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Absiract

Interest in the 3—v angular correlation stems from the dependence of the correlation
coefficient (@) on the behavior of the 3-decay interaction hamiltonian under Lorentz
transformations. Present upper limits on the ratio of the strengths of the scalar and vector
interaction terms (5% at the 95% confidence level) and the ratio of the tensor and axial-
vector strengths (0.7% at 95% CL) result primarily from measurements of a for various

nuclear systems.

A new determination of a for the decay of the B-delayed proton emitter 33Ar to the
ground state analog level in 33CI has been performed by measuring the energies of protons
detected in coincidence with positrons, The average lab-frame energy of the protons
depends on the average recoil velocity of the 33Cl atom, which is in turn a function of a for
a given positron momentum. This decay branch proceeds primarily through the Fermi
(vector or scalar) interaction, with a small Gamow-Teller (axial-vector or tensor)
contribution. An upper limit on the scalar-to-vector strength ratio is then obtained. The
results also permit an upper limit on the nuclear Gamow-Teller matrix element to be
obtained. The magnitude of this matrix element is sensitive to the form and magnitude of
the nuclear isospin symmetry breaking interactions and therefore provides a constraint on

the construction of nuclear interaction models.
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Chapter 1. The Weak Interaction and Nuclear Beta Decay.
Section 1.1. Imntroduction.

The study of the weak interaction began at the end of the nineteenth century with
Becquerel's discovery of radioactivity (Bec96) and demonstration that beta rays are
electrons (BecO0). Explaining the many puzzles of weak interaction processes drove many
important innovatons in theoretical particle physics, culminating during the 1960's with the
developrent of a phenomenological gauge theory, now known as the standard model of
electroweak interactions, which unifies the weak and electromagnetic interactions (Gla61,

Sal64, Wei67, Gla70, Wei70).

The project described in this thesis was undertaken to search for a scalar interaction
contributing to nuclear beta decay. The presence of a scalar current would indicate that the
standard model is not a complete description of the weak interaction. This chapter provides
a brief review of the standard model and the limits which have been placed on the form of

the weak interaction by established experimental results.

Section two of this chapter presents a brief summary of the standard model of
electroweak interactions. Section three describes the tradiional current-current beta-decay
interaction and places this theory in the more general context of the standard model.
Section four contains a discussion of the nuclear structure aspects pertaining to beta-decay
and the beta-decay classification scheme. The chapter closes with a summary of the
experimental evidence supporting the "V-A law" which is built into the standard model and

restricts the parameters of the current-current theory.

Section 1.2. The Standard Model of Electroweak Interactions.



For the past 20 years all results from weak interaction experiments have been
interpreted and explained in the context of the standard model. The model has been treated
thoroughly in many texts (Hal84, Com83, Geo84, in increasing order of sophistication),
so only the most important aspects of the theory relevant to the present work will be

summarized here.

The standard model is a Lorentz invariant quantum gauge field theory which
describes the weak and electromagnetic interactions of two types of elementary particles:
fermions and bosons. The fermions are, loosely speaking, the matter particles. They have
spin 1/2 and therefore their motion must be described by the Dirac equation to satisfy
Lorentz invariance. The bosons mediate the interactions and have integral spin. The
elementary particles in the standard model include twelve fermions (and their distinct

antiparticles) and four vector (spin 1) gauge bosons.

The vector bosons result from quantization of gauge fields in nearly the same
manner as the photon emerges from the quantized electromagnetic potential in quantum
electrodynamics. The principal difference is that some of the elecroweak bosons have
nonzero mass. The straightforward method of producing particle masses, by merely
adding mass terms to the hamiltonian, results in a theory which is not renormalizable. That
is, calculations of matrix elements require an infinite series of adjustments
(renormalizations) and thus the theory cannot be employed to make predictions of transition
amplitudes. To provide particle masses in a renormalizable theory, an additional gauge
field is added to the hamiltonian. This field is called a Higgs field; its quanta are Higgs
bosons (Hig64). The standard model includes one scalar (spin 0) Higgs boson, which has

thus far evaded direct experimental detection.

The gauge bosons which mediate the electroweak interactions have spin one and

may therefore produce only vector and/or axial vector interactions. Interactions which have



other symmetry properties under Lorentz transformations, such as scalar, pseudoscalar, or
tensor interactions, are forbidden by the absence of mediating bosons which do not have
spin one. (The Higgs boson would mediate a scalar interaction; however, the effective
coupling of the interaction for processes with a momentum exchange less than the Higgs
mass 1s expected to be much smaller than the weak coupling, assuming the Higgs boson

mass is much greater than the W boson mass.)

The four vector bosons are the photon, Z0, W+ and W, The photon mediates

the electromagnetic interaction and is identical to the photon of quantum electrodynamics.

The W+ and W have a mass of about 83 GeV and are responsible for the charge-

exchange weak interaction. The subscript L indicates that these bosons operate only on
left-handed' (negative helicity) fermions. In other words, the Wy bosons act only on the
components of the particle spinors which have momentum and angular momentum vectors
anti-aligned. The ZO has a mass of 92 GeV and produces the neutral current (non-charge

exchange) weak interaction. The ZO acts on both left- and right-handed fermions, but with

unequal strength.

The twelve fermions are divided into two classes and three generations. The
division into classes is made according to whether the particles have color charge and thus
are subject to strong interactions. The six 'colorless' fermions are known as leptons. The
leptons are the electron (e), muon (W), and tau lepton (1) and their associated massless
neutrinos. The first three particles have electric charge -1 and are arranged into three

generations with the neutrinos according to the following diagram:

Vi Vg



The strongly interacting fermions are the quarks which are also arranged into three

generations as follows:

up charm top
down strange bottom

The upper quarks in each pair have charge +2/3, the lower quarks have charge -1/3.

Both the left-handed quarks and left-handed leptons of each generation are placed in
a weak isospin doublet. The W bosons are represented mathematically by the weak 1sospin
raising and lowering operators which flip the weak isospin of the fermion spinors they act
upon, thereby converting the lower particle in each doublet into the upper particle or vice
versa. This is analogous to the role of the charged pions in low energy nuclear physics
which are represented by the nuclear isospin raising and lowering operators that act on the
neutron and proton spinors. The right-handed fermions are isosinglets. They do not

interact with the W field, only the Z and vy fields.

Conservation laws for several quantities are built into the standard model. The
model conserves the total energy, momentum, angular momentum, and electric charge.
Mechanisms to break several important symmetries are also included in the model. The
broken symmetries are the invariances under charge conjugation, time reversal, and space
inversion. Complete breaking of the charge conjugation and parity symmetries for the

weak interaction are produced by the left-handedness of the W bosons.

The standard model also preserves the total number of quarks, as well as the
number of particles of each lepton generation. This is represented by the conservation of
the additive quantum numbers Le, Ly, Lt, and B (electron, muon, tau lepton and baryon

numbers). There is no conserved quark generation number. The total number of strange



and charm quarks (for instance) may be altered during a reaction or particle decay, unlike
the total number of mu leptons and mu neutrinoes. The failure of quark generation
conservation is assumed to be caused by the influence of the strong interaction, which

mixes the weak interaction quark eigenstates. This is mathemarically represented by

d’ d
s'{=KM| s

1.1
b b (1.1)

The d, s, and b represent the weak interaction eigenstates of the down, strange, and
bottom quarks, while d’, s', and b' are the physical (mass) eigenstates. KM isa3X 3
unitary mixing matrix call the "Kobayashi-Maskawa matrix" (Kob73). Thus the weak
decay of a K+ meson (a us’ quark combination) to 70 (through ul) e* ve is accomplished
through the small admixture of d in s' due to the off diagonal element in KM. The KM
matrix contains three independent mixing angles and one complex phase. The latter

provides the mechanism for violating time reversal symmetry.

One consequence of the standard model of electroweak interactions is that the weak
interaction can no longer be considered to be weak. The strength of an interaction is
determined by the coupling constant, a dimensionless quantity which, along with statistical
factors and interaction matrix elements, determines particle decay rates and reaction cross
sections. The coupling constant of quantum electrodynamics is the elementary electric
charge (e ), the value of which is e 2 = 1/137 (in natural units, ¢ = h = 1). The coupling
constant of the weak interaction is of the same order of magnitude, being g =~ 0.1. As will
be explained in Section 3, the apparent 'weakness' of the weak interaction stems from the
large mass of the W and Z bosons. For low energy processes - i.e. those in which the
momentum transfer is small compared to the mass of the intermediate bosons - the effective

coupling of the interaction is inversely proportional to the square of the boson mass. For



processes in which the momentum transfer is comparable to or greater than the W boson

mass, the weak and electromagnetic coupling strengths are similar.

The standard model has withstood twenty years of expertmental tests without
significant revision and produced several impressive predictions, such as the existence and
approximate masses of the W and Z bosons and the strength of the neutral current
interaction. It however also contains several unpleasant features which doom it to remain a
phenomenological theory. The model contains 21 free parameters, which is considered to
be too many for a fundamental theory and suggest that the standard model is only a low-
energy manifestation of the a more fundamental theory. There are also several assumptions
built in, such as the number of particle generations and the exact equality of electron and
proton electric charges, which should perhaps be explained on a more fundamental level.
Many theories have been produced attempting to supercede the standard model and address
some of these questions. Accompanying this theoretical effort is an experimental push to
test the limits of the standard model. These investigations include searches for new

particles, forbidden decays or reactions, and exotic interaction forms.

Section 1.3. Current-Current Interactions.

Although gauge theories such as the standard model are the most comprehensive
representation of our knowledge of particle physics, for the purposes of discussing nuclear
beta decay they are needlessly complicated. Assuming the mass of the gauge boson (83
GeV in the case of the W] bosons) is much greater than the energy released during the
decay (typically less than 10 MeV), an effective theory in which the bosons do not
explicitly appear and their interactions are replaced by a local current-current interaction is
adequate to describe all observables (Com83). In a theory of this type the fermion fields
interact directly and all four fermions which participate in the decay are created or destroyed

at the same point. This description contrasts with the standard model in which the two



quarks and the two leptons interact with the W boson field at different points (see Figure
1.1). The properties of the gauge boson field are absorbed into the coupling constants of
the effective theory. The effective interaction which is traditionally employed to describe

nuclear beta decay will now be examined.

The traditional interaction hamiltonian is constrained to be Lorentz invariant, local,
and Hermitan. It must also conserve electric charge, nucleon number, and (perhaps)
lepton number. To restrict the form of the interaction certain 'simplifying assumptions' are
also adopted, which are that the hamiltonian depends only linearly on the fermion creation
and annihilation operators and that no derivatives of these operators appear. The most
general hamiltonian satisfying these conditions may contain only five terms which are
labeled according to the transformation properties of the nucleon current under rotations
and space inversion. These are the scalar, pseudoscalar, vector, axial vector, and (second

rank) tensor interactions (Sch66).

The most general hamiltonian for an arbitrary interaction satisfying these constraints

1S

HINT: T —lP—eOi fci‘*"YSCi' )‘Pv)(?pOI‘Pn) + h.c. (12)

Gr
2
i
where Gr = Fermi coupling constant,
¥ = particle annihilation and creation operators,
1=S,V, T, A, P,
Oj = Dirac 4 x 4 matrix operators of type i,

5 = Dirac parity operator,
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a) Positron Emission

b) Electron Capture
ud
ud

Figure 1.1. Feynman diagrams for nuclear beta decay processes in both the effective

¢) Electron Emission

theory and the standard model. In (a) and (b) a neutron is created and a

proton is destroyed. In (c) a proton is created and a neutron is destroyed.



C; = amplitude of interaction type i,

and Sicffe e =1

1

The structures WOY are the Lorentz invariant fermion currents which create and destroy

particles at the point of interaction. The relative strengths of the various terms are given by

the squares of the amplitudes C;. The behavior of the interaction under the charge
conjugation, parity, and time reversal transformatons is determined by the values of the Cj
and C;'. If the amplitudes are all real (relative to a common phase) the interaction is
invariant under time reversal. If the primed (or, equivalently, the unprimed) amplitudes are
all zero the interaction conserves parity. The interaction is invariant under charge
conjugation is the primed quantities are all real while the unprimed quantities are all

imaginary (or vise versa).

The so-called Fermi coupling constant G determines the overall strength of the
interaction which produces nuclear beta decay and is equal to 1.4 x 10-49 erg cm3 (Sch66).
Notice that this quantity is not dimensionless and therefore is not a true coupling constant.
The relation between the Fermi coupling constant and the coupling constant (g) of the

standard model is

2
W - (1.3)

Prior to the development of the standard model, the weak coupling constant g was
estimated using Equaton 1.3 with the electron, pion, or proton mass in the place of M.
This produced a quantity six to ten orders of magnitude smaller than g and caused the

strength of the interaction to be greatly underestimated.
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The hamiltonian of Equation 1.2 conserves lepton number. There continues to be
speculation, but as yet no experimental evidence, that the neutrino and antineutrino are
identical particles, v = V. In this case a lepton number nonconserving hamiltonian must be

added to Hyn,

Hw:% [@eoi(D#YSQ' )\?V)(l?po;}'n)m.c. (1.4)

1

This hamiltonian produces decays with AL =2, such as
n-->p+e+vor2n-->2p+2e. (1.5)

The amplitudes C;, Ci', Dj, and Dy’ may be complex 1f ime reversal invariance
does not hold. Therefore these amplitudes (along with the normalization G ) contain 40
real parameters. One is a common phase, which is of no physical consequence, leaving 39
parameters which must be determined to achieve a complete description of nuclear beta

decay. The present limits on the values of these parameters will be discussed in Secton 5.

The effective interaction hamiltonian corresponding to the familiar V-A form of the

standard model is obtained by assuming (in the absence of strong interaction effects) Cy =
CV' =-CA= -CA' = 1/2 and setting all other coupling constants to zero. The evidence for

the validity of the V-A form will be examined in Section 5.
Section 1.4. Nuclear Structure and Beta Decay.

Nuclear beta decay 1s the common name of several processes whereby neutrons are
converted to protons, or vice versa, by emission or absorption of electrons, positrons, and
neutrinos. These processes include:

electron emission n-->p+e +V

positron emission p-->n+et+v (1.6)
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electron capture pte -->n+ V.

Feynman diagrams for these processes in both the standard model and the traditional

effective theory are presented in Figure 1.1.

The previous sections have discussed the properties of the beta decay interaction
hamiltonian. The properties of the nuclear levels linked by the transition however are

determined by the strong and electromagnetic interactions. These levels affect beta decay

rates and asymmetries through the nucleon current ‘PpO‘Pn.

The 1nitial and final states of the decaying nucleus are in general narrow and well
separated from their neighboring states, thus the energy, spin, and (in some cases) isospin
of the states linked by the transition are well-defined. The transition probability (wf; ) for

the decay can be calculated using Fermi's Golden Rule No. 2 (Fer50),

dn (1.7)

dn
Here dW g is the density of final states available to the system, which is completely

determined by the distribution of the energy released to the leptons. Hy; is the matrix
element of the interaction hamiltonian integrated over the nuclear volume and summed over
all nucleons. Because the initial and final nuclear levels are well-defined, beta decay
transitions are classified according to the properties of these states. The classification
parameter is called the forbiddenness, with a larger forbiddenness corresponding to a

smaller transition rate for decays with similar energy release.

Two effects contribute to the total forbiddenness of a transition. The first
contribution 1s related to the orbital angular momentum carried off by the leptons. When
the lepton wave functions are expressed as a multipole expansion, each succeeding term

contains an additional factor of k- R, where R is the coordinate of the point at which the
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particle was created and K is the total linear momentum of the leptons. Since the
hamiltonian represents a point interaction (see Section 3), R is confined to lie inside the
nucleus, which has a radius of roughly five femtometers (0.004 / MeV in natural units).
The energy released during the decay is typically 1 MeV to 10 MeV, therefore k-R <0.1.
Each term in the transition matrix element therefore 1s roughly 10 times as large as the next,
which results in each succeeding term's producing a transition rate which is smaller by a

factor of 100 or more.

The second contribution to the forbiddenness of a transition originates with the
nucleon current in the hamiltonian. For a non-relativistic or nearly non-relativistic fermion
the upper two components of the Dirac spinor form a Pauli spinor normalized to one, while
the lower two components form a Pauli spinor of opposite parity normalized to the particle
velocity v/c (Sak67). These Pauli spinors are known as the large and small components of
the wave function, respectively For nucleons bound in nuclei v/¢c = 0.1. If the nucleon
current mixes the large and small components, the matrix element will be reduced by a

factor of 10 and induce a parity change relative to an interaction which does not mix the

components.

The total forbiddenness of a transition is defined as the combination of the
forbiddeness arising from the nuclear angular momentum and parity changes. IffL 1s the
"orbital” angular momentum of the leptons, and P = 1 (0) if there is (not) a parity change
caused by a mixing of the large and small components of the nucleon wave function, then

the forbiddenness of a transition is f=J;, +P. If J; and ._ff are the initial and final

nuclear spin, the transition proceeds by all classes of forbiddenness which satisfy

lJi—Jf‘—l+PSf§]]+Jf+P. (18)

Since an increase in f of 1 multiplies the transition rate by 0.01, the smallest value of f

which satisfies the relations 1.8 dominates the transition. The diversity of the 3-decay rates
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in transitions with similar nuclear matrix elements and energy release is accounted for by

the degree of forbiddenness of the transitions.

Transidons which have zero forbiddenness are traditionally said to be 'allowed'.
An allowed transition is classified as being either Gamow-Teller (GT) or Fermi (F)
depending on whether the spin of the decaying nucleon is flipped in the transition. The

following selection rules for the change of the nuclear spin, isospin, and parity apply:

»

Al AT AT
Fermi 6 0 No
Gamow-Teller _1. 0,1 No

Fermi transitions may be produced by scalar or vector interactions. Gamow-Teller

transitions may proceed only via tensor or axial vector interactions.

The reduced half-life tj/2 of an allowed transition can be calculated using Equation

1.6, with tijp = (In 2) / Wg; | Tt is usunally written as

T
—41r _1 K
tip = =
1727 BR f 2 2 (1.9a)
gy | Me|” + g3 | Mgy
Here K is a constant,
K=2n3In2 47/ (medcH), (1.9b)

BR is the branching ratio of the transition, Ty is the half-life of the parent state, and fis
the statistical rate function, essentially the total number of states available to the two
leptons. This is a function of the total decay energy and (because of the Coulomb
interaction between the beta-particle and daughter atom) the atomic number of the nucleus.

The Mg and Mg are the Fermi and Gamow-Teller nuclear matrix elements appropriate for
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the transition, and gy and ga are the effective vector and axial vector coupling constants.
In the absense of strong interaction effects (see Section 2.4), the effective coupling
constants are

gizzlcifz+2|C'i|2, (1.10)
My

where My is the mass of the W boson (but see Section 2.4).

The allowed transitions are also divided into superallowed and allowed, unfavored
classes according to the overlap of the initial and final nuclear wave functions. The initial
and final states of superallowed decays have larger overlaps and transition matrix elements
and therefore proceed at a greater rate than the allowed, unfavored decays. Transitions
between isobaric analog states - states which differ only by replacement of a neutron by a
proton or vice versa - are superallowed transitions and proceed predominately by Fermi

decay.

Experiments on superallowed transitions are the simplest ones from which to draw
inferences on the weak interaction. The operators for the allowed transitions, being of
lowest order in the expansion of the particle wave functions, are simple compared to those
for forbidden transitions. Furthermore, the nuclear matrix elements for transitions between
analog or nearly analog states linked by the superallowed decay can in general be calculated
with much greater accuracy than the matrix elements for transitions between non-analog
states. Between states which are exact analogs the Fermi matrix element is the square root
of a muluple of the neutron or proton excess. Therefore the uncertainties in nuclear matrix

elements arising from nuclear structure are often much smaller for superallowed transitions

than for other transitions.
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Section 1.5. Experimental Limits on the Interaction Amplitudes.

Our understanding of the basic structure of the weak interaction was shaped by a
series of experiments on nuclear beta emitters performed during the 1950's. After an initial
period of confusion during which it appeared the weak force was composed of scalar and
tensor terms (Rus53, Rus55), it was established that the interaction is composed primarily
of vector (V) and axial vector (A) terms in the V-A form. A few of the more important

early results are summarized here, followed by a description of the present situation.
A measurement of the beta-neutrino angular correlation in the decay of
35Ar - I5Cl+et+7. (1.11)

(Her57) indicated that Fermi beta decay proceeded by a vector rather than a scalar
interaction. Most of the strength (98%) of the decay is the predominantly Fermi transition
between the ground states which are isobaric analogs. In this experiment the recoil
spectrum of the daughter atoms was determined. As will be explained in Chapter 2 this
spectrum is a function of the beta-neutrino angular correlaton which, for a Fermi decay, is
in turn a functon of the relative strength of the vector and scalar interactions Kgg/Kyy, with

Kjj defined by

* *

Kij=G C+Ci €y (1.12)
At roughly the same time the first evidence that parity is not conserved resulted

from a measurement of the electron emission asymmetry from polarized %0co (Wu57).

The asymmetry is the coefficient of a term in the decay probability proportional to (De- ),

where Dy is the electron momentum and J is the nuclear polarization. This is a pseudoscalar

quantity, therefore this term violates space inversion invariance. The results of the

measurement were consistent with maximal parity nonconservation.
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Evidence that the Gamow-Teller transition results from an axial vector interaction
was soon obtained by a measurement of the helicity of neutrinos emitted from 152mE,,
decay (Gol58). It was found that the neutrinos have negative helicity. Combining this
with the decay asymmetry of positrons emitted from the Gamow-Teller decay of 60co
(Wu57), it is possible to reach the conclusion that the interaction producing Gamow-Teller
Bt decay has axial vector rather than tensor symmetry. Diagrams showing the "typical’

decay pattern for axial vector and tensor interactions are shown in Figure 1.2.

The validity of the V-A form of the beta decay interaction was established by a
measurement of the electron and antineutrino asymmetries in the decay of polarized

neutrons (Bur60). This is the only mixed decay for which the Fermi and Gamow-Teller

nuclear matrix elements, denoted by M and MG can be calculated easily and accurately,
IMF2| =1 and |MGT2| = 3. The asymmetries depend on the interference of the vector and

axial vector interactions and therefore can be used to distinguish between V-A and V+A

forms.

Since 1960 many experiments have been performed which provide information on
the constants C;j and Dj of Equations 1.2 and 1.4. Paul used the accumulated data base to
obtain best fit values for several of the constants simultaneously in 1970 (Pau70). To
simplify matters he assumed the interaction conserved lepton number and was invariant

under time reversal. He also only used data from allowed nuclear beta decays, which do

not depend on the amplitudes Cp and Cp'.

Paul's data set consisted of a total of 70 measurements of the quantities listed in
Table 1.1. He also listed, but did not use in his fits, data on electron-neutrino triple
correlations from polarized nuclet and the half-life of the neutron. The data set included
only measurements on transitions for which either no assumptions about nuclear structure

needed to be made (pure Fermi or pure Gamow-Teller transitions and neutron decay), or
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a) Tensor Interaction b) Axial Vector Interaction

Figure 1.2. decay geometry for both the (a) axial vector and (b) tensor interactions. The
direction of the spin of the leptons is indicated by 5. Note the change in the

neutrino helicity.
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Table 1.1 The quantities used in Paul's fit to the weak interaction transition

amplitudes and the combinations of amplitudes constrained by each observable. Kjj= C;
C;* + Gy Cj™ and Ljj = Ci Cj* + C; Cj- All observables except a and b have been
multiplied by (1 + b/ W), with W being the total energy of the beta-particle in units of

electron rest mass.

Symbol

a

Measured Quantity

Beta-Neutrino Angular

Correlation

Fierz Interference Term

Electron Asymmetry

Neutrino Asymmetry

Electron-Circularly
Polarized Gamma Angular

Correlation

Electron Helicity

Transinon Amplitudes

KTT-KAA and
Kvv - KsS§

Re (KTA) and
Re (Ksv)

LTr—-LAA and
Re (LST - LVA)

LTT +LAA, Re (LTA),
Re(LST + LVA), and Re (LSA - LyT)

LTT-LAA
and LST - LVA

LTT-LAA and
LSS -Lvyv
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which could be assumed to proceed predominantly by the Fermi interaction (transitions

between analog states in mirror nuclei and the decay of 140y).

From the original 70 data values, a set of 12 measurements were selected and used

to fit seven ratios of the amplitudes. The results were:

ﬁ: +12 _C_T= +072 &: 20 + 0.65 C—Az— 2+ 0.39
cE=008+12,  ET=0006402, Y =1204065 CA=-132+059,
Cs_ 007+10, €T- _0006+02, SA=1.112007. (1.13)
Cy Ca Ca

The most recent comprehensive investigation of the relative magnitude of these
amplitudes was performed by Boothroyd and others in 1984 (Boo84). Like Paul, they
assumed that lepton number conservation and time reversal invariance holds and performed
a fit to the ratios of coupling constants listed above. They determined that the V-A form

explains all experimental results, but with rather large errors on a possible scalar interaction

satisfying Cg+Cg' = 0. Their 95% confidence limits are

Cr C'y
Cs —+1 < 0.09, 0.65< ¥ <1.53,
(Ei <023, Ca Cy
C C 0.85 < Ca <1.18 (1.14)
Cs T : 18, :
s l <0.19, ’CA'<O.085, C,
Ce+C '
=S =51 <0.065, Cr+Cr < 0.01, 171 < Ca < -1.00,
Cy Ch Cy

The Limit on Cq+Cg' is primarily a result of determinations of the shape of the Fermi

transition beta particle energy spectrum (Thi78, Ram78), which depends on the Fierz
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interference term. The limits on Cg and Cg' come from measurements of the neutron half-

life (Chr72, Byr80, Bon78, Wil82) and beta-neutrino angular correlations (Rob58, Tre59,
Gri68, Dob75).

Noting that the limits on Cg and Cg' are rather poor relative to the limits on the

strength of the tensor interaction, we set out to improve the determination of these

quantities. The method we chose is set forward in Chapter 2.



Chapter 2. The Beta-neutrino Angular Correlation Coefficient.
Section 2.1. Introduction.

The total scalar interaction strength K¢ = Cg C* + C5' Cs™ relative to the vector
strength Ky can be determined directly from a measurement of the beta-neutrino angular
correlation for a Fermi transition. In the present work this correlation has been measured
for the beta-delayed proton emitter 33Ar. The background for this experiment will now be

discussed.

We begin with a summary of beta-neutrino angular correlation measurements. The
decay scheme of 33Ar will be discussed next, followed by a description of the method we
used to determine the correlation. The remainder of the chapter is dedicated to a discussion
of the nuclear structure of 33Cl, how the limits on our knowledge of the structure increase
the uncertainty in the determination of K¢y/Ky, and what information concerning 33Cl can

be extracted from our data.

Section 2.2. B — v Correlation.

The beta-neutrino angular correlation is the probability that the two leptons created
1n beta decay are emitted in the same direction. [t is parameterized by the correlation

coefficient a in the relation

-1
W(O’Eﬂ]_Llﬂ:

where 0 = the angle between the directions of emission of the leptons,

1+ a %cos@ (2.1)

b4

v = electron velocity,
w (6 ’E,B) = the probability per unit solid angle that the angle of emission is

@ during a decay for which the positron has energy Eﬁ

Note that a is limited by |a | < 1. If & > 0 then the two leptons tend to be emitted in the
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same direction. If @ < O then they are more often emitted into different hemispheres.

The angular correlation coefficient is a function of the relative strengths of the terms
in the weak interaction hamiltonian which produce the transition. Table 2.1 lists the value
of the coefficient for transitions which proceed purely by each of the five interactions. The

table also lists the lowest order nuclear beta decay which can be produced by each term.

Table 2.1. The beta neutrino angular correlation coefficient for the lowest order decay
class produced by each of the five possible weak interaction terms.
Interactuon Angular Correlation Decay Class
Coefticient
Scalar -1 Allowed Fermi
Vector +1 Allowed Fermi
Tensor +1/3 Allowed Gamow-Teller
Axial Vector -1/3 Allowed Gamow-Teller
Pseudoscalar -1 First Forbidden

Note that pure Fermi decay can be produced only by scalar and vector interactions,
while only axial vector and tensor interactions can lead to Gamow-Teller transitions. The
angular correlation coefficient for an arbitrary allowed decay is
242 1,2 .2

& gg BF)+ 3 (gT gy BGT)
2 2 2 2

(gv+ gs] B(F) + (gT+ gA) BIGT) .

(2.2)

where gy, g5, ga and g are the effective vector, scalar, axial vector and tensor coupling
constants discussed in Section 5. B(F) and B(GT) are the Fermi and Gamow-Teller
transition strengths, the squares of the nuclear transition matrix elements. The transition

strengths will be examined in Section 6.

As Equation 2.2 shows the angular correlation coefficient is sensitive to both the
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relative strengths of the interaction terms and, through B(F) and B(GT), to the structure of
the initial and final nuclear states. Historically measurements of @ were employed first to

establish the nature of the beta decay interaction and later for nuclear spectroscopy studies.

The angular correlation between two particles is most easily determined if both
particles may be detected in coincidence with detector pairs placed at various relatve
angles. Since the neutrino is subject to only the weak interaction the neutrino detection
efficiency of any detector is essentially zero and this 'direct’' method cannot be applied.
Determinations of the beta-neutrino angular correlation must therefore infer the direction of
neutrino emission indirectly by measuring the momenta of the other two particles produced

during the decay and employing conservation of momentum.

Although at first glance it would that appear the neutrino momentum could be
determined by measuring the vector momenta of the beta particle and daughter atom for
each event, only a few of the important angular correlation experiments have been
performed this way. The reason is that the low recoil energy of the daughter atom,
typically of the order of 100 eV, creates severe experimental difficulties. The cross section
for scattering of these atoms is quite large, about 10-15 cm2 (Rid61). As atomic scattering
of course alters the momentum of the daughter atom, the source must be diffuse and the
resulting signal to background ratios are small. Furthermore these low energy atoms are
stopped 1n thin foils, so the source geometry cannot be arbitrarily limited in these
experiments by thin walled gas cells or thin foil sources. The effective source volume must
be determined from the geometry of the detectors and an integration over all possible angles
of emission performed. For these reasons several workers in this field have noted that

experiments which employed this method were prone to large systematic errors (Rid61,

Vis63).

As stated above the early angular correlation measurements established the
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dominant VA form of the weak interaction. The earliest of these experiments were
determinations of a for the decay of 6He, 19Ne, 23Ne, and 33Ar (Her57 and All59). These
measurements were performed by taking the recoil energy spectra of the daughter atoms
without detecting the B-particle. Positive values of a - in which the leptons are usually
emitted in the same direction - produce larger (average) recoil energies than negative values
of a, therefore the shapes of the recoil spectra depend on the correlation coefficient. The
results of these experiments were later confirmed for 6He (Joh63) and 23Na (Car63) using
essentially the same method. Other determinations of correlation coefficients which
produced evidence for the VA interaction include: a measurement of @ for free neutron
decay (Tre59), performed by detecting the proton and [-particle in coincidence; another
experiment on free neutron decay in which the spectra of electrons were taken as a function
of the electron-proton emission angle (Rob58); and measurements of a for 6He (Rid61,
Vis63), performed by measuring the spectrum of 6Li recoil energies as a function of the -

particle energy.

Once the V-A form of the B-decay interaction was established the angular
correlation was measured to determine the ratio between the axial vector and vector
coupling constants gafree/gv for free neutron decay (see Section 5). Notable experiments
include a determination of a from the recoil spectrum of the protons (Dob75), and a

measurement (Gri68) taken by detecting the proton and electron in coincidence.
Section 2.3. P - delayed Particle Emission and Decay of 33Ar.

For the purpose of determining the scalar coupling sirength we are interested in
measuring the beta-neutrino angular correlation in the superallowed decay of 33Ar to the
analog state in 331, which has excitation energy of 5.546 MeV. The branching ratio is
30.7% (Bor 87). This state in 33Cl then further decays by proton emission to the ground

state of 328. Although proton decay to the first excited state of 32§ is energetically
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permitted, this transition has not been observed. A simplified decay scheme for 3BAris

presented in Figure 2.1.

Because protons emerge from a sample of 33 Ar whose mean lifetime is many
orders of magnitude greater than that of the 33Cl nuclei which decay by simple proton
emission, this process is known as beta-delayed proton decay. For this decay scheme
33Aris called the parent or precursor, the daughter is 328, and 33Cl is known as the

emitter.

From the systematics of isotopic masses, it has been estimated that there is a total of
about 1000 isotopes with observable delayed proton, neutron, or alpha-particle branches
(Har74). Many examples of these decay modes have been identified, as well as several
beta-delayed fission decays and the more exotic delayed two-proton decay (Ays85, Cab83,
Hon83) and delayed triton emission (Bor86). There may also be delayed 3He emitters
(Har74).

Our interest in beta-delayed particle emitters stems from the fact that they provide a
unique opportunity for studying beta-neutrino angular correlations. The emitted particles
typically have energies of several MeV. They are therefore much easier to detect than the
recoiling nucleus and can pass through thin foils without suffering large momenturmn
changes. The lifetimes of the particle-unstable levels are usually shorter than 10-13 s, and
therefore the particles are emitted before the emitter collides with neighboring atoms. The
particles therefore retain information about the beta-neutrino angular correlation in their

energy spectrum, as will be shown for the specific case of 33Ar decaying to the analog state

in 33CI.

In the superallowed decay of 33Ar (see Figure 2.1), the 33Cl atom acquires a recoil
energy on the order of several hundred eV as a result of the beta decay. If the beta-neutrino

angular correlation is positive - that is, if the leptons are usually emitted in the same
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direction - this recoil energy is on average larger than if the correlation coefficient is

negative. If only decays in which the B-particles have a specific momentum Pp Z in the

direction of the z -axis are selected, and the neutrino momentum is represented by

§v=pv(sin B cosp X+sinO sing ¥+cos 0 'z‘} (2.3)

where & and ¢ are the polar and azimuthal angles of the neutrino momentum vector, then

the average recoil momentum of the 33Cl atom is given by

=

Here w (6 ,Eﬁ) is given by Equation 2.1 and the magnitude of the neutrine momentum is

53 +Py,

W [9, Eﬁ) 40 (2.4)

determined by the conservation of energy to be the difference between the total decay

energy and the total positron energy. The result of the integration of Equation 2.4 is
== _ av ~
Pei=-|Ppt 5 G P2 2.5)

Since the energy released in the decay of 33Ar is 5 MeV and the mass of 33Cl is roughly 30
GeV, Equation 2.5 gives less than 500 eV for the recoil energy of the 33Cl atom.

A proton emitted in the direction P has a lab frame energy different than its energy
in the 33Cl rest frame because of the recoil velocity of the emitter. The energy of the

proton in the lab frame is
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3y,
T=3/2

t n = 0.18

30.7%
=3 12t 5546 /
+
2 2.230 327 4.466 J2'4%
1.7%
0" 3t 235 /
19 o N 41.1%
1/2 0.811 J/
3/2+ J18.5%
33
T=1/2

Figure 2.1. Simplified 33Ar decay scheme. The energy released in the electron capture to

the 33CI ground state is 11.6 MeV. The energy released in the proton

emission in the decay from the analog state to the 32§ ground state is 3.2

MeV.
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Er=1 Cl
P 2 mp
I s S N (2.6)
=E"+ 2 Pcl
mey 2 mgy

where the primed quantities refer to the proton momentum and energy in the rest frame of

the emitter and mcj and mp are the chlorine atomic and proton masses. The energy shift of

the proton in the lab frame caused by the motion of the emitter is then

AEg =E5-E

_B'Bg 1 Wp

2
_ Lo @7
mey 2 mC12

The protons are emitted in an £ =0 state (AJ = 1/2, ATt = no for the nucleus) and their

momentum is therefore not correlated with that of the leptons. The average energy shift for
these protons 1s obtained by integrating the energy shift of Equation 2.7 over the correlation

function given by Equation 2.1.

AEﬁszAEﬁw‘G,Eﬁ) dQ (2.8)

Selecting a reference frame in which the proton is emitted in the xz -plane with an angle o
relative to the direction of emission of the beta particle (so P = cos ¢ 7 + sin & ), results in

the following expression for the energy shift:

my 2 p'cos &

1 2 v 2 a

55— PR tPy+ta EEPRPY - —m—— Ppt 5 & P

2 2 |FB v C BPv m B v

me 3 Cl 3 (2.9)

p

o<

This is graphed for a = 1, 0 and -1 with cos ot = —1 in Figure 2.2.

Our determination of the angular correlation takes advantage of the kinemartics

described above and consists of measuring the energy of protons emitted at ©/2 and &t from
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Proton energy shifts as a funtion of positron energy.
The calculation is for decays in which the protons and

positrons are emitted in opposite directions.
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the direction of positron emission to find the energy shift as a function of beta-particle
energy. The angular correlation coefficient a will be determined by fitting Equation 2.9 to

the data.

Equation 2.9 may be applied to any beta-delayed particle emission for which either
the beta-decay proceeds by pure Fermi decay, or the particle is emitted in an s-state relative
to the daughter. The proton emitter 33Ar was chosen because it satisfied the following
conditions: light mass, relatively easy to produce, large energy release in both beta-decay
and proton emission, well-defined analog state with a large branching ratio, and little
Gamow-Teller strength relative to the Fermi strength. The last criteria is required so that
contributions from the Gamow-Teller strength of the transition do not complicate the
determination of the scalar-to-vector strength ratio. The other criteria were applied for
experimental reasons. Notice that to first order the proton energy shift depends linearly on
the momentum of the emitted particles and inversely on the mass of the emitter atom (see
the second term on the right hand side of Equation 2.9), so that a light nuclear mass and

large decay energies produce shifts which are large and hence easy to measure.

Equation 2.9 is not valid for those transitions which proceed by the Gamow-Teller
interaction and are followed by p- or higher-wave angular momentum particle emission. In
Gamow-Teller decay the leptons remove one unit of angular momentum from the nucleus.
In this case, if only those transitions in which the beta-particles are erpitted in a certain
direction are selected (through detector placement), the emitter nucleus will in general be
polarized along the axis of emission. The delayed particles will therefore not be emitted
isotropically. To obtain the expression for the average energy shift of these particles the
beta-neutrino angular correlation in the integrand of Equation 2.8 must be replaced by the
triple correlation function of the three emitted particles, which depends on the sequence of

nuclear spins. (The triple correlation coefficient for delayed alpha-particle emission has
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been calculated in Hol74.)

Delayed proton emission has not been utilized previously to determine beta-neutrino
angular correlations, but a few experiments on delayed alpha emitters have been performed
using several different methods. The systems studied include 8Li and 20Na . The
measurement of MacFarlane et al. (Mac71), determined the angular correlation coefficient
from the analysis of the alpha-particle line shape (without taking beta-alpha coincidences).
Clifford et al. (Cli89) and Barnes er al. (Bar58) measured kinematic energy shifts as a
function of beta-particle energy using the method outlined above. Lauritsen et al. (Lau58)
determined shifts indirectly by measuring the angle between the two beta-delayed alpha

particles emitted in the decay of 8Be.
Section 2.4. Effective Coupling Constants.

We now return to Equation 2.2 relating the correlation coefficient a to nuclear
matrix elements and effective coupling constants. The values of both the matrix elements
and the coupling constants depend on strong interaction effects and need to be discussed in
greater detail. This section deals with the coupling constants. Nuclear matrix elements will

be examined in Sections 5 and 6.

If nucleons were elementary particles the effective coupling constants would be
identical to the constants of the underlying fundamental theory divided by the boson mass.
Nucleons are complex objects, however, most likely containing three "valence" quarks and
an "ocean" of virtual quarks exchanging real and virtual photons, W bosons, Z bosons,
and gluons. The nucleon itself is surrounded by a cloud of virtual pions, electrons, and
other particles. The electroweak fields interact with the virtual particles as well as the real
ones. Therefore the nucleon current @y‘l‘ in the interaction hamiltonian (Equation 1.2},
which represents a point particle, is not an accurate representation of the nucleon. A

"correct” expression of the current, expressed as a sum over currents representing real and
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virtual quarks, photons, antiquarks, etc., is beyond our present capabilities, and in any
case would be so complicated as to prohibit calculations. Therefore a phenomenological
adjustment is applied to the coupling constants in lieu of altering the expression for the

currents. This process is known as "renormalization”.

Because of renormalization there are several sets of weak interaction coupling
constants between which we must differentiate. There are the coupling constant g of the
standard model, the Fermi coupling constant G, and the constants gy, ga, gs, and g of
Equation 2.2. In addition, the amplitudes C; of the effective hamiltomian of Equaton 1.2
are usually also called coupling constants. Note that only g is technically a coupling
constant in the language of gauge field theories. It describes the interactions of
fundamental particles and its value is therefore derived from experimental data on the
interacuons of leptons, in particular from the muon decay rate. As mentioned in Chapter 1
it is of the same order of magnitude as the fine structure constant, ¢2 = 1/137 (in natural

units).

To determine the effective coupling constants we are faced with further
complications. The hamiltonian of Equation 1.2 describes nuclear beta decay, with
nucleons and leptons being treated as elementary particles. Nucleons however decay in
nuclei which are complex objects, consisting of many nucleons exchanging real and virtual
photons and mesons. We are therefore faced with another round of "renormalization”,

with the possibility that the "coupling constants" depend on the nuclear environment.

This situation is greatly simplified if we realize that the hamiltonian of quantum
electrodynamics (QED) describes a vector interaction; the photon field is associated with
currents of the form ¥yW. The strength of the interaction depends only on the electric
charge of the particles, a strictly conserved quanuty. Therefore the various currents Py

of all the real and virtual particles in a complex object must "arrange” themselves to
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preserve the overall strength of the interaction. The vector beta-decay interaction has the
same form, @'y‘l’; therefore its ""charge" gy will also be "conserved"” during
renormalization. This argument is known as the Conserved Vector Current (CVC)
hypothesis and was first advanced by R.P. Feynman and M. Gell-Mann (Fey58). The
eventual development of the standard model, in which the vector weak Interaction is closely

associated with the electromagnetic interaction, made the CVC argument rigorous.

Assuming that there is no scalar contribution to the weak interaction, Fermi beta
decay proceeds only by the vector interaction. Decay proceeding between two JT©= O+
states satisfies only the Fermi transition selection rules, and gy can be determined from a
measurement of the half-life, energy release, and branching ratio of the transidon (Har74).
In the context of the standard model, the interaction responsible for nuclear B-decay is

identical to the one which causes muon decay:

uee‘+Ve+vu. (2.10)

This is the Universal Interaction hypothesis, which, combined with CVC, implies that the
vector coupling constants for both processes are equal. CVC is therefore tested by
comparing the coupling constants determined for allowed Fermi nuclear beta-decay to that
derived for process (2.10). The nuclear transitions studied for this purpose are J* = 07 to
0* decays between isobaric analog states, which have transition strengths B(F) = 2 (see

Section 3).

Several corrections must be applied before the comparison between gy and muon
coupling constant (G can be made (Wil78). The first results from the deviation of the
KM matrix (see Section 1.2 and Equation 1.1) from the unit matrix. Since the physical
down quark d' 1s not identical to the weak interaction eigenstate d, so that d' = (cos 6;) d,
the nuclear beta-transition rate is reduced by a factor of (1 / cos 8.)2. (The mixing angle 6

is traditionally called the Cabibo angle.) The second correction is applied to the nuclear
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matrix element of the transitions studied. As will be explained in Section 5, this results in a
reduction by the factor (1- €) from B(F) = 2. Finally, there are the "inner" (subnucleonic)
and "outer” radiative corrections to the nuclear decay rate and a similar correction for the
muon decay process. These are denoted by Agy, d¢, and Ay. With these corrections a

"reduced" fi-value is calculated:

Fr=fe(1-¢)(1+5,) (2.1

This is compared to an & ¢ -value derived from the unitarity of the KM matrix with

coupling constants "corrected" using

gv
G

"= (cos 8,21+ Agy —4,) (2.12)
n

The result of this comparison confirms CVC (Wil78, Har90).

The coupling constants for the non-vector interactions do not enjoy a CVC type of
immunity against renormalization. They are in general altered by both nucleonic and
nuclear effects. These effects can produce interactions with symmetries unlike those of the
fundamental interactions. This produces the so-called induced currents, which will not be

discussed further here (see Sch66).

The effective axial vector coupling ga has been found to depend on the mass of the
relevant nucleus. To separate the nuclear effects from the nucleonic effects, the value of ga
for neutron decay 1s denoted garree and derived from decay asymmetries and half-life
measurements. As mentioned before this is a mixed Fermi and Gamow-Teller decay (with
easily calculable transition strengths, B(F) = 1 and B(GT) = 3), so the value of gaFree as a
fraction of gy can be extracted from, for instance, the beta-neutrino angular correlation,

using the equation
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EaFree _ IMH® (3-30) (2.13)
&V Mg (1+3a)

The value of gAFre 1s (Wil73):

'gg—ﬁ%~~ — 1.251 + 0.009. (2.14)
\Y

Extracting ga for an arbitrary decaying nucleus is considerably more difficult because the
transition strengths are in general difficult to calculate accurately. For low mass (§ €A <
40) isotopes the Gamow-Teller strengths may be calculated for all allowed decay branches
using a global shell model (see Section 6). B(GT) also can be determined experimentally,
via an accurate measurement of the decay branching ratios, half-life, and decay energy.
The sum of the experimental and theoretical transition strengths are then compared, and the

ratio is taken as ga/gAFree- This ratio is mass dependent (Bro85), with

|—g—A—‘ =076 + 0.03 for A = 30. (2.15)

EAFres

Hence EA‘ =095+ 0.04. (2.16)
gv

Section 2.5 Isospin.

The last topic which needs to be discussed is the nuclear transition strengths B(F)
and B(GT) which are defined as the squares of the nuclear matrix elements. The topic of
transition matrix elements is closely linked to isospin mixing, so a digression on the
concept of 1sospin is necessary. Isospin (T) was invented to explain the similar masses of
the neutron and proton and the rough equality of nn, np, and pp interactions. The neutron
and proton are considered to be different states of a fundamental particle (the nucleon),
which has spin 1/2 and 1sospin 1/2. The isospin operator obeys the same commutation

relations as the angular momentum operator, hence the nucleon has two orthogonal states,
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usually denoted by either isospin up and down or by T3 = +1/2 and T3 = -1/2. By

convention the isospin up nucleon i1s the proton; the neutron has isospin down.

Just as the vector spins and orbital angular momenta of all the nucleons in the
nucleus add to produce the total nuclear spin, the vector 1sospins of the nucleons add o
yield a total nuclear 1sospin. The minimum isospin a nuclear state can have is one-half the
neutron-proton excess. The ground states of nearly all isotopes have the minimum possible
isospin (Tem74). Unlike angular momentum, 1s0spin is not a strictly conserved quantity
and T 1s not a good quantum number, parncularly for heavy nuclei in which the isospin

breaking Coulomb interaction is important.

With isospin defined, isobaric analog states can be inoroduced. Isobaric analogs are
states in different isotopes of a mass chain which have identical structure, except that a
neutron in one is replaced by a proton in the other. In other words they vary only 1n the
value of T3. Beta-decay transitions between exact analog states proceed predominately by
the Fermi interaction and contain all the Fermi strength. Since 1sospin symmertry is broken,
exact analog states do not in general exist. The Fermu ransitgon strength to the analog state
is therefore reduced as the analog state 1s fragmented among several nuclear levels. The
Gamow-Teller strength between the (nearly) analog states may also be enhanced, except in
the case of J® = 0% to J* = 0% transitons for which Gamow-Teller ransitions are forbidden

by the angular momentum selecton rules.

The Fermi transition strength linking two states is found by taking the square of the

matrix element of the Fermi operator Z 1+, where L. are the isospin raising and lowering
A

operators and the summation runs over all nucleons in the parent nucleus. If the inidal and

final states are represented by |1} and | f ), the Fermi swength is
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A

The Fermi operator connects only analog states, so both initial and final states have the
same 1sospin T. If the third component of the isospin of the two states is denoted T3; and

Tas, the Fermi srength between analog states can be written as

B(F) =[T(T+ 1)~ Ty Ty 85 (1 - € (2.18)

The &5 expresses the fact that the transition proceeds between analog states, (1 —€)is a
correction for the incomplete overlap of the parent and daughter wave functons caused by

1sospin mixing and charge dependent effects. Since the ground states of nuclei have the

minimum possible 1sospin,

Ta=(N-2)/2,
T=1Ty;|, (2.19)
and BF)=2T(1 -¢)

for decay between analogs.

The Gamow-Teller strength 1s found by substituting for the Fermi operator

2 1+0, where © is the spin operator. For a decay from a ground state, the rotal swength
A

for electron emission and positron emission are denoted by » B (GT)and», B¥(GT),
f f

where the sums run over all possible final states whether the transition is energetically

allowed or not. The Gamow-Teller srengths are related by the sum rule

% B*GT)-», BGT)=3(P-N) (2.20)
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where P and N are the initial numbers of protons and neutrons.

For the superallowed decay of 33Ar the Fermi transition strength can be estimated
from systemancs and the Gamow-Teller transition strength can be calculated using the shell
model. From an analysis of the transition rates of 0% to O+ decays, Wilkinson (Wil73)
determined the "mismatch” between analog levels for light nuclei reduces the Fermi
transition strength by 0.3 + 0.3 %. For 33Ar this corresponds to B(F) = 2.991 + 0.009.

The Gamow-Teller strength will be examined in the next secton.
Section 2.6. The Nuclear Shell Model and GT Transition Strengths

Shell models are generated to reproduce the nuclear spectroscopy (level spins,
parities, and binding energies) of a specified range of isotopes. The basis of a shell model
consists of orbitals (single nucleon wavefunctions) of definite spin, isospin, and angular
momentum. The hamiltonian of the nucleons in the shell is assumed to depend only on the
occupation pattern of the orbitals. The effects of nuclear orbitals outside the model space
and non-nucleonic degrees of freedom (such as the presence of delta isobars and pions) are
ignored. The basis of shell models developed to date are limited to one major shell. Since
highly excited nuclear states often contain nucleons promoted across shell boundaries such
states cannot be described by these models. The useful excitation energy limit of an sd-

shell model 1s roughly 6 MeV for nuclei in the middle of the shell (Wil&4).

Modern calculations have been quite successful in the "Op shell” (2 <N, Z < 8) and
the "sd shell” (8 £ N, Z < 20). The sd-shell calculations are performed by assuming the
first 8 neutrons and protons fill the (inert) 160 core, with subsequent nucleons partally
filling the Odsp, 15172, and Od3p, orbitals. The shell model hamilionian is assumed to be
composed of two types of terms. The first type is the singie parucle level energy, which is

essentially the binding energy of a nucleons 1n an orbital. The second type is the two-body
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matrix element, which embodies the interactons of two nucleons in a given pair of orbitals.

The coefficients of these terms are varied to reproduce the spectroscopy of the nuclei

between 160 and 40Ca exclusive.

The shell model of Brown and Widenthal (Bro83) fits the low-lying levels of 64
sd-shell isotopes to 150 keV rms deviation in the excitaton energy of the levels. There are
a few levels not explained by the model, most of which are states in nuclei close to the edge
of the shell. These are "intruder" states, in which one or more nucleons is promoted either
out of the 160 core or into the Of (or a higher) orbital. The hamiltonian of this model has a
mass dependence of AC-35. The predecessor of the Brown and Wildenthal model, the
Chung and Wildenthal model (Chu76) had no mass dependence but did not fit all i1sotopes
in the shell with one hamiltonian. Two independent hamiltonians were produced for

1sotopes in the lower and upper halves of the sd-shell.

Once the shell model wave funcrions have been determined they can be used to
calculate certain observables, such as nuclear magnenc moments, electromagnetic transiuon
strengths, and Gamow-Teller decay strengths. This process consists of calculating the
matrix elements of the appropriate operator between the states of interest. The choice of the
operator 1s not a trivial matter, however. The model wave functions are not an exact
representation of the nucleus (both because of the truncated basis of the model and the
nonnucleonic degrees of freedom) and the normalization of the operator must be fit to the
data. The observables listed above have been successfully studied in the context of the sd-
shell model (Wil84). For Gamow-Teller transitions the renormalization of the operator
results in ga = 0.76 gafree as mentoned in Secdon 4. This renormalization is valid not
only for beta decay, but also, to within experimental accuracy, for ransition matrix
elements obtained for (p,n) reactions at 100 to 200 MeV (Wil84). The (p,n) reaction also
proceeds by the Gamow-Teller operator but samples a much larger region of excitadon

energy in the residual (daughter) nucleus than is possible with beta decay.
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To estimate the Gamow-Teller transition strength we rely on two shell-model
calculations. The first uses the wave functions of Brown and Wildenthal (Bro85) for the
ground state of 33Ar and its analog in 33Cl. The second uses wave functions based on the
Chung-Wildenthal interaction (Mul84). The two calculations produce B(GT) = 0.180 and
0.137, respectively, leading to

B
—(Gﬂ = 0.060 and 0.046, respectively. (2.21)

B(F]
We will employ for this ratio the average of these two values, 0.053 = 0.007.
Section 2.7. Summary

Assuming there is no tensor beta decay interaction, Equation 2.2 can be rewritten as

2
“A BIGT) ( a- l)
g2 (1-a)+ _2 BF) 3
== Ev (2.22)
gv 1+a ]

Employing the values for ga/gy (Section 4)> B(GT) (Secuon 6), and B(F) (Section 5), we
get

1—a)-(0.048+0.011)|a+ -

gl _|

(2.23)
g%/ l+a

Note that the error caused by uncertainues of the nuciear stoucture do not exceed 1% for

a=0.9.

If for the moment we ignore the nuclear soucture uncertainties and return to
Equation 2.2 which expresses a as a functon of the coupling constants and nuclear matrix

elements, we find that a drops from a = 0.939 10 @ = 0.851 for values of (gs/gv)2 of 0%
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and 5%, respectively. Therefore to determine Kgs/Kvyy to 2%, a must be measured to

within roughly 0.035.

Alternatively, Equation 2.2 can be solved for B(GT)/B(F) as a function of

assuming gs = O:

(2.24)

Information about isospin mixing in 33CI can then be extracted from the correlation

coefficient by comparing the experimental and theoretical (shell model) values of B(GT).

The details of the experiment which measured a for the superallowed decay of 33Ar
are presented in Chapter 3. In Chapter 4 the results of the analysis of the experimental data

in terms of Equations (2.22) and (2.23) are reported.



Chapter 3. Experimental Equipment and Procedures.
Section 3.1. Introduction.

In Chapters 1 and 2 the importance of the beta-neutrino angular correlaton was
established. In the present chapter the expentmental equipment and procedures which we
used to measure the angular correlation coefficient in 33Ar decay are reported. Section 2
contains the description of the equipment used to obtain a sample of 33Ar in our counting
chamber. Section 3 provides the details on the detectors and their associated electronics.
The calibraton of the detectors is described 1n Section 4. In Chapter 4 the method ualized

1o analyze the data is outlined
Section 3.2. 33Ar Production and Transport.

The first obstacle to the study of 33 Aris obtaining a sample of sufficient activity in
a volume with low background. Because of the short (175 ms) half-life of the 1sotope,
33 Ar must be produced on site through a nuclear reacion. Observing this decay in-beam is
extremely difficult, however, because the radianon associated with the beam produces high
levels of background in any detectors placed close enough to the producton target to obtain
a useable count rate. To avoid this radiation 33Ar was mansported away from the

production target to a relatively low-background countung chamber.

The method and apparatus employed 1n the production and wansport of 33Ar in this
experiment was similar to that used by Esterl et al. (Est71) in the pioneering studies of the
decay of this i1sotope. Figure 3.1 contains a schematc of the equipment. 33Ar was

produced via the 32S(3He,2n) reaction by bombarding CS» gas with 700 nA of 24.2 MeV

3He** beam from the FN tandem Van de Graaff accelerator at Triangle Universities
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Figure 3.1a). The 33Ar production and transport system. 33Ar was produced in the target
by 3He bombardment of 325 and pushed to the counting chamber by a puff of
helium gas. The flow of gases was determined by the computer-controlled solenoid
valves shown in the figure. The number by each valve refers to the time line of
Figure 3.1b, which shows the state of each valve during a production cycle ("High"
means the valve 1s open, "Low" signifies closed). The total ume for each cycle was

about 1.5 s. Manually operated valves are not shown in the figure.
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Nuclear Laboratory (TUNL). The target gas was then pushed through a dry ice trap,
which liquified much of the CS5, to the counting chamber by a puff of 4He. Data were
collected for several half-lives, then the countang cell and gas lines were pumped out. In
the meantime more 33Ar was produced in the target and another load of 4He carrier gas was
prepared. The movement of the gases was determined by a series of computer-controlied
solenoid valves. The time structure was optimized to provide the highest yield of 33Ar in
the counting chamber. A tme line is included in part b) of Figure 3.1 which indicates the

state of each valve over the course of a production cycle.

In addition to initiating nuclear reactions in the target, the 3He beam dissociated
CS2 molecules, producing a fine dust of sulfur and carbon in great quantities. This dust,
unpleasantly radioacuve, clogged the transport system's lines, valves, and cavites, thus
creating a need for frequent maintenance. Most critical elements of the equipment were
duplicated (or miphcated) and designed to be quickly replaced to minimize downtime and
Iimut the exposure of personnel to the radiauon emanating from the target. Despite these
efforts, the effecuve data collection tme was only about 50% of the real time, in parnt
because the target was allowed to ‘cool’ 30 minutes before it was maintained. Radianon

levels within a few cm of the target were then a few ames 10 mrem/hr.

The producton targets were three idenncal 10 cm long by 5 cm diameter aluminum
cylinders with a 0.95 cm diameter hole body drilled along the axis. The vapor pressure of
CS7 during bombardment was approximately 1/3 atmosphere, presenting a target with total
mass thickness of about 25 mg/cm2 1o the beam. The front apertures were covered by
6.25 pm havar foil through which the 3He beam passed. The rear apertures were covered
by 3 mm aluminum plates which were insulated from the bodies of the targets and used as
unsuppressed Faraday cups for beam tuning purposes. Each target was removed after 12

hours in beam and placed in a lead house for at least 15 hours to allow beam-induced
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radioacnvity to die down. The cooled targets were then cleaned and rebuilt with the front
foil and rear plate's being replaced. If the targets were not removed from service after a
half-day's exposure to beam, the front foils ruptured. These failures were presumably
caused by a combinanon of fatigue under the stress of repeated pressure changes in the cell,
radianon damage, and the effects from the layer of sulfur dust which collected on the foil.

This sulfur layer increased both the mechanical and, by absorbing beam energy, thermal

stresses on the foil.

The gas lines between the target and counting cell were 6 mm inner diameter copper
tubing. The dry ice trap was a 3.8 cm diameter by 0.95 cm deep cavity in a brass block
partially submerged in a dry ice-ethanol mixture (T = 196K). A valve at the bottom of the
trap allowed liquified CS) to drip out of the trap during pump out. The target-to-trap and

trap-to-counting chamber lines were each approxmmately 80 cm long.

The efficiency of the mansport system plummeted if the residual pressure in the gas
lines increased above a few Torr at the start of the helium sweep. Therefore several cm3-
atm. of gas at pressures of several Torr had to be evacuated every second, with large
periodic fluctuations in the input pressure. The pumping system built 1o achieve this
contained three major elements. The first was a liquid nitrogen cold trap, which froze out
the CS7 gas. The other two elements were a Roots-blower-type booster pump backed by a
conventional mechanical rotary pump, which removed the helium carrier gas and any air
that entered the system through leaks or routine maintenance. The diameter of the lines
connecting the pumping and transport systems were as large as conveniently possible,
which both minimized the flow resistance and, by creating a reservoir with a large volume,

reduced the pressure fluctuations inflicted upon the pumps.
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Section 3.3. Detector Geometry and Detection Electronics.

In Section 2.5 the average energy of the protons emitted from a sample of 33Ar was
derived as a function of the beta-neutrino angular correlation coefficient, the energy of the
positron, and the relative positron-proton emission angle. The average energy was shified
up to 14 keV relative to the energy of the protons in the 33Cl rest frame. The angular
correlation could in principle be determined by measuring the absolute energies of the
protons detected in coincidence with positrons, but this would require detailed knowledge
of both the response of the detection system and all the energy losses suffered by the
protons in flight. A more accurate procedure was required. The method used was to
measure only the relative energy shifts of protons observed in one detector coincident with
positrons detected in two counters placed at different angles relative to the proton detector.
Since the proton energy loss mechanisms are similar for both types of coincidences, only
knowledge of the detector gain in the energy region around the emission line and
corrections for the differing detection georetries is required. Our determuinanon of the
correlation coefficient consisted of taking the spectra of protons emitted at 90° (no proton
energy shift) and 180° {maximum proton energy shift) relative to the direction of emission
of positrons for various positron energies. The energy shifts (the difference between the
centroids of the peaks in the two sets of spectra) were then compared with shifts calculated

using Equation 2.9 for various values of @ with appropriate corrections applied for the

experumental geomerry.

Figure 3.2 1s a schematic of the contents of the counting chamber. The counting
cell was a right parallelepiped with sides of 16 mm by 16 mm by 20 mm. The cell was
milled from a solid block of aluminum leaving 1.6 mm thick posts at the four comers. The
four "horizontal" side walls of the cell were made of 6 pum thick aluminized mylar foil. The

cell was observed by four detector telescopes arranged every 90° around the cell on the
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Figure 3.2. The counting chamber setup. The silicon detectors were 300 pm thick 150
mm? area transmission surface barrier detectors. The scintillators were composed
of 5.1 cm diameter, 3 cm thick NE 102 plastic. The gas cell walls were 6 um
aluminized mylar foil. The light guides extend several inches beyond the vacuum

chamber wall and are coupled to RCA 8575 photomultiplier tubes.
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horizontal plane. Each telescope consisted of a high quality transmission-type silicon
surface barrier detector with a surface area of 150 mm? and a thickness of 300 um backed
by a 5.1 cm diameter by 3.2 cm thick cylindncal plastc scintillator. The scintillator was
connected viaa 13 ¢cm long by 5.1 cm diameter cylindrical Lucite Light pipe to an RCA
8575 phototube biased between 1500 and 1600 V. The silicon detectors were chosen to be
thick enough to absorb ~ 100 keV when a positron with an energy of 1 to 5 MeV passed
through. This was adequate to separate positron signals from the noise of the detectors,
which was less than 35 keV. This thickness of silicon is also sufficient to stop all proton

groups emitted in the decay of 33Ar.

The detectors, detection electronics, and data acquisition procedures were designed
to select from all other signals events in which the proton and positron were observed in
two different detector telescopes. The other types of events present included: protons
detected without a corresponding beta-particle signal ("singles protons"); beta particles
from both 33Ar and other radioactive isotopes detected without a coincident proton; gamma
rays from nuclear de-excitation of the decay products of 33Ar and other radioactive
isotopes, mainly 33Cl and 34CJ; and 511 keV positron-annihilation photons. A valid proton
beta-particle coincidence event from the superallowed decay branch produced a signal in
three detectors: a 3.1 MeV pulse in the silicon detector in which the proton was stopped, a
low energy (about 100 keV) pulse in the silicon detector which was in the path of the
positron, and a signal in the scintillator of the same telescope corresponding to the
remainder of the electron energy. The use of both elements of the telescopes to detect the
positrons was of vital importance. The silicon detector both improved the beta detection
geometry and, by providing a veto against any photons which deposit energy in the

scintillators, eliminated most of the background events.



The electronics which analyzed the pulses from the detector is shown schematically
in Figure 3.3. The system was designed to collect all events in which a signal in any one
of the silicon detectors exceeded a level corresponding to an energy of about 1500 keV,
regardless of whether a valid beta particle signal was present. In brief, the electronics
operated as follows. When a silicon detector produced a signal (which will be called the
proton signal) of sufficient amplitude, an event gate was generated and each of four time 1o
analog converters (TACs) was activated. The proton signal was shaped in a linear
amplifier and presented to a Northern Scientific peak sensing analog-to-digital converter
(ADCQC) for energy analysis simulitaneously with a digital routing pulse which encoded the
information about which detector inidated the event. The conversion gain of each ADC
corresponded to roughly 1 keV/channel. Simulianeously, an independent circuit tested for
signals coincident within 100 ns between the silicon and scintillation detectors in each
telescope. If the coincidence requirement was satisfied, a stop signal was sent to the TAC
corresponding to that telescope, an analog signal containing the telescope routng
informaton was generated, and the scinallator energy signal was presented to a LeCroy 12
input current integrating ADC {model 2259A). The TAC signals were also sentto a
LeCroy ADC. The conversion gain in the ADCs diginzing the positron energy signal
corresponded to about 10 keV/channel, while that of each TAC ADC was about 10
ns/channel. Both LeCroy ADC's were activated by the event signal derived from the

logical OR of the proton routers of the four silicon detectors.

The electronics therefore presented 14 digitized signals to the computer interface for
each event: four proton energy signals (only one of which was valid), four scintillator
energy signals (again, only one was valid), 4 tme to analog converter (TAC) signals (one
for each telescope), the telescope router signal, and the proton router. This information

was stored on tape in 13 two-byte words.
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Figure 3.3. Schematic of the detection electronics. Except for the modules in the dashed
boxes, all of the electronics was replicated three additional ames to process signals
from telescopes 2, 3, and 4. The connection of the replications to the ‘common’
equipment in the dashed boxed is indicated by the heavy lines. Electronics for

scalars and some delay lines are not shown.

The key to the diagram is:
ADC Analog to Digital Converter
CFD Constant Fraction Discriminator
G&D Gate and Delay
LGS Linear Gated Stretcher
SSB Silicon Surface Barrier Detector
S&l Sum and Invent
TAC Time to Analog Converter

TFA Timing Filter Amplifier
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The TUNL. data acquisiton system consists of a microprocessor controlled
CAMAC based interface and a Digital Equipment Corporaton VAX 11/780 computer.
When any detector produced a proton signal, the detector signals were processed as
described above. When the ADCs completed diginzing all of the signals, the interface
ransferred the data into a buffer in VAX memory and reset the electronics in preparation

for the next event.

The data were handled using the XSYS EVent Analysis Language (EVAL)
(XSYS87). The data from all events with a proton signal corresponding to an energy of
about 1800 keV or greater were stored on magneuc tape for later analysis. The threshold of
1800 keV was chosen because the background rose sharply below this energy; a lower
cutoff resulted in an unacceptable increase in the number of uninteresting events being
stored. On-line sorting of the proton signal was performed using the proton routers,
telescope number signal, and TAC signals to allow the experimenters to monitor the data
collection. The parameters monitored were the proton singles signals, coincidence register,
protons signals in coincidence with each of the beta telescopes, the TAC for each telescope

pair, and the scintllator energy signal in coincidence with each surface barrier detector.

One potenual flaw with this data acquisition system stems from the specific features
of the design of the TUNL computer interface. In TUNL's data acquisition system the
Look-At-Me (LAM) signal from each CAMAC slot, which indicates that the module in that
slot requires attention (usually by reading data out to the crate conmroller), are routed to a
locally designed "LLAM Panel". The LAM Panel allows the experimenter to define an event
as being a combinaton of modules by merely pushing a selected set of buttons. If the
experimenter defines an event to be composed of, for instance, data from ADCs in slots 2

and 3, the interface will take no acton unal both ADC 2 and ADC 3 produce a LAM. If
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ADC 2 digitizes a signal but ADC 3 fails to produce a LAM for any reason, the interface
will take no action and ADC 2 will hold its data indefinitely.

A problem arises with the TUNL implementaton if, as in our case, an event is
defined to consist of data from both Northern and LeCroy ADCs. (Use of Northern ADCs
for proton energy measurements was necessary because the LeCroy ADCs do not have
sufficient resolution.) The LeCroy ADCs are CAMAC modules which take on the order of
100 us to diginze an incoming signal. The Northern ADCs however are not CAMAC
modules. When they have completed digitizing, their output 1s sent to CAMAC input
registers. When all modules associated with an event have raised a LAM the Northern
ADCs are reset and are ready to accept the next input, regardiess of whether any other
modules (in particular the LeCroy ADCs) have been reset. Therefore a window
corresponding to the time required to read and reset the LeCroy ADCs (about 50 us) exists
during which the Northerns will accept data and the LeCroys will not. If an event arrives
during this time, the Northern ADCs will digitize and hold their data until the LeCroy
ADC:s accept and digitize data from the next event to arrive. The data which reaches the

computer 1s then a mixture of two events.

1

To avoid collecong "mixed" events, the data rate was kept to a few hundred Hz
through the proton energy signal discriminator. The fraction of data which is contamunated
Dy these "mixed events” was monitored by looking at the fraction of high energy beta-
particle signals (which are digitized by a LeCroy ADC) stored for correct and incorrect
telescope number signals (which were diginzed in a Northern ADC). This fraction is

roughly equal to the ratio of mixed-to-unmixed events. The rate of mixed events was

found 1o be negligible.
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Section 3.4 Detector Calibration.

We now turn to the determination of detector calibranons. The silicon detector
calibrations are established by using the most prominent peaks in the delayed proton
spectra. Determining the response of the telescopes to positrons is a greater challenge
because of the absence of a monoenergetic source of positrons and the complicated

response function of the scintillation detectors.

The silicon detector energy calibranons were calculated from the position of the
proton singles peak for four prominent 33Ar decay branches (see Figures 2.1 and 3.4).
The proton energies of these peaks were taken from [Bor87], with a correction for the

energy lost in the cell wall.

Rather than atternpting to measure the physical thickness of the foil and calculating
the appropriate energy loss, we determined directly the proton energy loss in the foil in a
seperate experiment. Protons from the TUNL van de Graaff accelerator were scattered
from a thin narural carbon foil and detected with a 300 thick pm surface barrier detector at a
scattering angle of 50°. The detector was calibrated by varying the lab-frame energy of the
incident proton beam from 3.100 to 3.700 MeV in 100 keV steps. The beam energy was
derived from a calibrated NMR signal of a bending magnet. The centroids of the collected
spectra were taken and the conversion gain of the detection system calculated. The beam
energy was then set to 3.400 MeV (the energy of those protons scattered at 50° then had an
energy of 3.201 MeV) and two samples of the mylar foil were sequentally placed between
the carbon foil and detector (see Figure 3.5). The energy loss of the protons in the mylar
was then determined directly from the position of the resulting peaks (Figure 3.6). This
energy loss was found to be 82.6 £ 1.0 keV for 3.2 MeV protons. The physical thickness
of the foil was then determined using the energy loss program BABEL (Iko73, ko75).

BABEL divides the foil into regions of small energy loss and calculates the average loss in
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Figure 3.4. Proton singles spectrum. The energies of the numbered peaks are taken from
(Bor87). Peak [3] corresponds to protons from the decay of the T=3/2 state at 5.55
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Figure 3.5. Scattering chamber setup for the mylar foil thickness measurements. Each foil
was rotated in turn o intercept protons scattered into the detector. The detector

collimation 1S not shown.
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each region using the reladvistic Bethe equation, which is based on the Born approximanon
of a heavy particle interactung with atomic electrons (Bet53). The energy losses suffered by

the other proton groups were then calculated from the thickness of the foil.

The gains of the surface barrier detectors and electronics during the production run
were monitored by taking the centroid of each 3.2 MeV singles proton peak for each run.
Gain shifts of a few keV over several days were observed (see Figure 3.7). There were, in
addiuon, four gain changes caused by replacement of detectors or malfunctioning
electronics. The small shifts were accounted for off-line by subtracting a constant from the
data for each detector for each run, so that the centroids of each 3.2 MeV peak lay in the
same channel. The detector gains for each series of runs were then determined from the

energies and positions of the proton peaks labeled 2, 3, and 4 in Figure 3.4.

The scintillator gain shifts were monitored during data taking by collecang daily
spectra from 22Na, 80Co, 207Bi, and !37Cs gamma-ray sources and determining the
position of the Compton edges for each y-ray energy present (Table 3.1). Background
spectra, presumably stable in character and dominated by 511 keV positron annthilation
photons, were also collected. At the end of the data taking the 33Ar gas cell was replaced
by the 207Bi source and the electron conversion line spectrum was recorded under the same
conditions as the 33Ar data, with the exception that the interface was activated by telescope
coincidences rather than silicon detector signalis. The centoid of the most prominent (K-

and L-shell) conversion lines is 990 keV (Led78).

During off-line data analysis the endpoint of the 33Ar positron spectrum was
determined through use of a Kurie plot (Figure 3.8). For an allowed transition the energy

spectrum of the emirtted beta partcles is

N(Ee)= FEe) Ee V(EZ ~ m2) (Eo— EoP. 3.1)
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Figure 3.7. Gain shifts for surface barrier detectors one (top graph) and four (bottom).

The large gain changes in detector one correspond to replacement of electronics or
the detector. Gains are typically 1 keV/channel. The hashmarks on the horizontal
scale correspond to midnight of each day.
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Table 3.1. Parent nuclel, transition energy, and Compton edge energy of the transitions
used to monitor the scindllation detector gains.

Parent Nucleus

60Co

137 g

207gR;

Transition Energy

(keV)
1274.5

1332.5
1173.2

661.7

569.7
1063.6

Compton Edge Energy

(keV)
1061.7

1118.1
963.4

477.4

393.3
857.6

Relatve Intensity

100
99.9

97.9
75.5
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where E, 1s the total electron (or positron) energy, p 1s the electron momentum, £y is the
energy endpoint, and F(E.) 1s the Fermi function. The Fermi function is the number of

states available to the leptons. A Kurie plot 1s a graph of

N(Ee) 12
FE) E. VE} —m? (3.2)

Ee VS.

which yields a straight line that intercepts the energy axis at £y, A Kurie plot can be used

either to determine the endpoint of a beta-decay mansition when the detector calibration is

known or, as in our case, can be used to calibrate a detector when the endpoint energy of

the transinon is known,

Our use of the Kune plot is complicated by the gamma rays resulting from positron
annihilation. Some of these photons undergo Compton scattering inside the scintillator,
thus depositing energy in the detector. To estimate the magnitude of this effect a Monte
Carlo simulation of the interacuon of the photons with the scintillator was performed
(Figure 3.9). It was found that for roughly 1/3 of all events one or both of the annihilaton
photons interacted with the scintllator, depositing an average energy of 200 keV. This

produced the distortion of the Kurie plot evident in figure 3.8.

To correct this distorton a modified version of the Kurie plot was developed. The

measured positron energy spectrum was assumed to be
N(Ee) = {01 FlEe) EeV (Eez _me?_)} (Eo - Eef +
(- o) AE—E)Ee- E)VIEe—EV -md) ) (Eo-Ee+ P 33)

={A} (Eo—Ee)z +{ B}(Eo—Ee“’EI}2
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Figure 3.9. The Compton electron energy spectrum as determined by Monte Carlo
modeling. The detector resolunon was assumed to be 200 keV. A fit of the
spectrum consisting of three Gaussians 1s also graphed.



66

where E' =200 keV and 1 — a = 0.3 is the fraction of events which are accompanied by

Compton scatterring. This equaton can be rearranged to produce Eg— £' as a funtion of

N(Ee), a, and E":

BE ++{A+B)NE)-ABE
(A +B)

Ey—Ee= (3.4)

A plot of the right hand side of Equation 3.3 vs. E, again yields a straight line which
intercepts the horizontal axis near Eg (Figure 3.10). The gains of the detectors during the
run were then derived from a linear fit 1o the 33Ar endpoints determined from the modified
Kurie plots, the Compton edge spectra, and the 207Bi conversion line spectra. This fit is

graphed in Figure 3.11.
Section 3.5. Response of Telescopes to Positrons.

To determine the response of the telescopes the spectra of several positron emitters
were taken with the detector geometry which was similar to that which was employed
during the production run. The principal differences were that during the calibraion run
the counting chamber was placed on the beam line, the counting cell was replaced by a
solid target, and only one telescope was used The positron emitters, listed in Table 3.2,
were produced by (p,n) reactons on the daughter nuclei. This set of transitions was
selected because their beta-particie energy endpoints vary over a useful range (1 to 5 MeV),
they have half-lives of several seconds, there is only one strong decay branch for each
parent, and the sources can be produced from compounds from which no other posizon

emitters with half-lives comparable to the transition of interest are made.

The conversion gain of the detection system was calculated from the endpoints of each
spectrum as determuned from modified Kurie plots (figure 3.12) and the Compton edges of

gamma rays emitted from 137Cs, 207Bj, and 22Na sources. The calibration is
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Figure 3.10. Modified Kurie plot of 33Ar for detector 4.
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Table 3.2. Daughter nuclei, positron endpoint energies, and branching ranos of the
transitions used to determine the response functon of the scintillation detectors.

Parent Nuclel Daughter Nuclel Positron Energy Branching Rano
Endpoint (MeV) (%)
19Ne 19F 2.216 99.10
23Mg 23Na 3.037 91.4
27si 27l 3.787 99.77

35Ar 35¢) 4.943 98.3
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Figure 3.11. The calibration of beta counter 4. The points are derived from the Compton
edges of annihilation photons and gamma rays emitied from 22Na and 207Bi

sources, and the endpoint of the 33Ar spectrum as determined from a modified

Kurie plot.
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Figure 3.12a). Modified Kurie plots of spectra acquired to determine the scindllator

response functon.
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graphed in Figure 3.13. The collected spectra were then fit with a sum of four Gaussians
and a flat low energy tail using the minimization program MINUTT (Jam75). The form of
the fitnng funcuon was suggested by the Monte Carlo simulation of the Compton scattering
of the annihilation photons (Figure 3.9) and the work of Clifford (Cli89), who determined
the response to positrons of telescopes similar to ours. The first of the four Gaussians
corresponds to positrons which deposit their full energy in the scintillator. The other three
correspond to events in which one (or both) of the annihilacon photons Compton scatters
in the detector. The low energy tail is the resuit of events in which the positrons deposit
only part of their energy in the scintillator, either because they scatter out of the detector or
annihilate in flight. The free parameters of the fit are the width and fractional yield of the
first Gaussian. The widths, fractonal yields, and postions of the other three Gaussians
were determined (relative to the width, yield, and position of the first Gaussian) from the
Monte Carlo simulation but were allowed to vary around their ininal values. The fitted
values of the fourteen parameters and the shape of the resulung distribution function are

presented in Figure 3.14. In Figure 3.15 the data and fit are graphed for each mansition.

Section 3.6. Conclusion.

The equipment and procedures outlined in Sections 3.2 and 3.3 were designed to
collect events which would allow the angular correlation coefficient for the decay of 33Ar to
be extracted using the method of Section 2.3. The 33Ar was produced via 325(3He,2n) and
ransported from the beam line to a low-background counting chamber by a helium carmier
gas system. Four detector telescopes consisung of a thin suface barrier detector backed by
a scintillation detector were used to collect and record th energies of coincident protons and
positrons emitted at relative angles of 90° and 180°. The analysis of these data, which

consisted of extracting a set of proton energy shifts as a function of positron energy from
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Figure 3.13. Energy calibration of the scintillaton detector used to determine the response
of the telescopes to positrons. The three points with energies greater than 2000 keV
were derived from the endpoints of the positron spectra of "Ne, 23Mg, and 35Ar.

The other four points were determined from the Compton edges of photons emited
following the decay of 207Bi, 137Cs, and 22Na.
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Figure 3.14. The scindllation detector response to positrons. The graph is for a
monoenergetic beam of positrons with a total energy of 4.1 MeV.

The parameters of the response function are:

Fraction of counts in the full energy peak

Fo=051-45%x 107 E+15x102E2  inE given in MeV.

Fracton of counts in the the three annihilation peaks:
Fy =0.37 Fy, F1 =0.61 F, Fi =0.02 Fyp.
Width of full energy peak:
Wo=76+6.7x102E
Partial width of the annihiladon peaks:
W1 =39 keV, Wo =74 keV, Wiy =68 keV.
Positon of annihilaton peaks relative to full energy peak:
P1=71keV, Pr =270 keV, Py =570 ke V.

(Woin keV, E in MeV).
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the data and performing a Monte Carlo simulagon of the experiment, is explained in

Chapter 4.
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Chapter 4. Data Analysis and Discussion.
Section 4.1. Introduction.

This chapter presents the methods used to reduce the data collected according to
the procedures of Chapter 3 to a set of proton energy shifts as a function of beta-particle
energy (Secton 2), the extraction of the correlation coefficient by comparing the darta to
a Monte Carlo simulation of the experiment (Sections 3 and 4), and the calculation of
limits on the scalar coupling strength and the Gamow-Teller transition strength (Section

5). Conclusions from the experiment are recorded in Section 6.

Section 4.2. Data Reduction.

As explained in Section 3.3, the collected data were stored event by event on
magnetic tape for later analysis. The data for each event consisted of 13 two-byte
words, which contained the digitized signals for the four surface barnier detectors, four

scintllation detectors, four TACs, and the detector routers.

The analysis required several data sorts. The first sorts were made to check
detector gain and electronic uming stability and to determine the regions of interest in

each spectrum for later sorts. A sort was also performed to test for event mixing of the

type described i Secnon 3.3.

The logac of the final sort 1s reproduced in Figure 4.1. The surface barrier
detector energy signal for each event 1s sorted into one of 40 spectra, provided a valid

positron energy signal is received with the proper timing (as determined from the

appropriate



Determine proton detector

-
from proton router. Get next event

Get proton energy. ?

Increment raw proton spectrum.
l No
Proton signal in region of -
nterest (near 3.2 MeV)?

Adjust signal for gain of 1 keV/channel,
centroid in channel 100.

Store proton energy signal for later use.

Get beta detector signal.

: No
Does signal correspond to
2 90° or 180" detector? —

Get TAC, update timing spectrurm.
No

Fast TAC coincidence requirement met? E——

Get beta-particle energy signal.
Update beta-particle spectrum.

Update proton coincidence spectrum with proton energy for the
appropriate beta-particle energy and relative detector angles.

Figure 4.1. Logic flowchart of the data sorting program.
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TAC). The spectra were selected according to the energy of the positron (each spectrum
corresponded to a 250 keV bin in the beta-particle energy) and the detection geomety
(perpendicular or antiparallel). The channel numbers of the proton energy signals in
events which passed these criteria were "normalized” by subtracting the channel number
of the centroid of the proton singles peak from the digitzed signal, dividing by the
detector gain in keV/channel, and adding 100. The end result was therefore 40 spectra
each with a gain of 1 keV. An "unshifted” proton peak would be centered on channel
100.

Since events detected in the perpendicular geometry have only a very small shift
the perpendicular spectra were added together and the centroid of the resulting peak was
determuned. The cenmoids of the antiparalle! proton peaks were also calculated. The
differences of the centroids of each of the antiparallel peaks with the (total)

perpendicular peak are the proton energy shifts.
Section 4.3. Monte Carlo Simulation.

The equation relating the shifts to a, Equation 2.9,

Wy 2 2

,._l___ 2 v 'p'COS(Z a
P2 2 \PpTPV AT PgPy

A
“me PBT3c Py Q29

>

is not complicated, however the extracuon of the correlation coefficient from the shifts is

not a trivial matter because of experimental complicatons.

The first of these complicatons is the finite detector and cell geometry. While
the shifts of Figure 2.2 were calculated for protons and positrons emitted in exactly
opposite direcnons, a large range of relatve emission angles contributed 1o the coliected

data. This reduces the average shifts relanve to the curves of Figure 2.2.



A second complication results from the mylar foil of the gas cell, which absorbs
energy from the protons as they pass through. While it would appear that since both
perpendicular and antiparallel protons pass through the foil, the energy shift (the
difference of the energies of the two sets of protons) is not affected by the foil, this is not
exactly correct because of the coincidence requirement. A pair of perpendicular
telescopes will be more likely to see a decay in the near corner of the cell than in the
center or far corner. The probability of detection 1n a pair of antiparallel detectors is
more even throughout the cell. Therefore the two geometries see slightly different
populations of decay positions within the cell and the average angle at which the protons
raverse the foil is also different. The energy loss for 3-MeV protons passing through a
6 | mylar foil is proportional to the thickness of foil raversed, hence the average energy
lost by protons detected in the two geometries is not equal. This introduces an additional

energy difference between perpendicular and antiparaliel protons which is constant for

all beta-particle energy bins.

Finally, the scintillator response functon affects the shape of the proton energy
shift vs. beta-partcle energy curve. Because events with a large range of actual positron
energies contribute to the data of each bin, convolution of the beta spectrum with the

response function tends to flatten the curve.

To account for these experimental complications a Monte Carlo simuladon of the
experiment was performed. The logic of the simulation is presented.in the flow chart of
Figure 4.2. The inputs to the simulaton consisted of the cell and detector geomerry,
scinnllator response functon, cell wall thickness, correlaton coefficient, and silicon
detector resolunon. The direction of proton, positron, and neutrino emission, the

positron energy, and the scinullator and surface barrier detector responses were drawn
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randomly from the appropriate probability distributions. The simulation then calculated

the spectra
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Get user specified parameters.

Loop over subcells (decay positions). e

Loop over N1 decays / cell. —

Generate beta particle direction.

No Reta particle detected?

Loop over N2 protons / beta particle. lg———o

Generate proton direction.

NO

Proton detected?

Generate neutrino direction.
Generate beta-particle energy.
Calculate proton kinetic energy.
Generate scintillator response.

Update cumulated proton specira

No

N2 protons generated?

NoO

I N1 Beta-particles generated?

NO

Subcell Toop complete?

Calculate proton spectra centroids.

write out results, end.

Figure 4.2. The logic of the Monte Carlo simulation. The number of source subcells
and 33Ar decays per cell are supplied by the user. The number of protons

generated per detected positron is a function of the geomerry.
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of protons for the (detected) positron energy bins specified by the user. The calculated

energy shifts for varying values of the correlanon coefficient were then compared to the
data to determine the beta-neutrino angular correlation. An example of the dependence
of the calculated energy shifts vs. positron energy on the angular correlation coefficient

1s shown in Figure 4.3.

Proper implementation of the Monte Carlo method requires both careful testing
of the program and accurate determination of the input parameters. Programming errors,
selection of random numbers from improper probability distributions, or inaccurate
assumptions regarding the physical parameters introduce errors which may be quite
subtle. Our testing consisted of running the Monte Carlo program with a set of
simplifying physical assumptions so that the results could be compared with energy
shifts calculated analytically. Realistic physical parameters were then gradually
introduced to the program to insure that the effect of each input on the results was
appropriate.

The initial simplifying program assumptions were:

- 1deal (delta funcuon) scintillator response;

-point 33Ar source;

-zero mylar foil thickness;

-delta function positron energy distributions.

Ten simulatons were performed in which the positron energy was varied from 0.0 MeV
10 5.0 MeV in 0.5 MeV steps. The results of these calculations could be compared
directly with an analytc calculaton of the shift for the case in which the positron and
proton are emitted exactly antiparallel, with an allowance made for the finite detector
geometry assumed in the program. Note the dependence of the proton energy shift on ¢,

the relative proton-positron emission angle, in Equation 2.9. Protons emitted exactly
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Figure 4.3. Example of the dependence of the calculated proton energy shifts on beta-
particle energy and correlation coefficient. Each bin on the honzontal axis
contains results for events with positron energy in a 250 keV range (so that bin
number ! contains events with 0 keV < positron energy < 250 keV). Positron
energies were drawn from an (unphysical) uniform distribution rather than the
proper Fermi distribution in order to acquire adequate statistics for the lowest and

highest bins as well as those around bin 10.
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antiparallel to the positrons have the maximum average energy shift, therefore use of
finite sized detectors must produce smaller energy shifts than the analytic calculation.
The dependence of the energy shift on the solid angle subtended by the detectors was
observed by changing the distance between the detectors and source or, equivalently, the
detector size. The results of these tests, presented in Table 4.1, indicate that the

kinematic calculations are being performed properly.

The next step was to introduce more realistic parameters to the program one at a
time. Introducing a foil with a thickness of 6.35 microns degraded the energy of both
perpendicular and antiparallel protons equally, with no change in the energy shifts. This
was to be expected for a point source, since protons from both perpendicular and
antiparallel coincidences pass through the foil almost normally. As noted above, this is
not necessarily true for emission from an extended source from which the protons could

traverse the cell walls at a range of angles.

Two continuous positron energy distributions were then introduced. These were
the uniform distribution and the allowed Fermi distribution. The proton energy shifts for
each positron energy bin are graphed in Figure 4.4 along with the delta function results.
The differences between the results obtained with these three distributions are small,
unplying the results for the continuous distributions are consistent with the delta

function results.

The next test was to distribute the 33Ar decay position evenly throughout the cell.
Since this further relaxes the geometric constraints required for coincidence, the
magnitudes of the shifts for each beta-energy window were reduced by a roughly
constant factor. The results, calculated for a Fermi energy distribution, are graphed in

Figure 4.5.
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The next test consisted of introducing the actual scintillator response function
This produces a flattened energy shift curve (Figure 4.6). This was expected, since each

(detected) energy bin now contains a mixture of all (actual) positron energies.

The final test consisted of varying the thickness of the mylar foil for the extended
cell geomewry. It was found that a foil with a thickness of roughly 6 microns produced
an energy shift of the order of one keV (Figure 4.7) and therefore the foil thickness was

determined to within a few percent (see Section 3.4),



Table 4.1. The results of the simplified Monte Carlo simulaton of the experiment

&8

compared with the analytic calculation of the shift. The simplifying assumptions

made were: delta function beta detector response, point 33Ar source, zero

energy loss in the mylar wall of the gas cell, and delta function beta-particle

energy spectra. The difference between the simulaton and analytc energy shifts

1s a result of the finite detector size assumed in the simulation.

Positron Energy Simulation Shift Analytic Shift Simulation /
(keV) (keV) Analytic (%)

0.5 4.90 5.33 92.9

1.0 6.37 6.68 95.4

- 1.5 7.28 7.70 94.5

2.0 8.12 8.63 94.1

2.5 8.94 9.52 93.9

3.0 9.77 10.40 93.9

3.5 10.60 11.27 94.1

4.0 11.47 12.13 94.6

4.5 12.17 12.99 93.7

5.0 13.04 13.85 94.1
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Section 4.4. Extraction of Centroids from the Spectra.

With the Monte Carlo simulation tested and the physical parameters of the
apparatus determined the extraction of the angular correlation coefficient should be
straightforward. The simulation was run for various values of a, and the experimental
and calculated proton energy shifts are compared. Unfortunately it was found that the
beta-particle energy spectrum produced by the calculation disagreed with the measured
spectrum. Agreement was obtained by "shifting” the energy calibranon of the data by
350 keV. The resuluing energy spectra are shown in Figure 4.8. Although this
procedure is intellectually unsatisfying, the beta-parncle energy spectrum is an inherent
characteristic of the decay and must be reproduced by the calculation to make the

comparison of calculated and experimental proton energy shifts meaningful.

Having 'forced’ the calculated and experimentally obtained beta-particle spectra
to agree the proton energy shifts can be compared. One final issue remains to be
resolved. A consistent procedure for extracting peak centroids must be developed. For
the calculated spectra alone the obvious solution is to take the mean of all the counts,

5. 2 E N
3N (3.1)

where N; and E; are the number of counts and energy corresponding to each channel in

the spectra, respectively. The error in this centroid is the standard deviation of the mean,



a3

16 - _
L e Foil=.060
~ - o Foil=.000
;2 12 i o Foil=.120 °
= - x  Foil=.090 x @
- r o O © X
[vun % X o
= i o 0 ° 0o &
(79 u o < x X :é o [m]
:;B s _— o © ?( :: : : ®» @ o @ -
u‘i L x : ) ® g o m} o
c - ® g D H
el o
D‘-: -
0 I | I I—l L lgl ) S | I—‘ i U— | L |
0 5 11 16 21
Bin Number

Section 4.7. Calculated proton energy shifts for different counting cell wall thicknesses.

The thickness is expressed as the energy loss of a 3.2 MeV proton passing

normally through the foil. The actual energy loss in the foil used was 82.6 + 1.0

keV.
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Figure 4.8. Detected and calculated positron energy spectra. Each bin corresponds to a

250 keV range of positron energy.
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Table 4.2. Experimental proton energy shifts for each positron energy bin.

Positron Energy Bin (MeV)

1.0to 1.5

1.5t020

2.0t0 2.5

25w30

30tw03.5

351040

4.0 and over

Proton Energy Shift (keV)

5.8+04

6.7+04

8604

89+04

9.8+0.7

10.5+£0.5

123 +0.7

96
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o= OF
EOyN, (3.2)
where N is the total number of counts and CE is the standard deviation of the

distribution.

This method is difficult to apply to the experimental spectra. Background and
beta-decay strength to states nearly degenerate with the analog state can introduce
considerable systematic error to the determination of the means. There is no evidence of
significant beta-decay strength to a state near the analog, but unfortunately an
appreciable background was collected with the valid events. The dependence of this
background on energy is not known, but it is greater on the low-energy side of the peak.
In spite of this, centroids have been extracted using equation 4.1 on a (carefully selected)
100-keV wide region around the maximum of the peak. These are the results plotted in

Figure 4.9. and listed in Table 4.2.

An alternative to employing Equation 4.1 is to attempt to fit the peaks and
compare measures of central tendency produced by the fits. This approach has the
advantage that the parameters of the fit are determined primarily by the majority of the
counts which hie in the main body of the peak. The determination of the centroid 1s
therefore not held hostage to counts in the tails. The principle disadvantage to fitting is
that the funcaonal forms of the peak and background are not known. It is possible to
obtain a 'good’ fit for the data by assuming, for instance, a parabolic background and a

Gaussian peak shape. This fit however will produce grossly inaccurate peak centroids.

A second drawback to fitting is that the shapes of the peaks appear to vary
between calculated and experimental spectra and also between perpendicular and
anuparallel spectra. The latter variation is an effect of energy loss of protons in the gas

cell wall. The distributions of angles at which the two sets of protons traverse the wall
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are different, and the perpendicular spectra are roughly 10% wider than the antiparallel.
It 1s not certain why the calculated and experimental spectra appear to have different
shapes, but this seems to be an illusion caused by the low statistics and background of

the experimental spectra. The form of the sum of all the experimental spectra is similar

to that of the calculated spectra.

Our ignorance of the functional forms of the peaks and backgrounds and the
variations of these forms make comparisons of the calculated and experimental shifts
difficult. Arguments that systematic errors are introduced through the fits can not be
refuted easily. Several fitting procedures in extracting measures of central tendency of

data as well as the calculatuons have been attempted.

The first function to be employed was a simple Gaussian. This function clearly
could not repreduce the spectra, since the peaks are asymmerric. It was suspected,
however, that such a fit might produce comparable quantities. This was not the case; the
fits to the expenimental spectra centered the Gaussian near the mode of the experimental

spectra, while the fits of the simulation placed the Gaussian on the order of 1-keV lower

in energy.

An attempt was made to fit a Gaussian with a quadratic background. Again,
comparable quantities could not be extracted reliably, since the fitnng routine would

compensate for the tail in the peak differently for the calculation and data.

The last and most promising function fitted was a skewed Gaussian with a linear

background. In this function the argument of the exponental of a simple Gaussian 1s

replaced by

x-XP_,_ (x-P

202 2(c+s(x-x)p (4.3)
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where the parameters of the fit are the width o, skew s, and mode x. Comparisons of the
modes 1s an improvement over the fitting procedures discussed above, however it should
be noted that even here the varying shapes of the experimental distributions make these

results less reliable. The results of this procedure are shown in Figure 4.10.
Section 4.5. Comparison of the Calculations and Data.

Figures 4.10 and 4.11 show comparisons of proton energy shifts extracted from
the experimental and simulated spectra. Two statements should be made. First, the
determination of a will be statistics limited. Second, the low-beta-energy bins of the
data tend to lie below the line formed by the calculations while the reverse is true for the
high energy bins. The latter observation has come to be known as the ‘slope problem'. It
is possible that the lowest-beta-energy bin, bin 5, has been contaminated by accidental
coincidences with abundant y-rays which of course have an average proton-energy shift
of zero. The lowest four bins were excluded for just this reason; the presence of
contamination was deduced when the shape of the beta-energy spectrum was analyzed.
The slope problem may also be an effect of the inadequate background subtraction or an
error in the simulaton program. The beta-particle response function assumed for the
simulation can also reduce the slope of the calculations if the function spreads too many
events out of their onginal bin. The response function however is known to have 100

small of an effect to solve the slope problem.

Whatever the origin of the differing slopes, the practical effect is to reduce the
sensitivity of the comparison of calculated and experimental shifts to the correlation
coefficient. As a is lowered from 1.00, the interception of the line of the calculated
shifts with the line of the data shifts siowly moves to lower bins. The chi-squared

funcoon
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Figure 4.10. Experimental and calculated proton energy shifts as a function of beta-
particle energy bin. Each bin represents 500 keV. Peak positions are obtained

fimng skewed Gaussians of formula 4.3. The calculaton is for a =0.92.
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passes through only a very broad minimum around a = 0.90 as seen on Figure 4.12.

This value remains roughly constant for each method of extracting the centroids.

An attempt could be made to circumvent the slope problem by adding all spectra
from bins 6 to 20 together and taking the centroids of the total peaks. This approach
would succeed if enough statistics had been collected to overcome the broadening of the
antiparallel spectrum and the loss of the beta-energy information, however this was not

the case.
Section 4.6. Conclusions

At the present state of data analysis and calculauons one cannot extract the limits
on the angular correlation coefficient which would make existing limits on Cgs/Cy
tighter. The analysis yields @ = 0.90, but with an error which is srongly dependent on
the method used to extract peaks positons from the data. Due to the slope problem
discussed above the chi-squared functon has a rather broad minimum as a function of a.
A rough estmate of the error in the value of @ denived from data like those shown in

Figure 4.12 gives Aa = 0.05.

The following are possible reasons for the disagreement between the results of
Monte Carlo modeling and the data. First, there is possibly software error in the Monte
Carlo code, which despite numerous efforts has escaped detection. The second reason is
a possible error in the data sorting routines. The third reason is the possibility that there
are some effects in the experiment which have not been properly taken into account in
the simulation. One should also stress that having data with better statistics and lower
background would help in the data analysis. Better statistics however would not solve

the slope problem.
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Future attempts to improve on the determination of @ must therefore concentrate
on solving the problems listed above. With the exception of improving the statistics,
there are no easy solutions in sight, however. In the short irae scale one should continue
testing the Monte Carlo code. Untl the slope problem is understood it does not seem

appropriate 10 suggest repeating the experiment with better statistics.
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Chapter 5. Discussion and Conclusions.
Section 5.1. The Measurement of a.

In an attempt to improve the limit of the ratio of scalar to vector interaction strengths
we have measured the angular correlation of the superallowed beta-decay of 33Ar. The
experiment was performed by measuring the energy shift between delayed-protons emitted
at 90° and 180° relaave to the directon of emission of the coincident positrons. Since the
energy shift is due to the recoil velocity of the 33Cl atom, the shift is a function of the
positron energy and the angular correlation coefficient. The extraction of the coefficient
consisted of comparing the experimental energy shifts with shifts generated by Monte
Carlo simulation of the expertment performed for various values of a. The best value

obtained 1s 0.90 £ 0.05.

To extract the scalar interaction strength for this decay the Fermi and Gamow-Teller
ransiton strengths must be esimated. Shell model calculations indicate that the rano of
Gamow-Teller to Fermi strength is 0.053 £ 0.007. The coupling constant ratio ga/gvy 1$

taken from comparisons of data on Gamow-Teller transition strengths to global shell model

g_é. = 0.95 £ 0.04, With these assumptions the

calculanons of the same quanuty, yielding

scalar to vector interacton strength is limited by the above value of a to be
(gs/ev)? < 0.067.

The correlanon coefficient also places a limit on the Gamow-Tell to Fermi transition

strength rano. Assuming the scalar interaction coupling constant is zero and applying

Equanon 2.24, we find

B(GT)/ B(F).= 07 x .04,
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which 1s consistent with the value resulting from the most recent global shell model wave

functions,

——= = 0.060 (Bro&5) and 0.046 (Mulg4).

Section 5.2. Conclusions.

In the experiment described 1n this thesis we have measured for the first ime beta-
neutrino angular correlations in the decay of 33Ar. This is only the third system in which
delayed-parncle emission is used to determine the correlations, and the first in which
delayed-proton emission was used. However, the project was not as successful as initially
expected. The main problem limiong the accuracy of the obtained angular correlation
coefficient is the persistent disagreement between the data and the Monte Carlo modeling of
the experiment. This disagreement makes the precise determination of a impossible at this

tume.
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