well with the theory, but it is clear that many small levels were not

seen., Approximately 19% of the levels were missed.

D. Mixing Ratios

In quantum mechanical systems, absolute phase is unmeasurable, only the
relative phase between wave functions can be determined. Previously, only the
magnitudes of the amplitudes were measured, The present method determines the
relative signs between reduced width amplitudes corresponding to different
decay channels. That is, both the sign and magnitude of the mixing ratio of

two reduced width amplitudes are obtained.

1. p-wave Resonances

As derived by Chou (1980), the probability distribution function for

mixing ratios in the two channel case is:

P(3) = 4JM|1/2 , where: (5.7)
2

MMy ¥ My, 2M08)
IMI = 1 . M, = ;g M|,

27 (v 7)

1 72 1172

_ .2 - T

My, = vy Ml M, = = vqry M

In terms of the mixing angle ¢, the probability distribution function is:

P(g) = w2
n(Mllcosz¢ + M2251n2¢ + M1251n2¢)

. (5.8)
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FIGURE 5.4 The distribution of reduced widths for the elastic
and total inelastic decay channels for 5/2+ resonances in 51Mn. The

solid line in both cases is the normalized Porter—Thomas distribution.
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FIGURE 5.5 The distribution of reduced widths for the

5y in the total

. . : + :
inelastic decay channels for 5/2 resonances in
angular momentum representation, The solid line in all three cases is

the normalized Porter—Thomas distribution.
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FIGURE 5.6 The distribution of reduced widths for the
inelastic decay chanmels for 5/2+ resonances in San in the channel
spin representation., The solid line in all three cases is the

normal ized Porter—Thomas distribution.
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If the average reduced widths in the two channel case are equal, then P(5) and

P(¢) redoce to:

P(5) = C and P(¢) = C , where (5.9)
1+ 8% +2M'6 1 + M sin2¢
M=M= — 11 » and
7z Z2.1/2
Mil (71 72)

If Y ¥y = 0, that is, there is no channel correlation, then P(8) reduces to a
Cauchy distribution and P(¢) reduces to a uniform distribution. Figure 5,7
shows a comparison between the data histogram and the theoretical prediction
from egn. 5.9 for both representations., The theoretical values have been
normalized to the data by multiplying by a factor of Nn/I, where N is the
total number of resomances and I is the number of bins in the histogram, The
theoretical prediction follows the general trends of the data, but dees not
agree well,

The extreme statistical model predicts that there should be no
correlations between decay channels and that the average value of each channel
amplitude should be zero. If the experimental mixing ratios are normalized
for equal average reduced widths and plotted as histograms, the extreme
statistical model then predicts a uniform distribution. Figure 5.8 presents
the data histogram for 3/2 resomances in both representations., The dashed
lines are the predicted distributions. Strong non-statistical effects are
obvious in both representations, In the total angular momentum
representation, only 8 resonances out of 30 have positive signs, and in the

channel spin representation only 6 resomances out of 30 have negative signs.
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FIGURE 5.7 Histograms of the number of resonances with a given
mixing angle for 3/2 resonances in San in both representations. The
solid curves are the Krieger—Porter predictions for each case, The

experimental parameters used in these predictions (in keV) are

2 _ 2 _ _ 2 -

(lel) =0.371, <Yj13> = 0.465, <Yj117j13> = -0,062, (7513) = 0,39,
2

<7515> = 0.440, (75137315> = 0.075.
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FIGURE 5.8 Histograms of the number of resonances with a given

mixing angle, normalized for equal average reduced widths, for 3/2
resonances in Mn in both representations, The dashed lines are the

umiform distribotions predicted assuming no channel—-channel

correlations,
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In both representations the mixing ratios tend to cluster. Plots of the
mixing angles versus energy, shown in figure 5.9 for both representations,
demonstrate that the effect is not localized in energy.

As one test of the significance of the clustering effect, the Z-
statistic of Wells (1978) is used. In this technique the data histogram and

the extreme statistical model are compared through a statistic 22, defined

as:

N
1

N 2
i-El(Ni - Np/Np T (5.10)

where Ni the number of resonances for which the valume of the mixing angle

falls in the ith bin (bins are of equal width), NR = the total number of
resonances, and NB = the number of bins., The procedure is as follows: a
random number generator generates NR random numbers ranging from —90o to 900,
then sorts these valunes into bins of a set size, and the corresponding Z2
value is calculated. This procedure is repeated 100,000 times. The values of
22 obtained for each repetition are sorted into bins of width 1.0. The
calculated values of Z from the data are Z= 9,00 in the total angular momentum
representation, and Z= 9,38 in the channel spin representation. In the
calculated distribution of Z for 30 3/2 resonances with 9 bins (each of width
200), there are 246 cases out of 100,000 in which Z > 9.0. Therefore, the

probability for the observed data to be sampled from a uwniform distribution is

about 0.2%, and the level of significance of the deviation of the data from a

uniform distribution is 99,8%.
2. d—wave Resonances

In the three channel case, there are two independent mixing ratios and

two independent mixing angles. Chou (1980) derives the following equations
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FIGURE 5.9 Plots of the mixing angle ¢ versus the energy of
the incident proton for 3/2 resomances in San in both

representations,
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for the probability distribution functions:

P(5,,5,) = Y2 1 ,
21 2 2, 5. + 2h 532
(M1187 *+ My,8, + Mgy + 2M) 58,8, + 2My35, + 2M; 38,
(5.11)
P(9,,9,) = lulfif . (5.12)
2x :
Secz¢1sec2¢2 ,
(M 2¢ + t 2¢ + M., +2 tang . tand,, + 2M,,tan¥, + 2 tan¢)3/2
11tan?y + My tan ¥y + My + 2M; ,tand tand, L3 2 * 2My3 1
where:
_ 2772 _ 2 2
M| = Lyl v3 3 + 2v47, Y15 Yq73 15(7y73)
2, —2 _ 2,——2,-1
- 73(7172) 71(7273) 1 ,
2 7 _ T2 _ 22 2
Mpy = Ml v = ()™ s My, = IilGry vz — (ryrd ™)
22 —.2 _ _ 2
Mgy = Mltyy vy = (v Mpg = IlCryrg vorg = vgvpy v3)
-2 _ _ 3

The distribution function for either mixing ratio or mixzing angle can be found
by integrating out the other. The single mixing ratio probability

distribution functions reduce to the two channel case, Chou (1980) also

points out that for the special case where yi = y% = yg, and if

M12= M23= M13= 0 (no channel correlations), then eqns. 5.11 and 5.12 reduce

to:

P(5,,5,) = (/2 1 , and (5.13)
27 2 .2.3/2 3/2
(1 + 8%+ 823 2m )

2 2
P(¢1,¢2) - Iy 1/2 sec ¢1sec ¢2 ] (5.14)
2xn (1 + tan2¢1 + tan2¢2)3/2(M11)3/2
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Figures 5.10 and 5,11 present plots of the data histogram and the theoretical
predictions (two channel case) for the total angular momentum representation
and the channel spin representation, respectively. Again, the theoretical

values have been normalized to the data. For the highly correlated channels

qjCB' 9

SBA’ quA‘ and ¢sCB the theory and data agree quite well. Even in the
other two channels the general trends of the data are reproduced by the
theory. The mixing ratio distributions seem to follow the Krieger—Porter
reduced width amplitude distributionm.

Histograms of the measured mixing angles for 5/2+ resonance s normalized
to correct for unequal average reduced widths are shown in figure 5.12 for the
total angular momentum representation and in figure 5.13 for the chanpel spin
representation., The dashed lines are the predicted uniform distributions.
Strong non—statistical effects are observed in the plots of ¢jBA’ ¢jCB‘

all three mixing angles in the channel spin representation. The clustering

and

effect is also obvious. In plots of the mixing angles versus energy, shown in
figure 5.14 for the total angular momentum representation and in figure 5.15
for the channel spin representation, it is clear that the clustering effect is
not localized in energy.

The Z—-statistic was also calculated for 5/2+ resonances., In the total
angular momentum representation, Z= 10.75 for ¢jBA’ Z= 11.30 for ijA' and Z=
8.81 for ¢jCB' In the channel spin representation, Z= 9.47 for ¢5BA’ Z= 9.57
for ¢scA,'and Z= 7.05 for ¢sCB' In the generated distribution of Z for 38
5/2+ resonances with 12 bins (each of width 150), there are 15,945 cases out
of 100,000 with Z > 7, 3921 cases with Z > 8, 887 cases with Z > 9, 124 cases
with Z > 10, and 19 cases with Z > 11, Therefore, the probability for the
observed data to be sampled from a uniform distribution is about 16% for ¢S

(B'

% £ . . 2% .  a
4 or ¢JCB' 0.9% for ¢SBA and quA' and less than 0.2% for qJBA and qJCA
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FIGURE 5.10 Histograms of the number of resonances with a given

mixing angle for 5/2+ resonances in 51Mn in the total angnlar momentum

: . ! |

representation. ¢BA_ tan (7j23/7j01)' ¢CA_ tan (Yj25/7j01)'
A .

¢CB_ tan (Yj25/7j23)' Only two of these three variables are
independent. The solid curves are the Krieger—Porter predictions for

each case, The experimental parameters used in these predictions (in

2 _ 2 _ 2 _
keV) are <Yj01> = 0.513, <Yj23> = 0.264, a2 = 0.917

(0175237 = 0-029, <¥iq17555> = 0470, <y 537;55> = ~0.033.
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FIGURE 5.11 Histograms of the number of resonances with a given

mixing angle for 5/27 resomances in San in the channel spin

. 1 -1
representation. ¢BA— tan (7323/7505), ¢CA_ tan (7525/7505),

¢CB= tan_1(7525/7323). Only two of these three variables are

independent. The solid curves are the Krieger—Porter predictions for

each case. The experimental parameters used in these predictions (in

keV) are <y§05> = 0.513, <yi23) = 0.650, <y§25> = 0.513,

<75057323> = 0.359, <73057525> = 0.305, (75237525> = 0,323,
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FIGURE 5.12 Histograms of the number of resoﬁances with a given

mixing angle, normalized for equal average reduced widths, for 5/2+

resonances in 51Mn in the channel spin representation. The dashed

lines are the uniform distributions predicted asswmming no

channel-channel correlations.



NUMBER OF RESONANCES

f | 1 I T [ 51 ! i I | I I
55+ RESONANCES IN' °'Mn
(Total Angulor Momentum Representation)

8‘¢BA |
oF -
4l _
2 _

Cl,qb — F o ,

CA
o i
4} |
2H -
OH i ! | 5
| Pes |
8 N
4 _
____________________ I S
L] ]
I T
| \ | | \ |

O ' .
-0 -0 -30 O 30 o0 90

(degrees)

193



154

FIGURE 5.13 Histograms of the number of resonances with a given

mixing angle, normalized for equal average reduced widths, for 5/2+

51

rfesonances in Mn in the total angunlar momentum representation, The

dashed lines are the uniform distributions predicted assmming no

channel—-channel correlations.
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FIGURE 5.14 Plots of the mixing angles versus the energy of the
incident proton for 5/2+ resonances in San in the total angular

momentum representation.
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FIGURE 5.15 Plots of the mixing angles versus the energy of the

51

. + . R R
incident proton for 5/2 resonmances in Mo in the channel spin

representation.
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The level of significance of the deviation of the data from a mniform

distribotion is about 84% for ¢sCB' 96% for ¢jCB' 99 .1% for ¢sBA and ¢sCA' and

greater than 99.8% for ¢jBA and ¢ch.

E. Linear Correlation Coefficients

The linear correlation coefficient is a convenient measure of the
relationship between two sets of variables x. and Y- If r is equal to + 1,
then x and y are completely correlated, and y = ax + b, If x and y are

independent, then r is equal to 0. The linear correlation coefficient is

def ined as:
N — —_
r(x,y) = b (xi_xi) (yi—yi) (5.15)
: i=1 .
N N
[ E (x,x)?% T (yypt?
i=1 i=1

The significance of the correlation between x and y is dependent upon N
and wpon the parent distributions. Baudinet—Robinet (1974) developed a
distribution free test on the significance of the correlation indicated by r
which is closely approximated by a Student’s t distribution with N-2 degrees
of freedom. The independence of x and y is therefore rejected omn a

significance level a, where

Plt] > t) =a and t, = E(&z);"'}”z . (5.16)

o
1--1:2

The confidence interval for r is given by P ~ 1 - 2a.

1. p—-wave Resonances

Values of the linear correlation coefficients calculated from the data
for 3/2” resonmances for all channels with eqns. 5.2 and 5.3 are listed as the

superdiagonal terms in table 5.3 for the total angular momentum representation
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TABLE 5.3
LINEAR CORRELATION COEFFICIENTS BETWEEN REDUCED WIDTHS
FOR 3/2  RESONANCES IN ° Mn

Total Angular Momentum Representation

2 2 2 2
YP 'va .lel 7j13
T; 1 -0.127 -0.143 -0.024
Yi. 50% 1 0.815 0.620
2
lel 55% 299.9% 1 0.051
2
Yj13 10% 299.9% 21% 1

The amplitude correlation is p(7j11'7j13) = -0.150, The significance level of

the amplitude correlation is 57%.
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and in table 5.4 for the channel spin representation. The subdiagonal terms
in each t;ble are the corresponding significance levels. Non—statistical
effects are indicated by significant correlations between channels. For the
3/2  resomances, the linear correlation coefficients are small, and the
significance levels are low. The data indicate that there are mo strong
correlations for 3/2 resomances, de spite the non—statistical behavior
observed in figures 5.7 and 5.8. In agreement with eqn. 5.4, the reduced
width correlation coefficient is approximately equal to the square of the

reduced width amplitude correlation coefficient.
2. d-wave Resonances

Values of the linear correlation coefficients calculated from the data
for 5/2+ resonances with eqns, 5.2 and 5.3 are listed as the superdiagonal
terms in table 5.5 for the total angular momentum representation in table 5.6
for the channel spin representation. The subdiagonal terms in each table are
the corresponding significance levels. The occurrence of non—statistical
effects is indicated by the significant correlations between channels. For
the 5/2+ resonances, the linear correlation coefficients are large and the
significance levels are qu@te high, especially in the channel spin
representation. The reduced width correlation coefficients are not equal to
the squares of the reduoced width amplitude correlation coefficients for 5/2+

resonances, as is evident from tables 5.5 and 5.6.



LINEAR CORRELATION

TABLE 5.4

COEFFICIENTS BETIWEEN REDUCED WIDTHS

FOR 3/2 RESONANCES IN °l¥n

Channel Spin Representation

2 2 2 2
Yp Yp' Ts13 7515
712, 1 -0.127 —0.068 -0.122
712,. 50% 1 0.722 0.805
2 28% 599, 9% 1 0.171
lel - -
2 45% >99.9% 63% 1
Yj13 .

The amplitude correlation is p(7513'7515) = 0.179,.

the amplitude correlation is 66%.
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The significance level of



TABLE 5.5

LINEAR CORRELATION COEFFICIENTS BETWEEN REDUCED WIDTES

FOR 5/27 RESONANCES IN >l

Total Angular Momentum Representation

2 2 2 2 2
Y§ 1 0.671 0.724 0.195 0.617
yi, >99.9%% 1 0.968 0.388 0.948
Y§01 299.9% ©  >99.%% 1 0.367 0.886
2 76% 98.3% 97 .5% 1 0.102
Yj23 . . .
Y?ZS >99.9% >99.9%% 299.9% 46% 1
The amplitude correlations are p(Yj01’7j23) = -0,078, (significance level =

36%), p(7j01’7j25) = 0.686, (significance level = >99,9%), and p(7j23’7j25)

-0.068, (significance level = 31%),
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TABLE 5.6

LINEAR OORRELATION OOEFFICIENTS BEIWEEN REDUCED WIDTHS

FOR 5/2% RESONANCES IN 1y

Channel Spin Representation

2 2 2 2 2
Ty Tpr Y505 Y523 Y525
yi 1 0.671 0.724 0.595 0.399
yz, 599.9% 1 0.968 0.915 0.667
2
Y05 599.9% >99.9% 1 0.899 0.556
7§23 >99.9% 599.9% >99.9% 1 0.330
2
Tos 98.6% 599.9% >99.9% 98.2% 1

The amplitude correlations are p(7505'7323) = 0.622, (significance level =

>99.9%), p(‘ysos,'yszs) = 0.585, (significance level = >99.9%), and p(y )

s23°' 7525
= 0.550, (si.g;qificance level = >99,9%),
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CHAPTER VI

CONCLUSIONS

Detailed angular distribution measurements on the inelastically
scattered proton and de—excitation y—ray in the 50Cr(p,p'Y) reaction were
performed for 107 resonmances in 51Mn with a variety of T" values, ranging from
1/2° to 9/2+. The f-wave analog state fragments at Ep= 3.3149 MeV and
Ep= 3.3323 MeV were analyzed and discussed.

Mixing ratios for the inelastic decay amplitudes were uniquely
determined for all resonances except those assigned 1/2  and 3/27. For 1/2°
resonances, there is only omne open decay channel. For 3/2+ resonances, two
solutions for the mixing ratio were found for each resonance.

General angular distribution theory was briefly discussed., The angular
distribution equations needed for { =1, 2, 3, and 4 resonances were presented
in both the total angnlar momentum representation and in the channel spin
representation., Transformations between these two representations were given
for the mixing angles.

The general statistical theory of fluctuations and the random matrix
hypothesis as applied to reduced width distributions were outlined. Mixing
ratio distributions including chanmel-channel correlations were stated,
Statistical studies were performed on the set of 3/2  resonances and on the

+
set of 5/2 resonances.



207

The data show that the reduced width distributions follow a Porter-—
Thomas distribution, consistent with the expected reduced width amplitude
distribution —— Gaussian with zero mean, Since ;;T # 0 for the 5/2+
resonances, large correlations between channels exist. Such correlations
violate the extreme statistical model. Channel-channel correlations are
included in the Krieger—Porter formulation: the experimental mixing ratio
distributions are consistent with the Krieger—Porter amplitude distribution.
The physical origin of the correlations has not yet been explained, To date,
correlations have been observed in every case measured by the high resolution
group at the Triangle Universities Nuclear Laboratory. However, ;11 of these
measurements have been performed in the A = 40-56 mass region and with protons
of energies between 1 and 4.5 MeV. More experimental information is essential
to determine whether these correlation effects are of a general nature or an

anomaly confined to a narrow mass—emergy region,
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FIGURE A.1 Differential cross section of proton elastic and
inelastic scattering on 5OCr from Ep= 3.240 MeV to Ep= 3.440 MeV.

These data are reprodeced from Salzmann (1975) and Salzmann et al.

(1977) .
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FIGURE A.2 Differential cross section of proton elastic and
inelastic scattering on 50Cr from Ep= 3.440 MeV to Ep= 3.640 MeV,
These data are reproduced from Salzmann (1975) and Salzmann et al.

(1977) .
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FIGURE A.3 Differential cross section of proton elastic and
inelastic scattering on 50Cr from Ep= 3,620 MeV to Ep= 3.820 MeV.
These data are reproduced from Salzmann (1975) and Salzmann et al.

(1977).
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FIGURE A.4 Differential cross section of proton elastic and
inelastic scattering on 5OCr from Ep= 3.820 MeV to EP= 4.040 MeV.
These data are reproduced from Salzmann (1975) and Salzmann et al.

(1977).
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FIGURE A.S Differential cross section of protom elastic and
50

inelastic scattering on Cr from Ep= 4,040 MeV to EP= 4.400 Mev.
These data are reproduced from Salzmann (1975) and Salzmann et al.

(1977) .
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RESONANCES PARAMETERS FOR RESONANCES IN °lMn

TABLE A.1

219

Res. E, " Fp y; rp. 73.
No. (MeV) (eV) (keV) (eV) (keV)
ML 3.0594  3/277  1700°  10.66" 10" 0.39"
M2 3.0689  (3/27) 200 1.24
M3 3.1075  3/2°" 25" 0.14" 35 1.23°
M4  3.1125  1/2 75 0.43 37" 1.31"
M5 3.1634  3/27° 25° 0.13° %" 2.72°
M6 3.1668  3/27° 700" 3.65° 27 0.81"
M7 3.1872  3/2°°  1625" 8.20" 9* 0.26"
M8  3.2148  3/2°° 125" 0.60" 17° 0.44°
1A 3.2461 9727 12* 16.15° go®  78.82°
1 3.2587 1/2%* 33* 43,04  191*  464.01"
2 3.2594  s5/2% 40 0.66 29" 0.78"
3 3.2637 1727 650 1.54 25 2.66
4 3.2662 (5/2%) 10 0.16 40
4A 3.2664 (9/2+) this resonance was not observed
5 3.2691  3/2 50 0.22 53° 1.20"
6 3.2867  5/27 70 1.10 77" 2.32"
7 3.2923  3/27° 25" 0.11° 5t 0.10°
8 3.2946  5/27 60 0.93 191* 4.27°
9 3.2980 1/27" 200" 0.84" 16" 0.33"
10 3.3149  5/2 15 1.50 14" 2.58"
11 3.3208  1/27 800 1.76 80 7.20



TABLE A.l1 (continued)

Res. Ep 7" Pp yi Fp. Y;u
No. (MeV) (eV) (keV) (eV) (keV)
12 3.3323  5/2 20 1.93 10 1.07°
13 3.3454  3/2° 200 0.79 2" 0.77°
14 3.3626 (5/20)° 35" 0.47" 70"
15 3.3629 (3/270)" 180" 0.69" 15"
16 3.3693  3/2% 60 0.81 50° 1.36"
17 3.3735  (5/2) 20 0.27 5 0.04
18 3.3745  3/27° 23° 0.30" 5* 0.14"
19 3.3780  1/27 1800 3.67 60 4.60
20 3.4085  (1/27) 90 0.32 10 0.16
21 3.4095  3/27° 45* 0.16" 7* 0.11°
22 3.4177  s5/2% 160° 1.99%  402° 7.37°
23  3.4189  (1/27) 300 1.06 30 0.47
24  3.,4535 (3/2L) this resonance was not observed
25  3.4537 1/27" 300 0.56 100 6.25
26  3.4549  5/2% 350 4.09 207° 4.30°
27 3.4697  s5/2° 300" 3.42% 344" 5.67
28 3.4733  (3/2) 150 0.49 150
29 3.4761  3/2%° 30" 0.34" 17" 0.22"
30 3.4892 (3/25H°% 225" 2.48%  1575"
31  3.4899 1/2% 6000 10.68 300 17.07
32 3.5074  1/2° 750 2.35 g* 0.10"
33 3.5150  3/2%° 23" 0.24" 37° 0.43°
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TABLE A.1 (continued)

Res. Ep 7 Fp 73 Fp. Yi.

No.  (MeV) (eV) (keV) (eV) (keV)
34 3.5156 (5/2+) this resonance was not observed

35 3.5162 (5/2+) this resonance was not observed

36 3.5294  1/2% 2500 4.25 200 10.23
37 3.5413  3/2° 80 0.24 28" 0.33°
38  3.5430 (1/27) 120 0.36 10 0.12
39 3.5461  1/2% 10000 16.68 1100 54.23
4 3.5518  5/2° 15 0.94 12* 1.87°
41 3.5538  3/27 150 0.44 58" 0.66"
42 3.5554  3/2%° 80" 0.79*  102* 4.73"
43  3.5570 (1/2) 80 0.24 30 0.34
44 3.5652 (5/2%) this resonance was not observed

45  3.5651  3/2%* 200" 1.95° 1224 18.67"
46 3.5662 (5/2+) this resonance was not observed

47  3.5779 1/27° 400" 1.14°  10* 2.07"
48 3.5850  s5/2% g* 0.08" 81" 1.65"
49 3.5958  5/2% 50 0.47 36" 0.57°
50 3.5987 (3/20)° 200" 0.s6° 200" 2.07"
51 3.6061 (3/27) 300 0.83

52 3.6065 (5/27) 100 0.91 200

53 3.6071 (5/2M) 170 1.55 280

54  3,6092 (1/2) 90 0.25 70 0.71
55 3.6157 372" 65° 0.59" 70* 0.74°
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TABLE A.1 (continued)

222

Res. Ep 3 I-’p 77; |—'1:' Yg'

No, (MeV) (eV) (keV) (eV) (keV)
56 3.6385  3/2°" 375" 0.99" 15" 0.14"
57 3.6447 (3/27) 190 0.50 190 1.79
58 3.6459  1/2% 800 1.20 200 7.76
59 3.6472  5/2% 180 1.55 84" 0.79°
60 3.6503  3/2” 150 0.39 53" 0.49°
61 3.6532  3/2%" 105" 0.89° 149" 2.82°
62 3.6549  5/2% 150 1.26 117° 1.63"
63 3.6642  3/27°" 400" 1.03" 92* 0.83"
64 3.6701  1/2F 3500 5.11 400 14.67
65 3.6732  3/2% 250 2.07 3g2” 3.95"
66 3.6750  5/27 550" 4.54° 994° 9.82"
67 3.6753 (5/2+) this resonance was not observed
68 3.6823  s5/2*" 30" 0.24" a2* 0.60"
69 3.6947  1/2° 3500 8.66 41* 0.35"
70 3.7074  5/2*" 3go” 2.99° 314" 1.85"
71 3.7099  5/2% 40 0.31 204" 2.42"
72 3.7208  1/2° 17500 24,24 1000 32.68
73 3.7224  5/2° 50 0.38 ag” 0.71"
74 3.7214  (3/2H% 105" 0.80" 45" 0.18
75 3.7321 372" 30* 0.23*  178* 4.42°
76  3.7333  (5/2%) 10 0.08 100
77 3.7399  3/27" 150° 0.35° 104" 0.81"
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TABLE A.1 (continuned)

Res. o 7 ’y 7§ Y Yi'

No. (MeV) (eV) (keV) (eV) (keV)
78 3.7440  5/2°F 50 0.37 292°* 3.64"
79  3.7509  1/27 850 1.14 200 6.11
80 3.7528  5/27 20 0.15 9* 0.12°
81 3.7540  s5/27 20 0.15 1* 0.02"
g2 3.75718  3/2"* 60° 0.44" 23" 0.52"
83 3.7600 3/2” 450 1.03 209* 1.57"
84 3.7662  3/2%" 60" 0.43* 338" 3,03°
85 3.7722  (5/2%) 15 0.11 15 0.06
8 3.7740  5/27 70 2.92 32* 1.24"
87 3.7763  3/2” 550 1.24 211° 1.53"
88  3.7801  3/2 100° 0.22°  220° 1.59"
8 3.7876  3/2%° 30" 0.21" 23* 0.46"
9 3.7905 (5/27) 100 0.69 105 0.21
91 3.79%08 1/2% 1000 1.29 200 5.60
9 3.7960  3/2% 300° 2.07°7 635" 4.75°

93 3.7963 (3/2+) this resonance was not observed

94 3.8051  3/2° 160 0.35 45° 0.31°
95 3.8111  3/2°° 25* 0.05" 39" 0.26"
96 3.8135 5/2%* 60" 0.40" 533* 4.95"

97 3.8140 (3/2+) this resonance was not observed
- * *
98 3.8233 5/2 10 0.38 16 0.74

99 3.8302 (3/27) 70 0.15 150 0.99



TABLE A.1 (continued)

Res. Ep 7" Fp 73 Fp. 73.
No. (MeV) (eV) (keV) {eV) (keV)
100 3.8314  5/2% 150 0.99 100" 1.50°
101 3.8336 5727 75 0.49° 8o* 0.88"
102 3.8358  1/2% 400 0.50 75 1.91
103 3.8399  3/2% 150 0.98 17° 0.21°
104 3.8425 (1/27) this resonance was not observed
105 3.8566 (3/20)" 20" 0.04" 20° 0.13"
106 3.8606  5/2° 75 0.47 69° 0.61"
107 3.8635  s5/2% 130 0.82 43" 0.63°
108 3.86%  1/2% 1500 1.80 70 1.66
109 3.8764  5/2° 10 0.35 19° 0.32°
110 3.8815  5/2% 70 0.43 33" 0.16"
111 3.8900 (3/20)° 125" 0.25"

112 3.8950  1/2% 400 0.47 50 1.13

113 3.9025 (5/27) 10 0.33 20 0.11

114 3.9067  5/2% 200 1.19 71* 0.53"
115 3.9176  5/2° 250 1.46 93" 0.56"
116  3.9240  3/2° 850 1.63 415" 2.32°
117 3.9329  3/2° 100" 0.19°  s14° 2.83°
118  3.9500  5/2% 300 1.68 102* 0.86"
119  3.9547 1/2% 4000 4.40

120 3.9622  3/2° 75" 0.41° 242" 2.40"
121 3.9677  s5/2*° 120° 0.66" 62° 0.44°
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TABLE A.1 (continumed)

Res. Ep I I_'p 73 T'p. ‘Yz.
No. (MeV) (eV) - (keV) (eV) (keV)
122 3.9703  3/2F 90 0.49 54" 0.26"
123 3.9758  5/2F 200 1.08 141" 0.57"
124  3.9800 (5/2%) 40 0.21 40 0.10
125 3.9812  3/2° 300 0.54 252" 1.28"
126 3.9845  1/27 900 0.97 30 0.55
127 3.9867 (5/2%) 400 2.09 50 0.13
128  3.9930 (3/2)) 3000 5.27 260 1.27
129  3.9945 1/2% 1500 1.59
130 3.9984  3/2%" 150° 0.79" 61" 0.55"
131 4.0042 (3/27) 100 0.17 100
132 4.0047  (3/2) 450 0.78 450
133 4,0054 (3/27) 150 0.26 120 0.57
134 4.0133  s5/2% 160 0.83 56" 0.61°
135  4.0156  3/27 100" 0.17°  102° 0.49"
136  4.0177  3/27° 200" 0.35 19° 0.09°
137  4.0260  1/2% 300 0.31
138 4.0338  5/27 200 1.01 132° 0.43"
139 4.0471 (1/27) this resonance was not observed
140 4.0520 (5/27) 30 0.77 30 0.13
141 4.0613  3/2*° 150" 0.73" 89" 0.91"
142 4.0697  (5/27) 50 0.24 50 0.12
143 4.0722  3/27° 75" 0.12" 36" 0.16"



TABLE A.l1 (continued)

2 T 2
Res. E " I , ,
P P p ] Tp
No. (MeV) (eV) {(keV) (eV) (keV)
144 4.0788  5/2° 80" 2.04 111° 3.79°
145  4.0910 172t 600 0.59
146  4.0928 (1/2)) 1800 2.87 200 0.84
147  4.0948  1/2°7  1200° 1.90% 302" 1.28
148 4.1133  1/2% 500 0.48 300 4.36
149  4.1143  (3/2)) 80 0.13 80 0.32
+ . *
150 4.1302  5/2 200 0.89 43 0.22
+& 3 E E 3
151 4.1401  3/2 150 0.66 428 1.70
+ * »
152 4.1619  5/2 150 0.65 63 0.64
153 4.1727  (5/29) 80 0.33 10 0.02
154 4.1733 172" 1800 1.66 150 1.96
155  4.1800 (5/2%) 200 0.83 120 0.24
156 4.1807 (5/2) 50 1.06 50 0.18
157  4.1851  (3/27)° 75° 0.11°
158  4.1893  3/2° 75 0.11 101" 0.37"
159  4.1920 1/27 4500 4.09 200 2.53
160 4.2036  5/2% 150 0.62 258" 1.08"
161 4.2105  s5/2% 50 0.20 47° 0.34"
162  4.2158  3/2° 150 0.22 103* 0.36"
163 4.2162  1/2% 5000 4.46
164 4.2200 5727 40 0.16 49" 0.29
165 4.2355  s5/2% 300 1.19 124" 0.41°
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TABLE A.1 (continued)

227

Res. E, 3" r 1; P; 7§.
No. (MeV) (eV) (keV) (eV) (keV)
166  4.2375 (3/27) 1500 2.09 100 0.34
167 4.2408 (1/27) 600 0.84 300 1.01
168 4.2415  (5/2) 700 2.69 1500 2.77
169 4.2521  (5/27) 50 0.96 50 0.17
170 4.2603  1/27 3200 2.77 200 2.25
171 4.2675 (3/2) 250 0.34 450 1.46
172 4.2744  1/27 200 0.17 150 1.65
173 4.2779 5727 150 0.56 52 0.15
174 4.2869  1/2F 600 0.51 50 0.54
175  4.2953  3/2° 150 0.20 185 0.59°

() indicates uncertain spin assignment

indicates new spin assignment or width
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