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Abstract:
Radiative Capture of Polarized Protons by Deuterium

in the Energy Range Ep(1ab)=80-0 keV

The D(p,y)3He reaction has been studied in the energy range Ep(lab)=80—0 keV
(Ecm=53.3-0 keV). The quantities measured were the cross-section, 6(6,E), the
astrophysical S-factor, S(6,E), the vector analyzing power, Ay(6.E), and the y-ray
polarization P,(8). The primary goal of the present work has been to extract, with better
accuracy than the existing results, the D(p,y)3He electric dipole (E1) and magnetic dipole
(M1) cross-section and S-factor components over the energy region Ep(lab)=80-0 keV.
The novel contributions of the current work include the following: the use of polarized
beams for the purpose of measuring Ay(8) (sensitive to E1/M1 mixing); and the use of a
high purity germanium (HPGe) y-ray detector. The high intrinsic resolution of the HPGe
detector (4.2 keV at Ey= 5.5 MeV) has allowed us to directly observe the energy
dependence of the D(p,y)3He reaction in our spectra. By measuring angular distributions
with this detector, we have thus been able to obtain the o(8), S(6), and Ay(8)
observables as a function of Ep(lab).

The primary result of the current experiment is that the total D(p,y)3He S-factor is
significantly lower than previously measured throughout the energy region studied. In
particular, we obtain an S(0) value of 0.136 £ 0.013 eV b (including systematic error) as
compared with the previous result of 0.25 £ 0.04 eV b. This result should have bearing
on astrophysical calculations dealing with protostellar evolution. We have also compared
all of our acquired data with the results of modern D(p,y)3He three-body calculations.
The agreement with the Ay(e) data is good, while the cross-section and S-factor data fall

20-30% below the predicted values.
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Chapter 1
Introduction

This thesis presents an experimental study of the D(p,y)3He radiative capture
reaction in the energy regime Ep(l1ab)=80-0 keV (Ecp=53.3-0 keV). The motivation to
study the D(p,Y)3He reaction in the Ep(lab)<80 keV energy region is twofold: first of all,
to provide a stringent testing ground for theoretical three-body calculations which have
been (and are still being) performed in this very low energy regime; and secondly, to
obtain an accurate value for the low energy D(p,y)3He astrophysical S-factor which
astrophysicists need in order to understand stellar processes. In the discussion below,
the relationship between the D(p, V3He reaction and current theoretical work in the fields
of three-body physics and astrophysics will be explored in detail. This will be followed
by an overview of the previous low energy D(p,y)3He work, and an outline of the goals
for the current study. A brief presentation of the present experimental program will

conclude this chapter.
1.1 Three-Body Nuclear Physics

It 1s well known that the Schrodinger equation can be solved exactly for the one
and two-body nuclear systems, both in the bound and scattering states (see Chapter 6).
The natural question to ask, then, is how far into the n-body nuclear system can we can

push this "exact” Teatment before we have to resort to effective models and macroscopic



treatments? The starting point for this quest is clearly the three-body nuclear system.
However, despite a lot of recent progress in this field [Fri92,Pic92], the goal of a
complete and precise theoretical description of the three-body nuclear system has not yet
been realized.

This section will discuss several aspects of three-body nuclear physics which are
of current theoretical interest: the validity of two-body nucleon-nucleon (NN) potential
models in the three-body system; the description of the Coulomb effect (non-trivial for the
three body system); and the description of meson exchange current effects. A good
understanding of all these issues is necessary in order to properly describe the D(p,y)3He

reacton.
1.1.1 Nucleon-Nucleon Potential Models

Based on experimental observations of the two-nucleon system, one can derive

the following form for the NN nuclear potential, V(r) [Kra88]:
V() =V ()+V @)S -S)+V. S +V (LS (1.1)

where Vo (r) is the central potential, Vg(r) is the spin dependent potential, V(r) is the
tensor potential, S17 is the non-central tensor operator, Vg is the spin-orbit potential, L
is the orbital angular momentum operator, and S is the spin operator. By parameterizing
this potential, and then fixing the free parameters so as to match the NN elastic scattering
data (over all energies), a very good picture of the nuclear two-body system can be

formed.



The big question is this: will these two-body NN potentials, also known as
"realistic" potentials (because they are fit to the two-body data) work well in the three-
body system? In other words, can we solve the three-body Schrodinger equation using
these potentials and get results that agree with experiment? Although techniques for
solving the n-body Schrédinger equation in both the continuum and bound states have
existed since the early 1960's (see Chapter 6), it is only recently that numerical computing
power has advanced to the stage where accurate calculations are possible. Unfortunately,
modern three-body calculations with realistic two-body NN potential models have
encountered some problems. Perhaps the most serious problem is that the binding
energies of the Lhree—bédy bound systems (3H and 3He) cannot be accurately reproduced;
they are under-predicted by ~10% [Pic92].

In order to solve this problem of binding energies, theorists have experimented
v;/ith the concept of a nuclear three-body force (TBF) [C0079,Coe83]. An often quoted
classical example of a TBF that is of the earth-moon-satellite system. One would initally
think that the total force on an orbiting satellite would be given by the vector sum of the
earth-satellite and moon-satellite forces. However, the moon warps the shape of the earth
(specifically with regards to the oceans), and thus the earth-satellite force is changed from
what it would be if the moon were not present. Thus, in order to describe this system
properly, a TBF must be included. It is clear that the TBF in this classical example arises
as a consequence of the internal structure, and "deformability”, of the earth. In nuclear
physics, the nucleons under consideration (protons and neutrons) also have internal
structure and "deformability” in the form of A-isobars [Fri92), and thus the concept of a
nuclear TBF seems feasible. Using two pion exchange, theorists have developed models
of a nuclear TBF which, when added to the well established two-body NN potential

models, can almost exactly reproduce the experimental three body binding energies



[Sch95]. If this model of the three-body bound system is valid, one would expect that
the 3He wavefunctions derived from such potentials should be valid in calculations of the
D(P.Y)3He process (since D( p,y)3He represents a transition from a three-body scattering
state to a three-body bound state). This is an issue that we would hope to explore in the
current experiment.

In addition to the three-body bound system, one also seeks to describe the three-
body scattering system. This is often done through elastic scattering experiments.
While theoretical treatments have had a good deal of success in describing unpolarized
observables [Kie94], there are some indications of possible problems describing the
polarized observables. For example, nucleon-deuteron elastic-scattering experin .1ts
have shown that the analyzing powers are not adequately predicted with modern NN
potential models [Tor91]. The validity of NN potenual models in the scattering system
can also be tested by means of the D(P,y)3He reaction. The same wavefunctions which
are valid in the elastic-scattering process should also be valid for the continuum
wavefunctions in the radiative capture process. Of course, in the radiative capture
process, we are essentially testing the continuum and bound states simultaneously, and

thus the information which we can glean about one state individually will be limited.

1.1.2 The Cculomb Interaction in the Three-body System

Until 1991, an exact treatment of the Coulomb interaction for the three-body
system had never been performed. The difficulty in handling the Coulomb interaction, in
p-d scattering, arises from the long-range polarization effect, whereby the charge of the
incident proton polarizes the deuteron and thus induces an electric dipole moment. Also

associated with the long range nature of the Coulomb interaction is the problem that when



the potential is expanded into partial waves, it is very slowly convergent. This makes
calculations very susceptible to series-truncation errors (see Chapter 6). The first exact
three-body treatment of the Coulomb interaction was done at zero energy by Friar et al.
[Fri91] in 1991. This work has now been extended to finite energies by Schiavilla et al.
[Sch95]. By comparing these calculations to the currently acquired D(p,y)3He data, we
can hope to get an idea of just how accurately this "three-body"” Coulomb interaction has

been taken into account.

1.1.3 Meson Exchange Currents

All realistic NN potential models use meson exchange currents (MEC's) to
transmit the nuclear force between nucleons. Radiative capture reactions, which go by
the electromagnetic operator, can be sensitive to these currents. As we will now discuss,
the D(p,y)3He reaction at low energies constitutes an especially sensitive testing ground
for a theoretical description of MEC's.

Although electric dipole (E1) transitions can be described without explicit
reference to MEC effects, magnetic dipole (M1) transitions cannot, and thus it is typically
in M1 transitions that we look for signatures of MEC's. As discussed by Friar [Fn90], it
was the discrepancy between theory and experiment in the M1 driven 1H(n,y)2H reaction
(at thermal energies) that first motivated a strong theoretical examination of the role of
MEC's in nuclei [Bet50]. However, the MEC's are only expected to play a small role in
the n-p capture cross section (~10%). A much more sensitive testing ground for MEC's
is found in the D(n,y)3H and D(p,'y)3He reactions at low (thermal) energies. This has to
do with the form of the M1 operator in the impulse approximation (IA). In this form, the

M1 operator is calculated using only the magnetic moments and orbital motions of the



nucleons (i.e. the effects of MEC's are not included). Since the dominant symmetric S-
states of 3He and 3H are eigenfunctions of the IA M1 operator (see Chapter 6), this
usually dominant part of the M1 strength is greatly quenched in D(p,y)3He and D(n,y)3H
(once orthogonality of initial and final wavefunctions is enforced). Because of this, the
typically small MEC part of the operator is greatly enhanced in importance.

Most three-body studies of MEC's in the past have focused on the thermal energy
region (E~0). This is because M1 transitions are typically most important in this region,
and hence MEC effects should be most noticeable. Because of its large thermal cross
section, o7=-508 mb [Jur82], and because it goes largely by M1 radiation, the D(n,y)3H
reaction has been the most thoroughly studied three-body reaction with regard to MEC
effects. For example, a three-body calculation by Torre [Tor83] showed that the
predicted cross section was increased by a factor of 2.6 by the explicit inclusion of
MEC’S. A more recent calculation of D(n,y)3H by Friar [Fri90] has indicated a
somewhat smaller effect, with the MEC's increasing the cross section by a factor of
approximately 1.6. The D(p,y)3He reaction has been much less studied for two reasons:
(1) the thermal cross section is e)ipected to be many orders of magnitude lower, and thus
harder to study experimentally; and (2), a theoretical treatment of the Coulomb interaction
must be included because of the two protons which are now present. Of course, these
two factors are related: it is the Coulomb repulsion of the two protons which lowers the
cross section of D(p,Y)3He with respect to D(n,y)3H. In any event, one would expect
that a successful description of MEC effects in D(n,y)3H should lead to a good
description of MEC effects in D(p,y)3He. This is something that can be checked in the
current D( p,Y)3He experiment. The opportunity to learn more about MEC effects could

perhaps be considered the primary theoretical motivation for the current study.



1.2 Nuclear Astrophysics

The D(p,Y)3He reaction at low energies plays a central role in such astrophysical
processes as the stellar proton-proton chain and protostellar evolution. At somewhat
higher energies it is also important in Big-Bang nucleosynthesis, but that is beyond the
scope of the current discussion. In what follows, the relationship of the D(p,y)3He
reaction to the stellar proton-proton chain and to protostellar evolution will be explored.
The core of much of this discussion can be found in a book by Claus Rolfs [Rol88].
This book offers a very complete discussion of astronomy and astrophysics from both a
quantitative and qualitative point of view, and is highly recommended to the interested

reader.
1.2.1 The Source of Stellar Energy

The determination of the power source of our sun has an interesting history. It
was long ago realized that gravitational energy could not possibly be the source of the
sun’s large energy output [Rol88]. One possible argument for this conclusion is derived
from the virial theorem, which states that the total thermal energy (i.e. kinetic energy) of
the sun is equal to 1/2 the total gravitaional potential energy. By taking the total possible
energy output of the sun to be 1/2 the total gravitational potential energy, and taking into
account the observed luminosity of the sun, a maximum solar lifetime of ~107 years is
estimated. However, it is known from geological dating methods that the earth (and
hence the sun) must be at least ~10% years old [Rol88]. Hence there is simply not enough

gravitational energy in the sun to account for the observed lifetime.



Although it had been speculated in the early 1920’s that nuclear processes
(specifically, hydrogen-hydrogen fusion) could be responsible for the energy output of
the sun, a serious problem was encountered. From a classical point of view, hydrogen-
hydrogen fusion can only occur when the relative kinetic energy of the colliding protons
exceeds the 550 keV Coulomb barrier, and this happens at a temperature of 6 billion
Kelvin. The mean core temperature of the sun, however, was known from calculations
utilizing the equation of state to be only about 15 million Kelvin. It is thus clear that
nuclear fusion in the sun is classically impossible. However, in 1928, George Gamow
[Gam28] showed, using quantum mechanics, that there is a finite probability of tunneling
through the Coulomb barrier. This probability, P, can be derived by solving the
Schrodinger equation for the Coulomb potential. At low energies, the relative s-wave

tunneling probability takes the form [Bet37,Rol88]:

P o exp(-21m), (1.2)

where 1 is the Sommerfeld parameter, defined as

Z,7,e*
v

n= (1.3)
where Z; and Z, are the atomic numbers of the interacting nuclei, e is the electron charge,
and v is the relative velocity. For future use, we note that the Sommerfeld parameter can

also be written in terms of the center of mass energy, Ecp, as follows [Rol88]:

1/2
]
n= 57—5(31.29)2122(}%} , (1.4)

cm



where |t 1s the reduced mass in amu, and Eqp, is in keV.

This tunneling phenomenon, although small, proved to provide an adequate p-p
fusion rate so as to account for the energy production of the sun [Rol88]. It is thus
concluded that nuclear fusion in the sun is a quantum mechanical phenomenon. As it
turns out, the D(p,y)3He reaction also plays a central role in stellar energy production,
and this will be discussed in sub-section 1.2.3. However, as will be shown in sub-
section i.2.4, it is in the realm of proto-stellar evolution that the current D( p.Y)3He

experiment can be expected to have the greatest impact.

1.2.2 The Astrophysical S-factor

In order to understand the details of stellar nucleosynthesis, astrophysicists need
to know as much as possible about the nuclear reaction rates at the sun's core. Although
the mean temperature of the sun (15 million Kelvin) would indicate a nuclear burning
energy of Ecpy~1 keV (because the Maxwell-Boltzmann distribution, representing the
distribution of velocities in the stellar "gas”, peaks at Ecpn=kT), the actual effective
burning energy i1s somewhat higher. This is because the nuclear reaction rates depend
upon the product of a velocity distribution function (decreasing for Ep>kT) and a
reaction cross section function (increasing for Ep>kT), and this causes the reaction rates
to peak at an energy Eq>kT. This peak in the nuclear reaction rates is referred to as the
Gamow peak [Rol88], and for hydrogen-hydrogen (or hydrogen-deuterium) fusion in the
sun, this peak occurs at Ecp~6 keV. Therefore, it is clear that if we wish to perform a
direct laboratory study of the nuclear reactions which take place in the sun's core, we will

need to use a center-of-mass beam energy of E.p~6 keV. It should also be noted that in
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the case of protostellar evolution, where temperatures are on the order of 1 million
Kelvin, the Gamow peak occurs at the much lower energy of Ecy~1 keV.

From an experimentalist's point of view, a direct measurement of charged particle
nuclear reactions at these low "stellar” energies can be very difficult, if not impossible,
due to the Coulomb repulsion between the two particles. For example, based on the
results of the current experiment (presented in Chapter 5), the total cross section for
D(p,Y)3He at Ecp=1 keV is about 1 femto-barn (i.e. 10-15 b). Under the laboratory
conditions of the current experimental set-up (outlined in Chapter 3), this translates into
approximately one detected y-ray every few hundred years! Clearly, a direct laboratory
measurement at this energy is not possible. Fortunately, at slightly higher energies, the
cross-section is much more amenable to laboratory experiments. For example, at E¢p=10
keV, the total D(p,Y)3He cross section (according to the current results) is about 6 nb.
Under the same experimental conditions, this translates into a few detected y-rays every
hour. With this in mind, the technique that is typically employed to study reactions at
stellar energies is to do the measurements at somewhat higher energies, and then
extrapolate the results down to the desired energy.

One way to do this extrapolation utilizes the concept of the Astrophysical S-factor,
S(Ecm) (also referred to as just "the S-factor"). The cross section can be defined in terms
of the S-factor as shown below [Rol88]:

S(E,,)e*™

6(Ecm) = — 5 (1.5)

cm

with 1 as defined in Equation 1.4.
As discussed in [Rol88], the form of Equation 1.5 is defined so as to explicitly

take into account explicitly the known energy dependencies of the cross section. The
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exponential factor in Equation 1.5 is simply the low energy Coulomb tunneling
probability (for s-waves) as defined in Equation 1.2. The 1/E¢p, factor in Equation 1.5 is
the energy dependence resulting from the “geometrical area” consideration of classical
physics, except that in the transition to the quantum regime, we replace c=n(rj+r7)? with
o=n X2, where X is the reduced de Broglie wavelength. Since Eqy o< 1/X2, we get the
1/E.m energy dependence in the cross section. With these energy dependent forms
explicitly taken into account in Equation 1.5, the S(E.,) term can then be interpreted as
containing "all the strictly nuclear effects” [Rol88] (at least for relative s-wave reactions).
It should be pointed out that the basic form of Equation 1.5 is essentially that which
results from a direct capture model calculation at very low energies [Gri63].

The great advantage of the S(E¢p,) function is that, in the absence of resonance
structure, it is empirically found that S(E.p,) often varies linearly with energy [Rol&88].
Thus, for example, if one desires to know the cross section of a reaction at zero energy,
one can do the following: measure the cross section over a range of higher energies;
calculate an S(E) value for each cross section point using Equation 1.5; fit these S(E)
values to a simple (perhaps linear) function; and then extrapolate the function to zero
energy. This is, in fact, what has been done in the current experiment in order to éxt_ract a

cross section at thermal energies (E~0) for D(p,y)3He.
1.2.3 The Proton-Proton Chain

In medium mass stars, like our sun, the primary energy production mechanism is
a sequence of nuclear reactions known as the proton-proton chain [Rol88]. The net result
of this process is that four protons are effectively converted into a 4He nucleus with the

corresponding release of 26.73 MeV of energy. The first step in the proton-proton chain
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is the p+p—D + e*+Vv reaction, which goes by the weak force operator. The deuterium
produced in this reaction then can participate in a second reaction, D(p,y)>He, which goes
by the electromagnetic operator. Although the D(p,y)3He reaction is prominently located
as the second step on the proton-proton chain, its effect on the solar energy production is
essentially nil. This is because its reaction rate is severely bottlenecked (by about 18
orders of magnitude) due to the fact that it follows a weak interaction in the sequence of
gvents.

In recent years, there has been a renewed emphasis on understanding the proton-
proton chain due to an astrophysical anomaly known as the "solar neutrino problem”
[Rol88]. In theory, a good understanding of the solar core can be obtained by an
experimental measurement of the solar neutrinos emanating from the sun. These
neutrinos come not oniy from the first step in the proton-proton chain, as shown above,
but also on subsequent steps, such as the 7Be(p,Y)8B reaction (where 8B—8Be+e-+Vv).
As it turns out, experimental neutrino detectors register only about half of the neutrinos
predicted by the standard solar model. This is the "solar neutrino problem". It has been
suggested that better experimental knowledge of the nuclear reactions in the proton-proton
chain (specifically, the 7Be(p,y)8B reaction) could perhaps solve this problem [Wel95].
The important point to make, in the context of the current discussion, 1s that the
D(p,y)3He reaction, despite it prominent position in the proton-proton chain, should not
affect solar neutrino production. This is because of the bottlenecking effect mentioned

earlier.
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1.2.4 Protostellar Evolution

The D(p,y)3He reaction is known to play a much more significant role in the
process of protostellar evolution towards the main sequence (the Hayashi track [Hay62]).
In protostellar evolution, a cloud of interstellar gas collapses on itself, and begins to heat
up. Once the temperature reaches about 1 million Kelvin (a Gamow peak of Ecy~1 keV),
the D(p,y)3He reaction "ignites". The deuterium that is burned in this case is primordial
deuterium (i.e. deuterium produced in the Big-Bang) which happens to be present in the
protostellar gas. Since the D(p,y)3He reaction is the first nuclear reaction to turn on, its
burning can have a very significant effect on the protostellar evolution process. This has
been recently discussed by Stahler [Sta88], who shows that deuterium burning via the
D(p,y)3He reaction has the effect of a "thermostat" in low mass protostars, whereby the
temperature of the protostellar core is maintained at ~106 K. As a result of this thermostat
effect, the mass-radius relation of the core 1s tightly constrained. This constraint has a
noticeable affect on calculations [Sta88] relating to the “stellar birthline”. The stellar
birthline is a locus of points on an H-R diagram (a diagram which plots luminosity vs.
surface temperature for stellar objects) which represent the sites where protostars first
become luminous. The stellar birthline calculations, which are based in part on
extrapolations for the low energy D(p,y)3He S-factor, can be compared with current
observational measurements of T-Tauri stars (developing protostars). Considering the
large experimental uncertainties involved, the agreement is thought to be good [Sta88].

Another important aspect of D(p,y)3He burning in protostars concerns the
depletion of the primordial deuterium. As it turns out, the amount of primordial
deuterium currently present in the universe s a sensitive barometer for our understanding

of Big-Bang nucleosynthesis [Rol88]. This is due to the fact that since the era of the Big-
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Bang, deuterium is primarily destroyed, not created. If we could measure its present
abundance, we could set an upper limit on its primordial abundance. Several
astrophysicists have suggested that some of the primordial deuterium which is present in
heavy mass protostars could actually survive the D(p,y)3He protostellar burning process
and thus be found in the outer envelopes of heavy mass stars [Hay62,Bod66,Maz80".
These predictions were also based in part on extrapolations for the low energy D(p,y)3He

S-factor.
1.3 Previous D(p,y)3He Experiment

There is one previously existing D(p,y)3He experiment which covers the very low
energy region, Ep(lab)<50 keV. This is the experiment of Griffiths et al [Gri63]. The
results of this experiment play a key role in the extrapolation of the D(p,y)3He S-factor to
stellar energies. Our rationale for restudying the D(p,y)3He reaction over approximately
the same energy region as [Gri63] can be seen by examining a graph of the therr final
results. Figure 1.1 shows the S-factor results of [Gri63] plotted versus incident
laboratory beam energy.

The open points in Figure 1.1 are the experimentaily derived data points of
[Gri63], while the dashed line is a theoretical energy dependence (that of a simplified
direct capture model) normalized to the data. The primary results of the [Gn63]
experiment were as follows: an extracted total S-factor versus energy; an extracted S-
factor value at zero energy, S(0); and an extracted M1 S-factor at zero energy, M1 S(0).
Since there 1s no data actually measured in the very low energy regime of stellar interest
(Ep(lab)<9 keV), the extrapolatior. via the dashed line takes on considerable importance.

The [Gri63] experiment will be discussed in detail in Chapter S, but several key points
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will now be made. The first is that the data in Figure 1.1 have large error bars, and thus
don't allow a very precise determination of the S-factor over the region studied. The
second is that the extrapolation to low energies, perhaps the primary result of the [Gri63]
experiment, has a Jarge experimental uncertainty. It can easily be argued that one could fit

almost any curve through the data points shown in Figure 1.1, including a flat line. This
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Figure 1.1: The D(p,y)3He data of Griffiths et al. [Gri63]. The data points were
acquired by deconvoluting thick target yields (see Chapter 5). Systematic error is
included in the error bars. The dashed curve is a theoretical energy dependence

normalized to the data. Note that for this reacion Ecy=(2/3)Ep,
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calls into question the validity of the [Gri63] S-factor extrapolation to zero energy (as
shown by the dashed line in Figure 1.1). It would be reassuring to have some empirical

evidence for the shape of this theoretical curve.
1.4 Goals of the Current D(p,y)3He Experiment

Because of technological advances that have been made in the past 30 years, we
felt that we could improve upon the work of [Gri63], and thus extract a more reliable
measure of the D(p,y)3He S-factor at low energies. In particular, our goals for the
current experiment were as follows:

1. To measure S-factor data in the energy regime Ep(lab)<80 keV which is both
higher in quality (i.e. has smaller error bars) and extending lower in energy than
the data of [Gri63]. This accurately obtained data can then be directly compared
with current three-body calculations [Sch95] in order to gauge the validity of the
modern three-body theoretical anproach (specifically with regards to the handling
of MEC effects). Our new measurements with polarized beam (never done before
in this energy region), along with our detailed 6(8) angular distribution
measurements, should also allow a more precise determination of the E1/M1
multipole ratio for D(p,y)3He.

2. To obtain an accurate extrapolation of the S-factor to lower energies than can

be experimentally measured. The large error bars and limited energy range of the

previous [Gri63] data allowed them to use only a theoretical energy dependence in
their extrapolation. We hope to improve on this by using our high quality data to

empirically determine the energy dependence of the S-factor, and thus perform a

more reliable extrapolation down to zero energy. In addition to allowing further
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comparison to theoretical three-body calculations [Fri91], our new low energy

extrapolation results will give astrophysicists more accurate S-factor values to use

in their calculations of stellar and protostellar evolution.

The novel contributions of the current experiment are made possible by two
important technological advances that have occurred since the [Gri63] experiment. First
of all, polarized proton beams of high intensity and high polarization are now available,
and this allows us to measure the vector analyzing power, Ay(8), which has never before
been done in this low energy regime. The vector analyzing power, which 1s especially
sensitive to E1/M1 interference terms, should play an important role in disentangling of
the multipole compohents, and thus help us extract a reliable value for M1 S(0). As
discussed in Chapter 6, the M1 S(0) value is expected to be especially sensitive to MEC
effects. The second major advantage that we have over the [Gri63] experiment 1s that we
ére able to use a large High Purity Germanium (HPGe) detector which gives
exceptionally clean and well resolved spectra (much better than the Nal(T1) crystal of
[Gri63]). Itis the high intrinsic resolution of this detector (~4 keV at 5.5 MeV) that will
allow us to empirically determine the energy dependence of the D(p,y)3He reaction by a
direct deconvolution of our raw spectra. In this manner, we are able to obtain

extrapolations (o zero energy which avoid the constraint of a "fixed" energy dependence.
1.5 Overview of Current Experimental Program

The following chapters will discuss all aspects of the present D(p,y)3He
experiment. A discussion of the experimental set-up and electronics (Chapter 2) will be
followed by a discussion of the observables measured and the data analysis techniques

used (Chapter 3). The empirical extrapolation 1o zero energy, accomplished by means of
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the "deconvolution" procedure, will be discussed in great detail here. Chapter 4 deals
with our measurement of the D(p,y)>He y-ray linear polarization. All experimental results
acquired, for all observables. will be presented in Chapter 5. Included will be an
extraction of the EI/MI1 ratio as a function of energy. Chapter 6 will discuss some
theoretical calculations that have been done to describe the D( p,y)3He reaction, including
some very recent three-body calculation results from theory groups at Los Alamos and
CEBAF. The results of the theoretical calculations will be compared to the currently
acquired data. Chapter 7 will summarize the salient conclusions of the present

D(p,y)3He study.
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Chapter 2
Experimental Techniques and Data
Acquisition

Data for the current D(p,y)3He experiment were acquired at the Triangle
Universities Nuclear Laboratory (TUNL), which is located on the campus of Duke
University. The procedure in the D(p,y)>He experiment involved extracting an 80 keV
beam of polarized protons from the Atomic Beam Polarized Ion Source (ABPIS) [Cle90],
and subsequently bending this beam, by means of a dipole magnet, into the low energy
capture line (LECAL) beam leg where the target chamber was located. The outgoing y-
rays from the D(p,y)3He reaction were detected by an actively and passively shielded
High Purity Germanium (HPGe) detector. The proton polarization was pernodically
measured by diverting the beam through a type FN Tandem Van de Graaff accelerator and
on into a proton polarimeter located in a separate beam leg.

The goal of the data acquisition phase of this experiment was to obtain raw
D(p,Y)3He specira which would allow extraction of the ¢(8,E), Ay(e,E), and P(6)
observables (see chapters 3, 4 and 5). The following sections will detail all of the data

acquisition procedures that were followed in order to obtain these raw spectra.
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2.1 Polarized Proton Beams

The measurement of the D(p,Y)>He vector analyzing power, Ay(8,E), requires an
incident beam of vector polarized protons. A vector polarized proton beam is a beam that
has been prepared in such a way that there is an excess population in either the my=1/2 or
my=-1/2 angular momentum sub-state (where I represents the proton spin). In particular.

the vector polarization 13§ 1s defined as

By =(N.-N) £, (2.1)

where N, (IN_) 1s the fraction of protons which lie in the spin state with projection parallel
(anti-parallel) to the quantization axis E, A measurement of the observable Ay(B,E)

necessitates that & be oriented in the § (or - y) direction as indicated in Figure 2.1 below.

Detector

Incident

beam )
Reaction Plane

Figure 2.1: Coordinate system for proton polarization.
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The choice of axis directions used in Figure 2.1 follows that of the Madison
convention [Bar71], where fqn X fcom is in the direction of ¥ (}A(-m being the incident
beam direction and f(om being the outgoing vy-ray direction), and Xxy=2Z.
Measurements of the vector analyzing powers Ay or Az, which would require é to be in
the X or +Z direction respectively, are not pursued, as parity conservation requires that
they be zero [Wol49]. Therefore, we only concern ourselves further with vector
polarized proton beams which have g_, in the +y-direction (i.e. which have polarization

P+y). The next two sub-sections describe the creation and measurement of such beams.

2.1.1 Atomic Beam Polarized Ion Source

The source of polarized proton beams at TUNL is the Atomic Beam Polarized Ion
Source (ABPIS) [Cle90]. The ABPIS works by first polarizing the hydrogen atoms in
electron polarization and then transferring this polarization to the nucleus by means of
radio-frequency (RF) transitions. Once the nucleus has been polarized, the hydrogen
atom can then be ionized and accelerated out of the source.

In the ABPIS, the process of producing a beam of polarized protons starts with
the introduction of a volume of pure hydrogen gas (H,). This hydrogen gas is
dissociated in an RF discharge, and then allowed to diffuse out of the dissociator chamber
and into the region of two Stem-Gerlach type sextupole magnets. Before leaving the
dissociator chamber, the beam passes through a cryogenically cooled (~35 K) copper
nozzle. This "cold head" serves the purpose of slowing down the beam so that it can
spend more time in the polarizing regions which follow. The cold head is coated with

high purity nitrogen gas to prevent recombination of the dissociated hydrogen atoms.
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Following the dissociator and cold head, the beam enters a region of non-uniform
magnetic field created by two Stern-Gerlach type sextupole magnets. These magnets
have their field lines aligned such that atoms with electron spin projection mj=1/2 are bent
towards the beam axis direction, while those with mj=-1/2 are bent out of the beam.
Figure 2.2 shows the separa.on of the electron spin substates that occurs with increasing
applied magnetic field. The applied magnetic field on the x-axis is presented in terms of
X, where y 1s the ratio of applied magnetic field to the "crincal field" (the magnetic field of
the proton at the site of the electron). The energy on the y-axis is measured in terms of

the zero field splitting, AW.

W/AW

F=1

}mj:—l/Z

x=B/R

Figure 2.2: The Zeeman and hyperfine structure of hydrogen.

The splitting indicated by the quantum numbers mj in Figure 2.2 1s the separation

of the electron spin states (the Zeeman effect). while the splitting indicated by the
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quantum numbers my is the separation of the hyperfine spin states. The hyperfine
structure comes from the interaction between the spin magnetic moment of the nucleus
and the orbital magnetic moment of the electron. The total angular momentum for the
proton-electron system is represented by F in the Figure.

After exiting the sextupoles, only the mj=+1/2 states are left. At this point, the
beam enters a set of cavities where RF transitions induce population changes among the
various hyperfine states in order to produce a nuclear polarization. The technique used is
the adiabatic passage method [Hae67], whereby the magnetic moment of an electron (for
a selected hyperfine state) is slowly reversed by 180°. In other words, mj changes from
+1/2 to -1/2. In the current experiment, a weak magnetic field ( close to zero in figure
2.2) is used to induce a transition from hyperfine state 1 to hyperfine state 3. This
transition occurs because F is a good quantum number in this region, and it will be
conserved in the adiabatic reversal of the electron spin. The RF used in this case has an
energy equal to the separation of the mp states. This procedure leaves states 2 and 3
populated, and thus produces a beam of protons oriented in the my=-1/2 direction. In
order to produce a beam of protons oriented in the my=+1/2 direction, a strong magnetic
field (x around 2) is used to induce the 2 to 4 transition. This is done by using an RF
with energy equal to the separation of these two hyperfine states. Note that F is no longer
a good quantum number here. This procedure leaves states 1 and 4 populated, and thus
creates a beam of protons oriented in the my=+1/2 direction. In order to measure the
D(P,Y)3He analyzing power, we utilized a capability of the ABPIS which allows fast spin
flipping (at 10 Hz) between these m=+1/2 spin states.

Following polarization, the beam in the ABPIS is then ionized in an Electron
Cyclotron Resonance (ECR) ionizer cavity in order to allow acceleration out of the

source. The resulting positive ions can, if desired, be transformed to negative 1ons by
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passing the beam through an oven of cesium vapor where charge exchange collisions can
occur. The usefulness of this feature will be discussed in section 2.1.2. The final section
of the ABPIS concerns a Wien-filter spin precessor. As was pointed out at the beginning
of section 2.1, we desire that our proton spins be oriented with respect to a quantization
axis (& } which lies in either the £y-direction (see figure 2.1) Unfortunately, after
2xiting the ECR ionizer, the E of the beam is aligned in the z-direction. The Wien filter,
which consists of a set of crossed E and B fields, thus plays the important role of
changing g_, to the orientation desired. Following the Wien filter, the proton beam exits
the ABPIS. As a result of a series of acceleration sections in the latter half of the ABPIS,
the exiting beam has a lab energy of 80 keV.

The £y orientation of E has the added benefit of preventing the possibility of any
spin precession in the bending magnet which follows the ABPIS. The bending magne:
which follows the source, and allows the beam to be steered into the LECAL beam leg,
has its magnetic field in the vertical y-direction. Since the torque that a magnetic moment
feels in a magnetic field is equal to [i x B, it is evident that for our beam polarization,

Py, the torque wil' - zero, and thus there wil be no precession effects.
2.1.2 Proton Beam Polarimeter
Accelerating the Beam
In order to obtain an accurate value for the proton polanization Py, the beam was
periodically tuned into a polarimeter which was located on the high energy side of the

TUNL accelerator. This accelerator, a type FN Tandem Van de Graaff, requires

negatively charged input beam. The reason for this lies in the nature of the "tandem"
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operation of the accelerator, where the word "tandem" here refers to the double
acceleration boost an injected beam gets. By raising the central terminal to a high positive
voltage (+V), the negative beam is attracted towards the center. Once there, the negative
beam encounters a thin Carbon stripping foil which strips the two electrons off and
creates a positive 1on beam. This positive ion beam 1s then repulsed from the positive
central terminal and out of the accelerator. This completes the double acceleration process
whereby the beam has received a net acceleration of 2V.

Although the ABPIS creates positive ions for our low energy D(p,y)3He
experiment, it can also be made to create negative ions for the purpose of injecting into the
tandem accelerator. This is accomplished by charge exchange in a cesium oven (located
after the ECR ionizer) whereby the positive hydrogen 1ons pick up two cesium electrons.
This process of changing positive beam to negative beam has an efficiency of about 15 to

20%.

The 12C(p,p¢)12C Polarimeter

The polarimeter we used involved the known vector analyzing power for clastic
scattering of protons off carbon at Ep(lab)=6.18 MeV and 81,p=40". The beam energy of
6.18 MeV was chosen on the basis of previous work [Mos65, Ter68, Wil93] which
showed that the 12C(p,po)!2C analyzing power was maximum at this energy.

The set-up of the 12C(p,po)12C polarimeter [Wil93] involved a thin carbon foil,
~5 Lg/cm?, and two silicon charged particle detectors placed symmetrically at +40°. The
detectors have been carefully collimated with tantalum collimators such that they sce only

the center of the target. A determination of the proton polarization requires measuring the
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left-right asymmetry of the elastically scattered protons. The left-nght asymmetry is
defined as follows:
N —Ng

Asymmetry = -

1.2
N + N (1.2)

In this equation, N1 (NR) is the number of counts in the left (right) detector for a given
amount of incident beam charge deposited on target. The polarization, Py, of the incident

beam is then given by

_ Asymmetry (1.3)

where Ay, which has the value -0.851 £ 0.009 [Wil93], is the known vector analyzing
power for the 12C(p,pe)12C reaction at Ep(lab)=6.18 MeV and 8),,=40°.
Figure 2.3 shows a schematic of the electronics that were used to process the raw

signals from the two solid state detectors.

Ortec 572 Ortec 551
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Left Timing
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Figure 2.3: The electronics for the proton polarimeter.
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Since only one Analog to Digital Converter (ADC) was used, the signals from the
two detectors were routed to different locations in the spectrum. This was accomplished
by taking the bipolar output from each Ortec 572 amplifier and, after setting the desired
thresholds with the Timing Single Channel Analyzer (Timing SCA), using 1t as a router
for the linear signal. Whenever router #1 fires, for example, the Northern ADC
processes the linear signal (the unipolar output from the Ortec 572 amplifier) from the
right solid state detector, and when router #2 fires, the ADC processes the lincar signal
from the left so:id state detector.

The interface of the ADC with the computer will be described in section 2.4. It
should also be pointed out at this juncture that the fast spin flipping capability mentioned
in section 2.1.1 can be accommodated in the polarimeter procedure by simply including a
few more router signals in the Northern ADC. In this manner, data from the two

different spin states can be sent to different regions of the spectrum to simplify analysis.
2.2 Experimental Set-up for D(p,y)3He

Once a polarized beam (or, in the case of D(p,y)3He, an unpolarized beam) of 80
keV protons was steered into the LECAL beam leg, we were ready to start data
acquisition for the D( p,y)3He experiment. Before entering the target chamber, the beam
passed through a set of horizontal and vertical slits and a tantalum lined collimator. The
front of the collimator, which was located about 6 inches upstream of the target, defined a
circular on-target beam shape which was about 0.5" in diameter. The experimental
method that we followed was to stop the 80 keV proton beam in the target, which in this
case was heavy water (D20) ice, and then observe the outgoing D(p,y)3He y-rays with a

High Purity Germanium (HPGe) detector. The deconvolution of the resulting HPGe
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spectra. performed in order to extract the energy dependence of the D(p,y)3He reaction.
will be discussed in Chapter 3.

Figure 2.4 shows the experimental set-up on the LECAL beam leg. The
following subsections will describe the details of this set up. In particular, the topics
discussed are: the D50 ice target; the beam current integration system; and the HPGe

detector set up.

2.2.1 D20 Ice Target

In deciding upon a deuterium target for this D(p,y)3He experiment, several
options were considered. The idea of using either a deuterated polyethylene or a
deuterated titanium target (as did Kramer [Kra92] in his D(a, Y*He experiment) was not
pursued due to anticipated problems with incident bearn implantation. A deuterium gas
target, which has been used successfully in higher energy D(p,y) He work (e.g. [Kin83,
Gri62], was not deemed feasible at the current low beam energies because of the
associated problems with degradation of the inciaent beam 1in the gas chamber entrance
foil. A gas jet target was simply deemed financially impractical. Thus, following the
precedent of Gnffiths et al. [Gri63], a DO ice target was chosen for the present
experiment. The low beam line air pressure (~10-6 torr), and the high intensity beam
current (~30 LLA), was expected to slowly vaporize the outer layers of the D70 ice target,
and thus continuously expose new layers of target material. This was expected to help
minimize any problems associated with incident beam implantation.

Since the projected range of 80 keV protons in D70 ice is only on the order of 1
um, the idea of using a "thin target" (that is, a target which allows the incident beam to

pass completely through it) was not pursued. Instead, we opted to completely stop the 80
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keV beam in the target, thus creating a range of incident beam energies on target from
Ep(lab)=80 keV to Ep(lab)=0 keV. This range of incident beam energies created a
corresponding range of outgoing y-ray energies, E,=5.49-5.57 MeV (if all outgoing
directions are considered), from the D(P,y)3He reaction. The procedure for forming the
D70 ice target that we used followed the general method of Griffiths et al. [Gri63].
Figure 2.5 shows a detailed picture of the target and target chamber that was used. The
view of the target in figure 2.5 is edge on, and the beamn direction is 45° out of the plane
of the paper (see figure 2.4 for a better perspective on the beam direction).

The basic procedure of the ice target creation was to let a stream of heavy water
vapor freeze on a cold copper surface. The creation of the heavy water vapor stream was
created by exposing a flask of liquid heavy water, at room temperature, to the extremely
low ambient pressure of the beam line (~106 torr). Since the vapor pressure of water at
room temperature is ~ 20 torr, the water quickly boiled. The resulting steam was then
allowed to pass through copper and plastic tubing (as shown in figure 2.5) and onto a
copper disk located in the target chamber. The copper disk was attached to a copper cold
finger in thermal contact with a reservoir of liquid nitrogen. This kept the temperature of
the copper disk at ~77 K, and allowed the heavy water vapor to solidify on the surface in
the form of heavy water ice. Deposition for the duration of about 15 minutes produced an

ice target approximately 1/2 mm thick.
2.2.2 Beam current integration

In order to measure relative and absolute cross sections, it is necessary to have an

accurate method of determining how many protons are incident on the target. This figure
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was determined by integrating the total charge deposited from the incident proton beam.
The integration was carried out using a model 1000 Brookhaven Instruments Corporation
current integrator, the precision of which is known to be better than 1 %.

One potential problem that can arise with beam current integration is related to the
presence of free electrons in the vicinity of the target. In particular, there are two effects
that must be taken into account when going about the process of beam integration. The
first effect deals with electrons which are knocked off atoms in the collimator (see figure
2.4), or perhaps the upstream slits, and eventually find their way onto the target. These
negatively charged electrons will mix in with the positively charged protons, and thus the
total charge 'mtegratedron target will read somewhat lower than a "true" integration of the
proton beam current would indicate. The second effect concemns electrons which are
knocked out of the target by the incident proton beam. This process will leave the target
With a net positive charge, and thus the total charge integrated on target will read
somewhat higher than a "true” integration.

In order to assure proper beam current integration, it is standard procedure to bias
the slits, collimator and target to positive voltages in order to "hold in" the negatively
charged electrons, and thus prevent spurious beam integration readings. In experiments
on most targets, the integrated current will change as the biases are raised (representing
the successful suppression of errant electrons). However, this was not the case for the
current D70 ice target. Instead, the integrated current remained constant as biases were
raised. This indicates that no secondary electrons were being emitted, and can be
understood in light of the high ionization energy of ice as compared with typical metallic
:argets. This result is in agreement with the observations of [And77]. Based on this
finding, the error in beam current integration was assigned the value of 1% (the accuracy

of the beam current integrator).
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2.2.3 The High Purity Germanium Detector

In order to detect the D( p,y)>He y-rays in the current experiment, we opted to use
a coaxial High Purity Germanium (HPGe) detector from EG&G ORTEC (Oak Ridge,
TN). An HPGe detector is basically a p-n junction with a large reverse bias applied,
much like a typical solid state surface barrier detector. The main difference is that
significantly larger active volumes are required to detect y-rays than are required to detect
charged particles. The HPGe detector that was used in the current experiment had an
active volume of 576 cm3. This yielded an efficiency of 128% for a 1.33 MeV y-ray
relative to that of a 3" x 3" Nal(Tl) detector (for an on axis source distance of 25 cm). At
this energy, the resolution of the HPGe detector was measured at 2.2 keV, a value which
is perhaps a factor of 40 better than what one might obtain with a Nal(T1) scintillator
[Kra88].

The decision to use a HPGe detector instead of a Nal(T1) scintillator in this
experiment was based primarily on the superior resolution of the HPGe detector. By
stopping the incident beam in the target, a range of outgoing y-ray energies is created
which leads to a broadening of the full energy peak in the spectra by ~50 keV. The high
intrinsic resolution of the HPGe, which turns out to be about 4 keV for the D(p,y)3He v-
rays (see chapter 3), is much less than this width, and thus allows a direct observation of
the energy dependence of the D(p,y)3He reaction. This aspect of an HPGe detector was
deemed important enough that the possible higher efficiency which might have been
obtainable with a low cost, large volume, NalI(T1) scintillator was not pursued.

The physical set-up of the HPGe detector is as shown in figure 2.4. The
cylindrical canister containing the detector was slipped into a quadrated Nal(T1) annulus

for the purpose of cosmic-ray rejection. This system was then surrounded by 4" of lcad
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on all sides to further reduce the cosmic ray background. The chassis holding the
detectors and lead was mounted securely on several layers of rubber foam, to help protect
against microphonics, and bolted to a moveable cart which allowed laboratory angles of
0=0-120" to be reached. In order to reduce thermal noise, the HPGe detector was
maintained at 77 K throughout operation by means of a thermal connection to a large
liquid nitrogen dewar. The bias applied to the HPGe was +3000 Volts, while each of the
four Nal(Tl) segments had their photomultiplier tubes biased to -1400 Volts. The

following section describes the electronics used to process signals from the detectors.

2.3 Electronics

Figure 2.6 shows a schematic diagram of the electronics set up that was used in
this D(P,y)3He experiment. The goal of the electronics set up was to perform on-line
operations on the raw signals from the HPGe and the Nal(Tl) detectors in order to
prepare them for entry into the MicroVAX computer. These on-line operations included
amplification of signals, setting discriminator levels, and sorting according to the spin
state of the incident proton beam (i.e. spin "up" or spin "down"). Since the data were
taken in event-by-event mode, and dumped to magnetic tape for storage, further data
analysis operations could be undertaken off-line at a later date.

In particular, there were three specific goals of the electronics set up: the first was
io take the HPGe and Nal(Tl) iinear signals and prepare them for entry into ADC's
{Analog to Digital Converters), which create the desired energy spectra (i.e. histograms
of counts vs. y-ray energy); the second goal was to extract the HPGe and Nal(Tl) scalar
signals so that they could be viewed on-line; and the third goal was to process linear and

scalar signals from the spin state controller in order to keep track of the spin state of the
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incident beam. The details of the electronics set-up are illustrated in figure 2.6. For
simplicity, this schematic diagram neglects such devices as inverters and level adapters
which performed the function of preparing the proper signal shape (e.g. NIM or TTL) for
the logic units that were used.

Following the outhine in Figure 2.6, the HPGe signal is first pre-amplified and
then fanned out. These two operations are accomplished inside the HPGe canister.
These two signals are then sent on low loss cables from the target room to the control
room for further processing. One of these signals is treated as a linear signal, and it is
sent through a spectroscopy amplifier for shaping and timing before being sent to an
ADC. The other HPGe signal is treated as a tirning signal, and it will be used to gate the
linear signal into the ADC. The raw timing signal is sent through a timing filter amplifier
for shaping and amplification, and then on into a discriminator for the purpose of setting
an energy threshold (~500 keV in the current experiment). The resulting signal is then
used to created the gates for the two ADC's used, TUNL ADC's #10 and #12. ADC #10
handles the HPGe, TAC and spin signals, while ADC #12 handles the 4 Nal segments).
Notice that the gates are created using two gate generators in tandem. The first unit is for
setting the signal delay (for timing purposes), and the second is for setting the gate width
(~10 ps).

As previously mentioned, the HPGe detector is surrounded by four Nal(Tl)
segments which serve as an anti-coincidence shield for cosmic ray rejection. Each
segment has its linear and timing signals handled separately so that four separate energy
spectra can be created. In particular, each Nal(T1) signal is fanned out into a linear and
timing signal. Tre linear signal is amplified and shaped, and then sent to the ADC. Itis
important to note that all the ADC's in this experiment are gated by the HPGe signal. In

other words, whenever the HPGe discriminator fires (1.e. it receives a signal above
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threshold), all the ADC's are read. The NaI(Tl) timing signals are for the specific
purpose of creating a TAC (Time to Amplitude Converter) spectrum. As Figure 2.6
shows, the timing signals from each of the segments are amplified, subjected to an
energy threshold, and then summed together in a fan-in. The TAC is started with a
discriminator signal from the HPGe and stopped with a discriminator signal from any one
of the Nal(Tl) segments. Thus, a peak in the TAC spectrum indicates a coincidence
between the HPGe and the Nal(Tl) annulus.

A coincidence between the HPGe and Nal(Tl) annulus represents one of two
possible events: either it is a single y-ray (or cosmic ray) which has deposited some of its
energy in the HPGe and some of its energy in the annulus, or, it is two unrelated y-rays
(or cosmic rays), one of which has deposited its energy in the HPGe and the other of
which has deposited its energy in the Nal(Tl) annulus. While the former event represents
a real correlated coincidence, the latter event represents an accidental coincidence which
must be accounted for. By looking at the off-TAC peak background, we can get an idea
of what the accidental coincidence rate is. This was the primary purpose of the TAC
spectrum 1n this experiment. As it turns out, the very low count rates encountered in the
current experiment make the accidental coincidence rate negligible as compared with the
real coincidence rate.

The spin state created by the ABPIS is controlled by the TUNL spin-state
controller. This allows a fast spin flipping procedure to be undertaken by setting the

Ll o

spin-state controller to flip the incident beam spin state ("+" or "-") every 100 ms. The
time rate of the spin flip 1is controlled by the VAX clock. Approximately 7 ms are
required in order to completely "flip"” the spin state that the ABPIS creates. Thus, we
"blank" (i.e. veto) the ADC gates for 7 ms after each spin flip command is given. As

before, the two gate generators in tandem (that are used to create the veto signal) allow,
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respectively, a variation of the signal delay and signal width. This veto procedure would
thus be expected to create a 7% "electronic” dead time in the ADC (i.e. a dead time thai
we create via our electronic set up). In practice, this dead time was significantly more, as
will now be discussed.

Most runs concerning the absolute cross section were done with unpolarized
incident beam, and hence the spin flip electronics discussed above were disconnected. As
a result, there was no "electronic” dead time present. The quoted efficiency for the HPGe
detector, as presented in Chapter 3, is given for the case of no electronic dead time.
However, when running with polarized beam, a large electronic dead time (associated
with the spin flip electronics) was present. Rather than the expected 7% dead time, a
dead time of 25% was encountered. This was due to an anomaly associated with the
Phillips fan out units. As it turned out, if more than one output was taken from a given
unit, a change in signal shape occurred which was significant enough so as to affect the
operation of the ORTEC ADC's being used. As discussed in Chapter 3, absolute cross
sections measured using polarized beams had to take this extra electronic dead time into
account. The exact magnitude of this dead time (25%) was easily determined by simply
monitoring count rates with and without the spin flip electronics connected.

The beam current mntegration (BCI) is fed to the TUNL "borer” for the purpose ¢
presetting each experimental run to a given amount of integrated charge (i.e. 2 given
number of protons incident on the target). In order to keep track of the amount of beam
in each spin state, the BCI is also fanned out and sent to a number of different logic units.
One logic unit keeps track of coincidences between the "+" spin state and the BCI; one
logic unit keeps track of coincidences between the "-" spin state and the BCI; and the final
logic unit keeps track of coincidences between the veto signal and the BCI. This gives us

a breakdown of how much beam we have integrated in each of the three states: "+", "-",
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and veto. The spin state of the incident proton beam is recorded for each ADC gate by
means of a coincidence requirement (using the linear gated stretcher) between the HPGe
discriminator and the "+" spin state. The so-called "spin" spectrum which is created will
give counts in a high channel when the beam is in the "+" spin state and will give counts

in the zero channel when the beam is in the "-" spin state. This information can be used
to sort the y-ray data according to the incident beam spin state.

The electronics modules that were used 1in this set up were all from ORTEC, with
the following exceptions: the logic modules were from Phillips Scientific; the dual gate
generators were from LeCroy; and the scalar units were from Kinetic Systems. Some
particular model numbers are as follows. The ADC's were EG&G ORTEC Model
AD413A CAMAC Quad 13 bit ADC's, where, as previously described, one gate strobes
the four inputs. The spectroscopy amplifiers used were Ortec 672's (for the HPGe) and

Ortec 452's (for the Nal(T1) detectors). The other amplifiers used were Ortec 572's.
2.4 Computer Interface

The digiized ADC signals were fed into a CAMAC crate controller which was in
turn connected to a Microprogrammed Branch Driver (MBD). The MBD served as the
interface between the electronics set up and the TUNL MicroVAX 3200 computer.
Approximately every two seconds the data buffer in the MBD would fill up and it would
flush to the MicroVAX. The software running on the MicroVAX was the TUNL XSYS
data acquisition package, and it allowed us to view the raw data as y-ray spectra (i.e. as
histograms of counts vs. ADC channel number). Using this data acquisition package,
sorting algorithms were written in order to perform the necessary gating procedures, and

to create the desired coincidence spectra. In addition to on-line viewing capability, the
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data was also stored on magnetic tape in an event-by-event mode. This allowed the
possibility of off-line re-sorting of the data at a later date.

In the following chapter, the raw spectra that were acquired will be presented, and
the techniques for extracting the o(6,E), Ay(8,E), and Py(8) observables will be

discussed.
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Chapter 3

Data Analysis

The D( f),'y)3He energy spectra acquired with the HPGe detector in this
experiment were thick target yield y-ray spectra which resulted from stopping an
Ep(1ab)=80 keV beam in the target. The goal of this experiment was to use these thick
target yields to extract the polarized and unpolarized observables of the D(p,y)3He
reaction. In particular, the experimental y-ray yields acquired with unpolarized incident
beam were used to calculate the cross section as a function of angle and energy, ¢(8,E),
while the v-ray yields acquired with polarized incident beam were used to calculate the
vector analyzing power as a function of ar;gle and energy, Ay(6.E). One D(p.Y)3He
observable that was also extracted in the current experiment, but is not mentioned in this
chapter, was the y-ray polarization, Py(6). All the details of the P,(8) measurements will
be described in Chapter 4.

The process of extracting the cross section and analyzing power observables from
the raw spectra was carried out using three separate and uncorrelated data analysis
methods. The first method involved simply calculating the observables using the
unaltered D(H,y)3He thick target yields. This method does not attemnpt to extract the
energy dependence of the observables, but only gives the results for the total energy
region Ep(1ab)=80-0 keV. The next two data analysis methods took advantage of the high
HPGe resolution to actually extract the energy dependence of the observables. The first

of these methods, hereafter referred to as the binning analysis, involved binning the
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acquired thick target spectra into 7 separate energy regions (i.e. Ep(1ab)=80-70 keV, 70-
60 keV, etc.), and then using these yields to calculate the observables for each energy
region. The second method involved a rigorous deconvolution of the raw thick target
yield spectra. In this procedure, the intrinsic and kinematic response of the HPGe
detector were removed from the spectra, thus allowing a direct extraction of the energy
dependence of the yield. In this manner, the energy dependence of the observables could
be obtained. While this deconvolution analysis is ostensibly more exact than the binning
analysis, it has the limitation that model dependent assumptions are required to carry 1t
out. For this reason, the deconvolution analysis and the model independent binning
analysis complement each other.

This chapter begins with a discussion of the raw spectra acquired, and then moves
on to discuss each data analysis method in detail, the goal of which is the extraction of the
6(6,E) and Ay(B,E) observables. The final results are presented and discussed in

Chapter 5.

3.1 Raw Energy Spectra

The raw D($,y)3He energy spectra in this experiment were acquired with the
HPGe detector as shown in Figure 2.4. A quadrated Nal(T1) annulus, which surrounded
the HPGe, was used to veto cosmic rays and Compton scattered events, and was also
operated as a Compton polarimeter for the purpose of measuring Py(6) (see Chapter 4).
Figure 3.1 shows a typical D(.y)3He energy spectrum acquired with the HPGe at a lab
angle of 90°. This spectrum was acquired by stopping an Ep(lab)=80 keV proton beam in

a D70 ice target, and observing the y-rays which resulted. The energy calibration of
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Figure 3.1: Typical D( 13,7)3He spectrum acquired with the HPGe detector, showing (a)
the full response and (b) a blow up of the full energy peak.
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the x-axis (in keV/channel) was obtained using the energies of known background lines
such as radiothorium (2.615 MeV) and potassium-40 (1.460 MeV). Tests using a 96Ga
source (see section 3.2) have shown that the energy calibration, from E=1.2-48 MeV,
can be expected to be linear to within 0.5% (i.e. a calibration in keV/channel derived at
1.1 MeV should be within +0.5% of that value at 4.8 MeV). Based on a typical
calibration of 0.8 keV/channel in an §K channel spectrum, it can thus be estimated that thc
absolute energy scale at 5.5 MeV might be in error by as much as 20 keV. We were able
to correct for this error to within 1 keV by realizing that the highest possible energy -
ray (which can be calculated) lies midway down the sloping high energy edge of the full
energy peak. Please see section 3.4 for further discussion of this topic.

Figure 3.1a shows the full response of the HPGe detector to the 5.5 MeV y-rays
from D(p,y)3He. This spectrum represents the data accumulated in 70 runs, each one
tékjng about 40 minutes. In constructing the summed spectrum, each individual run was
corrected for gain shifts by monitoring the position of the known background lines
mentioned above. Furthermore, in order to better show the full HPGe response, this
spectrum has not been vetoed with the NaI(T1) anticoincidence shield. The peak on the
far right (at 5.5 MeV) 1s the so called full energy peak which represents complete
absorption of the incident y-ray energy by the HPGe detector. Moving to the left (lower
in energy), the next two sharp peaks are the first escape peak, at 5.0 MeV, and the second
escape peak, at 4.5 MeV. These peaks represent, respectively, the loss of one or two 511
keV photons from the HPGe. These 511 keV photons arise when, during a y-ray
interaction process, a pair-produced positron (which has lost all of its kinetic energy)
annihilates with an electron. The Compton continuum in Figure 3.1a starts with the

visible Compton edge at 5.25 MeV and goes on down towards zero energy. The
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relatively flat background on the high energy side of the full energy peak is due primarily
tO COSmIC rays.

Figure 3.1b shows a blow-up of the full energy peak. This spectrum has been
vetoed with the Nal(Tl) anticoincidence shield in order to eliminate the cosmic ray and
Compton backgrounds. The shape of this full energy peak is due to a convolution of the
HPGe response function with the D(b’,'y)3Hc yield function. The large width is due to
the fact that this was a thick target yield. In other words, the process of stopping the
incident beam in the target created a range of incident proton energies (80-0 keV), and this

in turn created a range of outgoing y-ray energies. This can be seen by the following:

Ey=Q+ SEp 3.1

This equation states that the measured y-ray energy is approximately equal to the Q-value
plus the center-of-mass energy, which in this case 1s 2/3 times the laboratory proton beam
energy. The exact form for this relationship, derived using conservation of relatvistic
energy and momentum, will be discussed later. Using the approximate relationship of
equation 3.1, we can see that for E(1ab)=80-0 keV, we expect E,=5.49-5.54 MeV. The
sloping yield on the low energy side of the full energy peak in figure 3.1b is due
primarily to the rapidly decreasing cross section with decreasing beam energy (but 1s also
affected somewhat by the changing target thickness as the beam energy decreases).

The anticoincidence procedure between the HPGe and the Nal(T1) shield was
performed on-line by means of computer software. For every HPGe signal received
above threshold, the Nal(Tl) spectra were also checked. A simultaneous count in the

HPGe and a Nal(T1) detector indicated a correlated coincidence (accidental coincidences
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were negligible). Figure 3.2 below shows a typical spectrum for one of the Nal(Tl)
shield segments. The HPGe was at 6),5,=90" when this spectrum was acquired.

The Nal(Tl) segments were shielded so that they did not directly see the D>O
target. Only secondary scattered events from the HPGe, in addition to natural
background radiation, made it into the Nal(T1) segments. The cutoff around 200 keV is
the energy threshold of the detector, and the small peak (barely visible) at around 500 keV

results from the 511 keV photons escaping from the HPGe. This peak was used to

energy calibrate this spectrum.
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Figure 3.2: A typical Nal(Tl) spectrum from one of the four shield segments.

3.2 Observables Measured

This section discusses the D(p, )3He observables that were measured in this

experiment: the differential cross section, 6(6,E) (and the related differential S-factor,
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S(6,E)); and the vector analyzing power, Ay(8,E). A discussion of the y-ray

polarization, PY(O), measurements 1s deferred until Chapter 4.
3.2.1 Differential Cross Section and S-factor

The laboratory differential cross section for a nuclear reaction, as a function of

laboratory detector angle, 8),p, and laboratory beam energy, Ep, is defined as follows:

Y(8),.E )

=2 P (3.2)
(D)(P)(ed<2)

c’(elab’Ep)
In Equation 3.2, Y(B1ap.Ep) is the detector yield (typically the full energy peak yield is the
one of interest), D is the number of deuterons per cm? in the target (i.e. the deuterium
areal density), P is the number of protons incident on the target, and €d€2 is the absolute
efficiency times solid angle of the detector (only measured for the full energy peak in this

experiment). The differendal cross section is then given in units of cm?2.
Deuterium Areal Density

The deuterium areal density (D) in equation 3.2 can be calculated from the known

stopping cross section, STP(Eyp), for protons on D50 ice as follows:

D=dD(E, ) = 2dEp (3.3)
- P STP(E,)’ o
where dD(Ep) is the differential deuterium areal density at energy Ep, dEp 1s the

differential energy loss of the proton beam (at energy Ep) in the D70 target, and the factor
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of 2 is present because there are 2 deuterium atoms in every DO molecule. Since the
stopping cross section is generally defined in units of eV per 1013 molecules per cm2,
dEyp (the energy width under consideration) must be given in units of eV in order to get D

in units of 1015 deuterons/cm?2.
Stopping Cross Section

The stopping cross section, STP(Ep), for protons on D70 ice has been measured
twice in the low energy region, both tmes by Wenzel & Whaling [Wen52, Wha52]. The
stopping cross section for deuterons on D>O ice has also been measured once in the low
energy region by Andrews & Newton [And77]. Figure 3.3 shows these STP(Ep) values
plotted vs. Ep, whércby the data of [And77; have been converted to proton stopping
values by using the relationship Ep=Ey¢/2.

Because the error bars for the data points of [Wha52] in Figure 3.3 were not
published, theyl have had error bars assigned to them which are equal to the percentage
error of the data of [Wen52] (a subsequent measurement by the same authors). The solid
line in Figure 3.3 is an empirical fit the data of [Wha52] and [Wen52] using the form

derived by Anderson and Ziegler [A&Z77]:

Ep<10keV: STP(Ep) =Ci \/Ep (3.4)

1
Ep>10keV: STP(Ep = — 1

+
.45
C2Ep (C3/Ep)1n(1+C4/Ep+C5Ep)
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Figure 3.3: The STP(Ep) data for protons stopping on D20 ice. The solid curve is an
empirical fit to the data of [Wha52] and [WenS52] using the form of Equation 3.4.

The empirical form of equauon 3.4 was derived by taking into account both
theoretical considerations (concerning electronic stopping) and experimental
considerations (1.e. fits to all stopping cross section data acquired as of 1977). A
constraint was applied to the constants so as to have a continuous curve at 10 keV. The
values of the parameters extracted by fitting Equation 3.4 to the [Wha52] and [Wen52]
data were: C1=4.733, Cp=3405, C3=594, C4=0.0084. Based on the spread of the
[Wha52] and [Wen52] data, a systematic error of 6% was assigned to this curve.

The data of [And77] could not be simultaneously fit to Equation 3.4 along with
the other two sets of data, and thus it was not included in the current analysis. The fact
that the [And77] data set is about a factor of 2 lower than would be expected based on the

other two sets of data indicates one of three possibilities: the energy dependence derived
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by [A&Z77] 1s wrong; there 1s an unknown systematic error present in the data ot
[Wha52] and [Wen52]; or there is an unknown systematic error present in the data of
[And77]. The first possibility does not seem likely based on the fact that there is no
known reasca why the energy dependence should change so suddenly around 20 keV.
Although the theoretical basis of Equation 3.4 is centered entirely on electronic stopping
effects, the neglect of nuclear stopping effects is only thought to be a 1-2% effect at
Ep=10 keV [A&Z77], and thus cannot account for the factor of two anomaly which arises
in the neighborhood of this energy. The second possibility seems unlikely as well, due to
the near corroboration of the [Wha52] and [Wen52] data sets. In light of these
arguments, the third possibility (a systematic error in the data of [And77]) 1s assumed.
As will be discussed in section 3.5, the neglect of this data is not expected to strongly
affect the extrapolation of resuits to zero energy. It should also be pointed out at this
juncture that empirical stopping power curves extrapolated from higher energy data (e.g.
see the TRIM-89 curve in [Mit90]) do not fit any of the low energy data, and thus are not
used.

One important point that is worth emphasizing is that the authors of the previous
low energy D(p,y)3He experiment [Gri63] did not use the same set of STP(Ep) data that
we are using in the current experiment. In fact, even though the [Gri63] experiment used
a D20 ice target, the [Gri63] authors used STP(Eyp) data for H0 vapor instead of D20
ice. Their assumption was that the stopping cross section for HpO vapor should be
equivalent to that of D20 ice. However, our current understanding of low energy
stopping cross sections [Thw92, Thw85] now indicates that this is not true. In fact, a
difference in stopping cross section of 10-15% should be expected for water in the vapor
and solid phases. T .is effect, whereby the DO ice stopping cross section will be 10-

15% lower than the HpO vapor stopping cross section, is referred to as the "physical
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state” or "phase” effect. A theoretical description of the physical state effect can be found
in papers by Mitterschiffthaler [Mit90] and Xu [Xu85]. The fundamental basis of this
effect is that the electrons are more tightly bound in the ice phase than they are in the
vapor phase, thus making the stopping cross section (which depends primarily on
inelastic electron-proton collisions) smaller in the ice phase. As a result of neglecting this
effect (which is considered fairly well established for the case of protons on D0 ice
[Thw92,Thw85]), the [Gri63] S-factor results are expected to be artificially high by 10-
15%. This will be discussed further in Chapter S.

HPGe Efficiency and Solid Angle

The full energy peak efficiency times solid angle (ed€2) of the HPGe detector is
another quantity that is needed for the absolute cross section. The technique used to
measure this quantity involved placing a radioactive source of known intensity at the exact
location of the target, and then, with the HPGe placed in the standard geometry, acquiring
a y-ray spectrum. The radioactive source that was used was the QCD-1 mixed y-ray
standard from Amersham [Am94]. This source emits 11 y-ray lines from &8 keV 1o
1.836 MeV, whereby each line has an absolute full energy peak calibration (in counts per
second) which is traceable to the National Institute for Standards and Technology
(NIST). By analyzing the y-ray spectrum acquired with this source, it is then possible to
obtain the absolute £dQQ value for the full energy peak of the HPGe detector at Ey=1.836
MeV. Since the Cu target backing and Al target chamber (present during the actual
experiment) were included in this ed(2 test, y-ray absorption effects are automatically

taken into account.
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As was discussed in section 3.1, the y-rays from the D(p,y)3He reaction have
energies in the region around 5.5 MeV, and thus the absolute edQ2 value at 1.836 MeV
must be extrapolated upwards. This was accomplished using a 66Ga source [Ald93]
which puts out 26 strong y-ray lines from E4=0.83-4.81 MeV. This source, which has a
half-life of only 9.5 hours, was created in the TUNL lab by the 63Cu(c,n)66Ga reaction
using 18 MeV o-particles. Since the relative intensity of the 66Ga y-ray lines are well
known [Ald93], a relative £d$2 curve can then be obtained from the acquired y-ray
spectra. This relative €dQ2 curve is then normalized to an absolute scale using the known
absolute £d2 value at 1.836 MeV from the QCD-1 source. The result for the absolute
£dQ curve (for the experimental set up shown in Figure 2.4) is shown in Figure 3.4

along with the normalized $6Ga data.
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Figure 3.4: The absolute (full energy peak) €d) data for the HPGe detector in the
configuration of Figure 2.4. The solid line is an empirical fit to the data using equation

3.5.
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The data shown in Figure 3.4 was acquired for a geometrical set up similar to that
in Figure 2.4 (actually, the same, except that the HPGe lab angle was 60°, not 90” as in
the Figure). The source was located at the position of the D70 ice target (9.06" away
from the HPGe on axis). The empirical curve shown in Figure 3.4 has the standard
exponential form as suggested by [Kro89]. In particular, Equation 3.5 gives the form

that was used:

edQ2 = Cq (Cy + C3 exp(-C4Ey)) (3.5)

The values of the pardmeters extracted from Equation 3.5 are given in the table below:

Extracted Parameters for Equation 3.5

Ci Ca Cs Ca

.000401 £ .000035 29.18 £ 0.48 101.07 £ 3.46 .000993 = .000036

Table 3.1: Parameter values, for Equation 3.5, obtained by fitting the £d€2 data shown in

Figure 3.4

Using the curve of Equation 3.5 along with the parameter values of Table 3.1, it
is possible to calculate the expected £d€2 for the full energy peak of the HPGe at Ey=5.5
MeV. Since the curve is relatively flat at the higher energies, this extrapolation is viewed
with considerable confidence. The result is: €d€(5.5 MeV) = 0.0119 + 0.0007. This
value, the only one of interest for the current experiment, must be corrected for the slight
difference in y-ray absorption (of the target and target chamber) between 1.836 MeV and
5.5 MeV (a 3% increase). It must also be corrected for the fact that the beam spot in the

D(p,y)3He experiment was somewhat larger than the small "hot spot" on the QCD-1
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source. This was accomplished by means of a Monte-Carlo simulation (MONTE) in
which the exact target-detector geometry was reproduced, and in which the beam spot
size could be arbitrarnily varied to gauge the effect of its size. The result was a 3%
decrease in efficiency. Thus, it is seen that these two small efficiency corrections
(corresponding to energy dependent absorption effects and finite target size) cancel out,
leaving us with the ed€2 value given above.

By calculating the solid angle at the front face of the HPGe for the given geometry
(dQ2=0.101), and calculating the y-ray absorption effects (in the Al and Cu), the £d€2(5.5
MeV) value of 0.0119 derived above can be shown to indicate an intrinsic photopeak
efficiency for the HPGe of €=0.13 (i.e. 13% of the y-rays entering the front face of the
HPGe end up in the photopeak). This value for € agrees with a value derived from a
Monte Carlo simulation of the target-detector geometry using the EGS4 code [Nel85] (see
Appendix A). Because of this agreement, the measured ed€2 value (which is used in
subsequent calculations) is viewed with considerable confidence. It must be stressed that
the value for the photopeak efficiency, &, is dependent upon the source-detector distance
[Gre66]. For a source very far from the detector, the y-rays incident on the front face of
the detector are all parallel, and this will raise the value of € somewhat. For a source very

close to the detector, € will be somewhat lower.

Dead Time Corrections

Because of the very low count rates in the current D(p,y)3He experiment (total
HPGe count rate ~60 counts/sec), the observed computer dead time was less than 1% at
all imes, and thus completely negligible. However, when running with polarized beams,

another source of dead time was present that was non-negligible. This other source of
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dead time was due to an anomaly in the spin-flip electronics whereby an effective
electronic dead ume of 25% was present. The source of this dead time is discussed in
section 2.3. As a result of this dead time, the absolute cross sections measured with
polarized beam were calculated using an effective efficiency times solid angle of:
£dQ(5.5 MeV) = (0.75 x 0.0119) = 0.0089. It should be stressed that this electronic

dead time was present only for the polarized runs.

Counting The Number of Protons on Target

The final quantity that is needed to calculate an absolute cross section, as defined
by equation 3.2, is the number of protons incident on target, P. This quantity is
determined by integrating the beam current on target, and is discussed in detail in Chapter

2. The quoted accuracy for this procedure is estimated at 1% (as discussed in Chapter 2).

Absolute Cross Section and S-factor

Given an experimental D(p,y)3He yield, equation 3.2 can now be used to
calculate an absolute 6(6) (i.e. a differential cross section with a correct absolute scale).
In future discussions, the so called "statistical error” of the cross section will refer to the
error on the yield only, whereby the so called "systematic error” will refer to the
contributing errors of the other parameters which determine the absolute value of the
cross section. The systematic error can be calculated by adding the errors associated with
the beam current integration (Al), the £d€2 value (Aed2), and the stopping cross section
(ASTP) in quadrature. Table 3.2 shows the component systematic errors which lead to a

total estimated systematic error of 9%.
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Systematic Error Components

Al AedQ) ASTP ATotal

1% 6% 6% 9%

Table 3.2: The percentage systematic error components shown along with the total

percentage systematic error, ATotal, for the cross section and S-factor.

As discussed in Chapter 1, the cross section, 6(0,E¢n), and the S-factor, S(6,Ecm), are

related by the following equation:

SB,E_ )
6(0,Ecm) = _E—cm -2 (Eem) (3.6)

cm

In this equation, the Sommerfeld parameter, N(Ecm), is given as follows [Rol88]:

21 (Bem) = 31.29-ZyZp | = 22:639

Ecm ) VECID

The Zj and Z; parameters in Equation 3.7 are the charges on the proton and deuteror.

(3.7

respectively, | is the reduced mass of the deuteron-proton system, and E¢py, 1S the center

of mass energy in keV.

Angular Distributions

In acquiring angular distributions for o(8), and the related S(6), corrections must
be made to the experimental yields at each laboratory angle in order to normalize the
results properly. One such correction is due to varying y-ray attenuation with HPGe lab

angle (8). This can be seen by examining Figure 3.5. Figure 3.5 shows the geometry of
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the Cu disk and DO ice target arrangement from a top view (only a small section of the
Cu disk is shown). As the HPGe lab angle is changed from 45° to 90°, as shown in the
figure, the y-ray must traverse a thicker portion of the Cu disk. In particular, while the y-
ray at 45° traverses a thickness (t) of 0.0625" of Cu, the y-ray at 90° must traverse a
thickness t = 0.0625"/cos(45°) = 0.0884". The percentage attenuation (AT) of a y-ray

beam is given by the relation
AT =1-e#, (3.8)

where |l is the y-ray attenuation coefficient for Cu. Thus, if t; is the thickness at an
HPGe angle of 45° (t; = 0.0625"), and ¢ is the angle difference away from 6 =45° (¢ =

6 - 45%), the percentége attenuation (for the Cu disk) is:
AT = 1 - e-}o/cos(9), 3.9

Additional 7y-ray attenuation occurs in the Al target chamber, but its value is angle
independent, and thus need not be included in relative HPGe angle corrections.

Since the absolute efficiency measurement was done at © = 60°, all yields taken at
other HPGe angles had to be corrected for the different y-ray attenuation. The exact
correction factor was calculated using a Monte Carlo simulation program (MONTE)
which handled the problem in 3-dimensions and took into account the effect of the finite
beam spot size. The thickness of the D50 ice target, although known from observation to
be less than 1mm, was not known to a high degree of accuracy, and was thus neglected
in the analysis (1.e. in calculating the angle ¢). The justification for neglecting this

thickness is simply that the HPGe detector is very far away as compared with t,, and thus
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Figure 3.5: The geometry of the Cu disk and D70 ice target, showing the direction of y-

rays leading to HPGe lab angles of 45° and 90° respectively.

the y-rays traverse essentially parallel paths through the Cu disk, irrespective of their
point of origin. Clearly, then, the y-ray attenuation is independent of the thickness of the
ice target.

When measuring angular distributions, there is one other potentially important
correction factor that must be considered: target thickness change (as it relates to
changing D(p,y)3He yield). Since there are no charged particles of adequate energy

coming out of the D(p,y)>He reaction (for Ep(1ab)=0-80 keV) typical target thickness
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monitoring with a solid state detector is not possible, and thus the only option is to simply
monitor the y-ray count rate in order to gauge changes in target thickness. Fortunately,
no serious problems with DO ice target deterioration were encountered. For the majority
of expenimental runs at a given HPGe angle, the y-ray count rate remained constant with
time. The D(p,y)3He count rate was monitored by summing the full energy peak at given
time intervals. A typical graph of the count rate vs. time is shown in Figure 3.6. In the
event that the count rate started falling (i.e. the target began deteriorating) the affected
runs were thrown out, and a new ice target was made. Data acquisition then continued
with the new ice target. It was found that an ice target about 0.5mm thick would last

several days under about 30pLA of proton bombardment.
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Figure 3.6: The D(p,y)3He count rate vs. time for an HPGe lab angle of 60°. The count
rate is given in terms of total counts per 2.2 hours of run time. The integrated beam on

target, in this case, 1S a constant function of time.

Other potential correction factors in measuring angular distributions include

computer dead time corrections and accidental coincidence corrections. Both of these
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factors were negligible in the current D(p,y)3He experiment. Computer dead time
corrections must be made when the computer dead time is different at different times in an
experiment. However, as mentioned before, the low HPGe y-ray count rate (~60 counts
per second above threshold) lead to a computer dead time that was consistently lower than
1%, and thus negligible. Accidental corrections must be made when the background
count rate in an anti-coincidence shield (the Nal annulus in the current experiment) causes
"good" counts in the main detector (the HPGe) to be accidentally vetoed. Again, the low
Y-ray count rate caused the accidental coincidence rate to be negligible. This was seen by
comparing the background count rate in the TAC spectrum (see Chapter 2) to the peak

count rate in the TAC spectrum.

3.2.2 Vector Analyzing Power

The D(p,y)3He yields measured with polarized incident beam allowed the
extraction of the vector analyzing power, Ay(6). The expression relating the unpolarized
yield (Yo(60)) and the polarized yield (Y'(8)) is [Sey79]

Y'(0) = Yo(0) [1+ P, - A(8)], (3.10)

g

where l5§ is the vector polarization (see Equation 2.1), and A is the analyzing power
vector. In the current experiment, the proton spin quantization axis (g_,) was aligned in
the "up" direction, which, according to Figure 2.1, is the —y direction. Thus Equation

3.10 becomes

Y'(6) = Yo(8) [1 — P.yAy(8)], (3.11)
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where P_y = N,—N_ (see Equaton 2.1), and, as described in Chapter 2, Ay and Az are
zero. The Ay(e) observable was measured by allowing the polarization of the incident
beam, P_y, to fast spin flip between two spin states: Pty was a polarization state aligned
parallel to & (and thus N4—N_ has a positive value); and P:y was a polarization state
aligned anti-parallel to & (and thus N,—N_ had a negative value). With this information,

and Equation 3.11, the following relation for Ay(8) is derived,

Y (6)-Y"(H)

Ay(8) = ,
v(©) Y'(G)Pjy—Y*(e)P:y

(3.12)

where Y*(6) and Y-(8) are the D(P,y)3He yields associated with an incident beam in a
Pt or P:y spin state respectively. It should be stressed that the parameter P:y in
Equation 3.12 has a negative value, while Pty has a positive value. Taking this into

account, we can re-write Equation 3.12 in the more familiar form:

Y (0)-Yt(0)
- + + -
Y (6)}P_y’+Y <e)lp_y‘

Ay(®) = (3.13)

Perhaps the greatest advantage of measuring analyzing power observables (as
opposed to measuring only the polarized cross section) is that, as shown in Equauon
3.13, they depend on the ratio of yields, not on the absolute magnitude of the yields
themselves. Thus, y-ray attenuation, target thickness changes and other normalization
problems, all of which are potentially important in cross section measurements, should

have no effect on analyzing power measurements.
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3.2.3 Gamma-ray Polarization

In addition to the 6(8) and Ay(8) observables, the D( p,y)3He y-ray polarization
observable, Py(8), was also measured. To better describe the details of this complex
measurement, a full chapter (Chapter 4) is dedicated to its discussion. Please refer to that

chapter for more details.
3.3 Analysis With Thick Target Yields

The accumulated D( p,y)3He y-ray spectra, such as the one shown in Figure 3.1,
included all energies from Ep(lab)=80-0 keV, and were acquired for a total of six
laboratory angles: 0°, 30°, 60°, 90°, 105° and 120°. One analysis that was done with
these accumulated spectra consisted of summing the number of counts from the 2nd
escape peak on up through the full energy peak. The cosmic background contnibution
was measured in a separate run and subtracted. The final background-subtracted y-ray
yield ther corresponded to the energy region Ep(lab)=80-0 keV. This yield was then
used to calculate o(6) (on a relative scale), Ay(B), and P\(B) (see Chapter 4). The results
for 6(6) and Ay(6) are presented in Chapter 5.

As described in the previous section, corrections were made to account for
changing y-ray attenuation, beam current integration, etc. One additonal correction, not
previously discussed, 1s now described. While most of the experimental runs were done
with a beam-line collimator included, some of the earlier runs were not. The absence of a
beam-line collimator had the effect that the proton beam was focused off-target-center by
~1/4 inch. This caused a slightly different laboratory angle to be seen by the HPGe

detector. In all future analysis (i.e. the binning analysis and the deconvolution analysis),
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the lab angle quoted is simply the weighted average of the different angles involved (i.e.
the angle which is nominally 30° is actually 30.7°). However, in the present thick target
yield analysis, the huge amount of data available leads to the conclusion that an exact
quotation of angle would be more accurate (iLe. the nominal 30° data is presented as 30.0°
and 31.5" data respectively, rather than averaged together). It should be pointed out that
while the HPGe lab angle can be calculated to an estimated accuracy of <0.5%, the large
geometrical half angle of the HPGe (8.3" at the center of the detector) indicates that the

small angle corrections will only be of minimal significance.
3.4 The Binning Analysis

Examining the full energy peak in Figure 3.1b, we can see that the full width is
~50 keV. Since the intrinsic HPGe response function has a resolution of ~4 keV at 5.5
MeV (see section 3.5), it would seem reasonable to assume that we can directly extract
the D(p,Y)3He energy dependence from the spectra by simply dividing the peak into a
series of energy bins, and then using these yields to calculate the observables. The exact
method followed was to divide the spectra into 7 bins based on the laboratory beam
energy of the incident proton. Each of the bins had a width of AEp(lab)=10 keV. Figure
3.8 (next page) snows the full energy peak of Figure 3.1b along with the 7 energy bins.
The first bin goes from Ep(lab)=10-20 keV, the second from Ep(lab)=20-30 keV, and so
forth on up to the top bin, which is Ep(lab)=70-80 ke V.

In order to obtain the energy bins in terms of the actualyray energy, as shown in
Figure 3.8, the relativistic kinematics of the reaction must be worked out in detail. The
reason for this is that the approximate formula of Equation 3.1, which relates Ep(lab) to

Ey, is not of sufficient accuracy to allow the determination of Ey to 0.5 keV. Equation
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3.1 was derived by simply neglecting the 3He recoil, thus assuming that all the energy
available in the center of mass (i.e. Ec;y+Q) goes into the y-ray energy. While this
treatment is adequate for most cases, a more precise value is needed for the present
analysis. By considering exact conservation of relativistic energy and relativistic

momentum in the lab frame, the following expression for Ey is derived:

_(E,+Q) +2Mc*(E, +Q) - E_(E, +2M c?)

= 2E, +Q+M,c? —cosB,[E > +2E M c?)

(3.14)

where Ey, is the lab beam energy, M is the mass of the recoiling 3He particle, Mp, 1s the
mass of the proton, Q is the Q-value of the D(p,y)3He reaction, and By is the lab angle of
the y-ray with respect to the incident beam axis. Under the assumption that Mr02>>Q»Ep,
Equation 3.14 can be seen to reduce to Equation 3.1. Using Equation 3.14, the energy
bins, formulated in terms of Ep, can now be expressed in terms of Ey as shown in Figure

3.7. For the binning analysis, we take 8y=01,p in Equation 3.14.
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Figure 3.7: The D(p,y)3He full energy peak for 61,5=90" shown along with the 7

binned energy regions. This is the same full energy peak that was shown in Figure 3.1b.
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As was pointed out before, the absolute Ey energy scale obtained with low energy
radioactive sources can be in error by as much as 20 keV off at 5.5 MeV. Based in part
on the results of the deconvolution analysis (to be discussed), it is concluded that the
spectrum in Figure 3.7 can be re-scaled to an accuracy of better than 1 keV based solely
on the shape of the full energy peak. The location of the value of Ey which corresponds
to Ep(lab)==80 keV is certain to lie between the peak and the bottom of the high energy
edge of the full energy peak, and the results of the deconvolution analysis suggest a
central location within this region. Thus, the starting point for the binning process 1s to
estimate the location of this Ep(1ab)=80 keV point, and thus set the absolute scale for the
x-axis energy calibration in this manner (recall from section 3.1 that the calibration in
keV/channel is well known). The location of all seven bins then follows from Equation
3.14. Note that the uppermost bin in Figure 3.7 has been widened to include all the data
above Ep(lab)=80 keV (i.e. the y-ray energy corresponding to Ep(lab)=80 keV). The
reason for this is that the process of convoluting the HPGe response function with the
D(p,Y)3He yield has the effect of folding some of the strength from the top bin into the ¥-
ray region corresponding to Ep(1ab)>80 keV. This necessitates widening the top bin in
order to obtain the full strength for the Ep(lab)=70-80 keV region.

Once raw binned yields have been acquired for a spectrum, the known cosmic ray
background can be subtracted. This background is obtained by monitoring an energy
window just above the full energy peak. Another background component that is
considered 1s due to the long, low energy tail of the HPGe response function. Each bin
will necessarily lose some of its strength to the lower energy bins because the HPGe
response function (described in section 3.5) has a small low energy tail. Based on the
analysis described in section 3.5, we can expect a monoenergetic full energy peak to lose

3% of its strength to this tail (for a given energy window). By assuming that each
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channel of the full energy peak in Figure 3.7 has a constant tail of this magnitude, we can
then derive an estimated form for this background contribution. The absolute strength of
this background contribution is obtained by normalizing to the height of the background
on the low energy side of the full energy peak (once the cosmic ray background is
subtracted). The final form for this background is then subtracted from the yields. As
might be expected, this background contribution is negligibly small for all but the lowest
few bins. For example, it is a 20% effect for the lowest energy bin, but only a 7% effect
for the next higher bin, and considerably smaller thereafter.

Once the background corrected yields are obtained, the cross section and
analyzing power can be calculated for each energy bin in the spectrum. After doing this
for all angles, we obtain 6(8,E) and Ay(6,E). In order to obtain the o(0,E) data, it is
necessary to integrate the deuterium areal density (D(E)) over the energy region of interest

in order to obtain the proper number of deuterons per cm? for each bin. In other words,

Ew'

e
° 2dE

D(Ep—Eap) = | dD(E,) = | ——=2—, (3.15)
EJ; - E'!-_, STP(Elab)

where STP(E) 1s the stopping cross section function. The integrated deuterium areal
density for each bin is shown in Table 3.3. A 6% error is assumed for quoted value of D
(as previously discussed). The final results for ¢(6,E) and Ay(8,E) will presented in

Chapter 5.
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Deuterium Areal Density

Bin # Proton lab energy D = #Deuterons/cm?
1 10-20 keV 1.29 x 1018
2 20-30 keV 1.04 x 1018
3 30-40 keV 9.26 x 1017
4 40-50 keV 8.62 x 1017
5 50-60 keV 8.26 x 1017
6 60-70 keV 8.07 x 1017
7 70-80 keV 8.01 x 1017

Table 3.3: Deuterium areal density (D) for each bin in Figure 3.7.

3.5 The Deconvolution Analysis

The goal of the deconvolution analysis was to remove the effects of the HPGe
detector response, and the effects of the changing deuterium areal density, from the raw

spectra in order to directly view the energy dependence of the D( p,y)3He S-factor (i.e.

cross section). The method chosen to perform the deconvolution procedure was that of a
convolution fit to the raw spectra. The steps of this procedure were as follows:

1. Derive a parameterized functional form for the D(p,y)3He yield.

2. Derive a functional form for the HPGe response function at 5.5 MeV.

3. Convolute the yield function and the HPGe response function together, and
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then fit the resulting curve directly to the raw spectra. This will determine the
pararneters in the yield function, and thus will give us a functional form for
the D(p,y)>He S-factor.

The following subsections will describe all the details of the above outline. The
ultimate goal is to apply this fitting procedure to D(P,y)3He spectra obtained with both
unpolarized and polarized incident beams. From the spectra obtained with unpolarized
incident beams, we hope to extract an S-factor as a function of angle and energy, S(6,E).
From the spectra obtained with polarized incident beams, we hope to obtain the analyzing

power as a function of angle and energy, Ay(8).
3.5.1 Parameterized D(f),'y)3He Yield Function

In order to deconvolute the D(p,y)3He spectra (using the present method), it is
necessary to make a model dependent assumption about the form of the yield. In this
manner, we are able to reduce the number of fitting variables to a small number, and thus
have a better chance of obtaining a unique solution. According to Equation 3.2, the

D( p.y)3He yield can be written as follows:

Y (B1ab,E1ab) = 6(B1ab.Elab) (D(Ei1ab)) (P) (ed€2) (3.16)

Since the deuterium areal density (D), the # of protons on target (P), and the efficiency
times solid angle (ed€2) are all known (see section 3.2.1), the only unknown in Equation

3.16 is the cross section 6(B14p,E1ab)-
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As shown in Equation 3.6, the cross section can be written in terms of the S-
factor, S(6,Ecm), where Eqyy=(2/3)Ep(lab) in this case. In order to simplify the analysis,

the following model dependent assumption about S(8,Eqy) is made:
S(8,Ecm) = So(0) + EcnS1(6) (3.17)

In other words, the S-factor is assumed to be linear in the energy region of interest
(Ep(Jab)<80 keV). The Sp(8) and S1(6) are parameters to be determined by the
convolution fit to the raw spectra (section 3.5.3). The assumption of a linear S-factor
seems reasonable based on the wealth of experimental data for low energy, non-resonant,
capture reactions (see [Rol88]), which show that the S-factor is typically slowly varying
with energy, and Lﬁat a linear S-factor usually can fit the data quite well (over a small
energy region). In addition, it should be pointed out that theoretical treatments of the
D(p,y)3He reaction at low energies (see Chapter 6) predict S-factors which are nearly
linear.

Combining Equations 3.6, 3.16, and 3.17, we obtain a final expression for the

parameterized D( p,Y)3He yield:

Sp®)+EmS1(0)

Y (61ab,E1ab) =
ECm

-2 (Eem) (D(Ejap)) (P) (€dQ)  (3.18)

3.5.2 HPGe Response Function

In order to be able to remove the effects of the HPGe response function from the
raw spectra, it is necessary to have a knowledge of the exact functional form for the

HPGe full energy peak response function. The total HPGe full energy peak response
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function (R) for the ~5.5 MeV 7-rays from D(p,y)3He is actually a convolution of two
separate component response functions: an intrinsic response function (I) due to the
interaction of a monoenergetic y-ray with the HPGe crystal; and a so called "kinematic"
response function (K), which arises as a result of the finite geometry of the experimental

set-up.

Intrinsic HPGe Response Function

The intrinsic HPGe full energy peak response function (I) was studied using a
66Ga source [Ald93] which emits several mono-energetic y-rays up to 4.8 MeV. The
peaks at 3.3, 4.0, 4.4, and 4.8 MeV were fit to a functional form comprised of three
components: a primary gaussian, a skewed gaussian, and a smoothed step function
(which is the low energy tail). This germanium detector peak fitting recipe follows that of
Jorch and Campbell [Jor77], and Emling [Em186]. The primary gaussian is due to the
statistical nature of the charge collection process. The skewed gaussian is thought to be
due to incomplete charge collection by the detector. The smoothed step comprising the
low energy tail is attributed to the escape of photo-electrons from the detector, and also to
Compton scattering background (due to photons which undergo multiple Compton
scattering in the detector before escaping, and also due to photons which Compton scatter
into the detector from outside).

The form of the gaussian component is as shown below

2
1 (E-E)
E)= -
Gauss(E) = A mexp{ 252 } (3.19)
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where A is a constant to assure normalization over a given energy region (in this case, a
standard energy window set to encompass the full energy peak), ¢ is the standard
deviation (=FWHM/2.354), and E; is the centroid of the peak. The form of the skewed
gaussian component is obtained by convoluting an exponential tail with a gaussian shape,

and is given by the following expression

E-E.| .[E-E c
Skew(E) = B ex € lerfc € , (3.20)
p[ B J [ cv2  BV2
where B is a constant to assure normalization over the standard energy region, 3 is a
parameter referred to in the literature as the "skewedness” of the skewed gaussian, and
erfc refers to the complement of the error function. And finally, the form of the smoothed
step function is obtained by convoluting a pure step function with a gaussian shape, and

given by the expression below

E-E
Ste =C erfc <, 3.21
p(E) [ o2 } (3.21)
where C is a constant to assure normalization over the standard energy region. The total
intrinsic HPGe response function (I) is then a linear combination of these three

components, as shown by Equation 3.22:

I(E) = (NGauss) Gauss(E) + (Nskew) Skew(E) + (Ngeep) Step(E),  (3.22)

where NGauss, NSkew, and Nstep represent the fraction of each response component that
is present within a given energy region (NGauss+NSkew+NStep=1). It 1s clear that I(E) is

normalized to unity over the standard energy region.



72

The 66Ga peaks at 3.3, 4.0, 4.4, and 4.8 MeV were fit to a form equal to
Equation 3.22 multiplied by a variable height factor. The extracted parameters were then
extrapolated to 5.5 MeV (the energy of the D(P,y)3He y-ray). The value of the step
fraction, Ngiep, that was used in the final deconvolution was determined by treating it as a
free parameter "1 a series of test fits to D(P,y)3He spectra. The final 5.5 MeV parameters
used were: Ngep=.03, NGauss=.75, Nsxew=.22, f=1.72 keV, FWHM=4.2 keV.
Figure 3.8 shows the shape of the response function which results from these
parameters. On the left side are the three components in their correct relative proportions.
On the right is the total intrinsi~ response function (I), which is the sum of the three

component parts. For scale, the FWHM of 1 is 4.2 keV.
Kinematic HPGe Response Function

Examining Equation 3.14, it can be seen that D(p,y)3He y-rays emerging at
different lab angles will have different energies. Since the solid angle of the HPGe
detector is finite, a range of possible y-ray energies will be present in the HPGe response
function, and this will lead to a widening of the full energy peak. In order to properly fit
the shape of the ™PGe response function, this kinematic widening must be taken into
account. By estimating the HPGe solid angle (i.e. the solid angle subtended by the center
of the HPGe detector), the range of possible kinematic y-ray energies can be obtained.
However, in order to determine the shape of the HPGe kinematic response function, it is
also necessary to determine the relative strength of each y-ray energy (i.e. the probability
of detection for each y-ray angle, 6y). An initial attempt at determining the relative
strengths for each possible 6y was undertaken with a "homemade” monte carlo program

(MONTE) [Mon95] which calculated the y-ray path length through the HPGe for each
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Figure 3.8: The Intrinsic HPGe response function at 5.5 MeV. On the left are the three
cornponent parts: the Gaussian, Skew Gaussian, and Step Function parts. On the right

is the total intrinsic response function (I), the sum of the parts.

6y, and then used the total absorption coefficient for germanium at 5.5 MeV to calculate
the probability of absorption.

One possible problem with this approach 1s that the present analysis uses only the
full energy peak, and not the total HPGe response. Thus, what is truly desired 1s the full
energy peak absorption coefficient. This coefficient depends on the location of the y-ray
interaction within the HPGe (a y-ray interacting near the HPGe edge is less likely to lead
to a full energy peak count), and thus an exact simulation of the y-ray interaction process
1s needed. This was accomplished by using the EGS4 code from Stanford [Nel85]
instead of the simpler MONTE code. The EGS4 code (EGS stands for Electron-Gamma-
Shower) reproduces the y-ray interaction process in a true-to-life fashion, and allows the

user to reliably determine the full energy peak absorption probability for each 6y (given a
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specific target-detector geometry). The EGS4 code is operated by means of a user-
written main program. The main program used in the current case, called GREG, is
shown in Appendix A

For the EGS4 simulation, an isotropically emitting point y-ray source was
assumed to be at the target location, which was 9.125" away from the HPGe front face
(on axis). Initial test runs with the MONTE Monte Carlo code showed that several
factors were small enough to neglect in determining the kinematic response shape. These
factors include the effects of finite target size; the presence of the Cu target disk; and the
non-isotropy of the D( p,y)3He radiation. For both the MONTE and EGS4 simulations,
the HPGe geometry included the on axis "hole" which is present in coaxial Ge detectors
(radius=0.2", length=3.79" starting 0.51" behind HPGe front face). The copper contact
pin present inside the hole was neglected. The Nal and lead shielding surrounding the
HPGe were also neglected in the calculations because they too are not expected to affect
full energy peak absorption (appearance in the photopeak requires the initial, and all
subsequent, y-ray interactions to be in the Ge crystal itself). The result of the EGS4
simulation is shown in Figure 3.9.

In Figure 3.9, the HPGe is assumed to be at a lab angle of 90°, as in Figure 2.4.
The results of the monte carlo simulations are shown as a function of 6y, the y-ray angle
with respect to the incident proton beam direction. The y-axis is the number of counts
detected in the full energy peak (normalized such that the sum of all detected counts
equals one). The primary difference between the EGS4 result and the initial MONTE
result was that the width of the response (i.e. the effecuve HPGe solid angle for full
energy peak events) was somewhat narrower with the EGS4 result than with the MONTE

result (which used only the total absorption coefficient). In order to determine the actual
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Figure 3.9: The result of the EGS4 monte carlo simulation for an HPGe lab angle of 90°.

HPGe kinematic response that will be viewed 1n the acquired spectra, the x-axis in Figure
3.9 must be changed from 8y to Ey, and this is done via Equation 3.14. The result is

then the kinematic response function (K) as a function of Ey.
Total HPGe Response Function

The total HPGe response function (R) is then the convolution of the intrinsic
response function (I) and the kinematic response function (K) over the energy range of
the full energy peak (i.e. R =1 * K). The convolution was carried out numerically by
means of the computer code FCN_SFACT shown in Appendix B. An example of the
total HPGe response function (R) which results from the convolution process is shown in

Figure 3.10 by the solid line. This curve is for a convolution corresponding to an
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incident beam energy Ep(lab)=80 keV (according to Equation 3.14, Ey, and thus the
shape of the kinematic response function, is a function of the incident beam energy
Ep(lab)). The dashed line is the intrinsic response function (I) shown in Figure 3.8. The
similarity between the two curves indicates that the kinematic response function plays
only a minor role in the determination of the total response function (R). For scale, the
FWHM of the dashed curve is 4.2 keV, while the FWHM of the total response function
is 4.7 keV.

— — Intrinsic Response (I)
Total Response (R) / \
(R=1*K) / \

Counts

Energy

Figure 3.10: The total response function (R) (solid line), for Ep(lab)=80 keV, resulting
from the convolution of the intrinsic response functon (I) and the kinematic response

function (K). The dashed line is the intrinsic response function.

3.5.3 Convolution Fit to Data

Having obtained the total HPGe response function (R), the final step is then to

convolute the total response function with the parameterized vield function (Y) given 1n
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Equation 3.18. The resulting curve (= R * Y), after adding in the known cosmic ray
background, is then fit directly to the raw D( p,y)3He spectra in order to determine the

So(6) and S1(0) parameters from Equation 3.18. The fitting procedure was carried out
using the MINUIT %2 minimization package (Jam77). The user-written code that
controlled the MINUIT fitting procedure was FCN _SFACT, the same code which created
the parameterized R * Y curve to be fit to the spectra (see Appendix B). In the fitting
procedure, three free parameters are assumed: the Sg(B) parameter; the S1(0) parameter;
and an energy calibration parameter, Cg(6). The extraction of the Cg(8) parameter,
which represents the ADC channel number corresponding to Ep(lab)=80 keV, allows a
precise determination of the energy calibration of the raw spectra. This is necessary in

order to evaluate the R * Y convolution correctly.

1000

r - -
- D(p,7)°He ﬂ
800 + Ep(lab)zBO—O keV =
0 0)ap=90°
+— 600 —
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) 400 -~ fit & _
O | .
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Figure 3.11: The D(p,y)3He spectra of Figure 3.1b shown along with a convolution fit.

The convolution fitting procedure was carried out for 35 accumulated spectra
(corrected for gain shifts) which represented HPGe lab angles of 8 = 0°, 30°, 60°, 907,

105° and 120°. The quality of the fits to the spectra, evaluated in terms of the x2 per
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degree of freedom (y2/v), were quite good, thus lending credence to the linear S-factor
assumption that was used. Figure 3.11 shows the convolution fit to the raw, full energy
peak, spectrum of Figure 3.1b. The convolution fit shown has a x2/v of 1.06.

Once the Sg(6) and S1(6) parameters have been determined for all of the
unpolarized spectra, and the results for each lab angle combined, the total S(6,E.p,) factor
was calculated by means of Equation 3.17. By tabulating Sg(0) and S1(6) results for the
polarized spectra, the vector analyzing power was calculated by means of Equation 3.13.
The results for both of these observables (S(6,Ecy) and Ay(B,E)) will be presented in

Chapter 5.
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Chapter 4

Gamma-ray Polarization

In addition to the 6(6) and Ay(6) observables, the y-ray linear polarization,
P.(0), was also measured for D(p,y)3He. Throughout this chapter, only unpolarized
incident beams will be considered (for reasons to be discussed). This simplifies matters,
since it has been shown [Fer65] that in this case, there should be no circular polarization
component in the outgoing y-radiation. In what follows, the procedure for acquiring the
P,(6) data will be discussed. The reason for relegating the Py(8) material to a separate
chapter, as opposed to integrating its presentation into Chapter 3, is that the experimental
procedure used to acquire the Py«(0) data is very different from that used to acquire the
o(8) and Ay(e) data, and hence a detailed presentation is called for. However, it should
be emphasized that the greater space allocated for discussion of the P,(8) observable
should not imply a greater significance of the P{8) observable (as compared with the
other observables) in obtaining conclusions for this experiment. In fact, as it tumns out,
the data acquired for the Py(0) observable play a very minor role in the conclusions of the

current experiment.
4.1 Definition of P(0)

An excellent discussion of y-ray linear polarization is contained within the doctoral

thesis of J.R. Williams [Wil74], and the interested reader is referred there for a more



80

detailed discussion on the definitions that follow. For a nuclear reaction initiated by a
beam of unpolarized particles, the linear polarization of the outgoing y-radiation, Py(6), is

defined here as follows (it should be noted that other definitions do exist):

 T48,6=07-T (8,6 =90
J,(8,0=07)+1J (6,0 =90°)

P(6) @.1)

where Jg is the intensity of the outgoing photons which have their electric vector at an
angle ¢ with respect to the reaction plane (thus Jg is the intensity at $=0° and Jog is the
intensity at $=90°), and 6 is the laboratory HPGe detector angle with respect to the

incident beam axis. Figure 4.1, below, shows these ¢ directions.

Reaction Plane

—_— e — T — —_—— —_———— A
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K out (y-ray direction)

Figure 4.1: The D(p,y)3He reaction plane (as shown in Figure 2.2) shown along with the

$=0" and ¢=90" directions for the electric vector of the photon.
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Clearly, in order to have a linearly polarized y-ray beam, the Jg and Jgp intensities
must be unequal. For example, in the event that Jgq 1s exactly zero, the y-radiation would
be said to be purely plane polarized in the reaction plane (i.e. all the photon electric
vectors have $=0"). From the standpoint of classical electrodynamics, it is interesting to
consider what y-ray polarization we might expect for D(p,y)3He. The vector potental that
results from a classical system of oscillating charges and currents can be expanded into
multipole components [Jac75], whereby the lowest order term in this expansion is the
electric dipole (E1) term. In the radiation zone, J.D. Jackson [Jac75] has shown that the
electric vector of the electric dipole term is in the direction E=(fi x p)x fi, where # is the
direction of propagation for the y-radiation, and p is the direction of orientation for the
radiating proton-deuteron dipole. If we make the reasonable assumption that the dipole is
oriented in the reaction plane (along the incident beam direction would seem likely), we
see that E is also in the reaction plane (L to the direction of propagation). This is the
case of pure plane polarization with Jgp=0, and thus, according the Equation 4.1, the
electric dipole term would be expected to have P({(0)=1.

The next higher term in the expansion of the vector potential includes a magnetic
dipole (M1) term. I neglect the electric quadrupole term because, as will be shown in
Chapter 5, it 1s not expected to be important in the present study. In [Jac75], it is shown
that the electric vector of the magnetic dipole term is L to the direction of the electric
vector of the electric dipole term. Thus, for pure magnetic dipole radiation, Jo=0, and
P((6)=—1 might be expected. Actually, since the M1 radiation in the current D(p,y)3He
experiment results from practically pure s-wave capture (see Chapter S), the proton-
deuteron dipole will have no preferred direction in space, and thus we expect Jo=Jgo and
P(8)=0 for M1. Since the y-radiation from D(p, )3He in the current experiment is

expected to be largely electric dipole with a certain degree of magnetic dipole mixed in
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(see Chapter 5), we expect that the measured Py(6) values will be somewhat less than 1,
thus reflecting the mixture of E1 and M1 which is present.

Once the Py(6) observable is measured, the way to determine the relative amounts
of E1 and M1 which are present is to expand Jg and Jgq, from Equation 4.1, in terms of
the complex transition matrix elements by means of the angular correlation formalism
discussed in [Wil74] and [LWF59]. However, the final equations which are presented in
[Wil74] have been derived for the specific case of isolated resonances, and thus are not
directly applicable to radiative capture reactions like D(p,y)3He, which go from
continuum states. However, Weller et al. [Wel92] have derived a separate set of
equations which are abpropriatc for nuclear reactions involving continuum states. This
paper has organized the polarized photon formalism into a convenient form, and includes
a set of tables which give the values for all necessary angular coupling coefficients.
Section 4.3 describes the method used to express P(8) in terms of the transition matrix

elements.
4.2 Previous Measurements of Py(0)

Before discussing the current work in measuring the y-ray linear polarization,
P®), for the D(p,y)3He reaction, it is approprate to review the previous work that has
been done. In the low energy regime, this consists of just one previous experiment done
in 1952 by D.H. Wilkinson [Wil52]. This experiment used incident protons of 1.1 MeV
to initiate the D(p,y)3He reaction, and then ..iowed the outgoing y-rays to
photodisintegrate deuterons on a photographic plate. By measuring the angular
distribution of the outgoing photoprotons, the y-ray polarization was determined, and was

found to be completely consistent with pure plane polarized E1 radiation.
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This conclusion is completely reasonable based on the wealth of experimental
o(0) data acquired since 1952, which has shown that around 1 MeV, the angular
distribution shows a sin20 shape which is typically associated with E1 radiation (e.g. see
[Kin84]). Wilkinson himself provided the following justification: if the spin-orbit
coupling in D(p,Y)3He is weak, changes will not be induced in the z-component of the
intrinsic spins of the interacting particles, and thus only AJ,=0 transitions will arise.
According to [Jac75], this condition would lead to a pure sin28 angular distribution and
also pure plane polarization for the y-rays (i.e. P(8)=1). The reason that a weak spin-
orbit interaction might lead to the restriction AJ,=0 can be justified if one assumes a single
particle picture for the D(p,y)3He process (see Chapter 6). In the single particle picture,
the incident proton does not interact with the deuteron in the continuum state (i.e. no
coupling takes place). In the absence of spin-orbit coupling (or in very weak spin orbit
coupling) it can be assumed that in the continuum state (of total angular momentum J) we

will have
Jz=8;+1, (4.2)
and
Sz=msh and [,=myh, (4.3)
where S and L are the spin and orbital angular momentum of the proton. Equations 4.2
and 4.3 indicate that for weak spin-orbit coupling, the intrinsic and orbital angular

momenta are now quantized with respect to the z-axis (the incident beam direction)

instead of the total angular momentum axis. For the D(p,y)3He reaction, the final state is
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3He, which can be well described as an s'=1/2, 1 '=0 state. For this state, it is clear that
J;'=Sz since m;' must be zero, and hence /;" must be zero. For the continuum state,
1,=S,+l,. However, since L =7 xp will be L to the beam axis, the component of L

onto the beam axis will be zero (4;=0). Thus we have
AJZ = JZ - le = Sz - SZI. (44)

However, since the magnetic dipole moment of the system is proportional to S; (in the
single par le picture), a change in S; would indicate a change in the magnetic dipole
moment of the system. This would necessitate the presence of magnetic dipole radiation
instead of electric dipole radiation. The obvious conclusion 1s that, for pure El radiation,
AJ, must be zero! |

The assumptions implicit in this argument, while apparently valid at Ep(lab)=1.1
MeV (based on the results o1 [Wil52]), may not necessarily be valid at Ep(lab)<80 keV.
A re-measurement of the y-ray polarization in this lower energy regime is thus certainly
not redundant and should help pomt out the changing relative strengths of the E1 and M1

multipoles versus energy.
4.3 TME Expansion for Py(0)

The formalism for expressing photodisintegration observables in terms of the
complex reduced transition matrix elements (TME's) is presented in [Wel92}. However,
by using the concept of time reversal invariance for the electromagnetic interaction, it can
be shown [Sat58] that the analyzing power, A(B), for 3He photodisintegration (i.e.

3He(y,p)D) is exactly equivalent to the y-ray linear polarization, PY(G), for the inverse
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reaction, D(p,y)3He. In this manner, it is possible to use the well organized
photodisintegration equations of [Wel92] in order to calculate Py(8) for the
photoproduction reaction D(p,y)>He. The equations in [Wel92] are given in terms of the
cornplex reduced transition matrix elements, R;, where the subscript "t" refers to the set
of quanturn numbers {p, L, b, /, s} associated with the transition matrix element R. In
particular, p=y-ray mode ("1"=electric, "0"=magnetic), L=multipolarity of vy-ray, /
=orbital angular momentum in the outgoing channel, s=channel spin, and b=total angular
momentum=/ +5. Thus, using the result for A(8) from [Wel92], the following Py(8)

expression for D(p,y)3He is obtained:

\/;H » [Bk 2R R P2 (cosO)]

=
ko, 1 oko " i
X ?k‘ [(BOO + —.\[——BZO )R[R[, Pk' (COSG)J

In equation 4.5, the Ry are the complex reduced transition matrix elements

(4.5)

discussed above, the P(cos8) and P2(cos®) functions are the Legendre and 2nd
associated Legendre polynomials respectively (where 0 is the angle of the y-ray detector
with respect to the incident proton beam axis), and the B-coefficients are factors which
contain the angular momentum coupling algebra. The exact numerical expression for
Py(6) in terms of the transition matrix elements will be worked out in Chapter 5. It
should be emphasized that Equation 4.5 gives the y-ray linear polarization solely for the
case of unpolarized incident beam.

The matrix elements used in the Py(6) expansion in Equation 4.5 are the same
matrix elements used to express the 6(6) and Ay(6) observables (see Chapter 5). The
advantage of measuring the P(8) observable immediately becomes clear then: it should,

in theory, provide an additional constraint in the effort to extract the amplitudes and
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phases of the complex matrix elements (Chapter 5). As mentioned earlier, we expect

P,(0) to be especially sensitive to the ratio of E1 to M1 radiation.
4.4 Compton Polarimeter

In order to measure Py(B), it is necessary to have a y-ray detection method which
can differentate between different directions of the y-ray polarization vector (i.c. the
direction of the electric field vector). A standard way of doing this is by means of a
Compton polarimeter (e.g. [Wil75], [LWEFS59]) which takes advantage of the y-ray
polarization sensitivity of the Compton scattering process. The following discussion on
Compton polarimeter formalism follows closely the presentation in [Wil75].

The Compton scattering process can be described by Quantum Electrodynamics
(QED) as shown by [Eva55]. The expression for the differential cross section, known as
the Klein-Nishina formula (first derived by Klein and Nishina [K1e29]), can be written as
follows [EvaS5,Wil75]:

2E'2[E E_

do(@.mn) = 27 Y+ Y _25in®8 cos?m |dQ. 4.6
(Ocm) > Ei EY‘ EY c | (4.6)

In Equation 4.6, do has been summed over all directions of the polarization of the
scattered photon ( since the only polarization of interest is the polarization of the incident
D(p,y)3He photon). The symbols used in Equation 4.6 are defined below:
* 1y = e?%/(mec?) = the "classical electron radius”, where me is the mass of the
electron.
» dQ = the solid angle into which the photon is scattered.

* 8. = the Compton scattering angle (to be distinguished from 6, the HPGe
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detector angle).
* 1 = the angle between the electric vector of the incident photon and the
plane containing the Compton scattered photon.
* Eyis the energy of the incident photon and Ey' is the energy of the Compton
scattered photon.
Using conservation of relativistic energy and momentum for the Compton
scattering process, it can be shown that Ey and Ey are related as follows:

2

E. = e ) (4.7)
Y 2
14+ D€ —cosH,
E

Y

From Equation 4.6, it is clear that the differential cross section is a maximum
when 1 1s 90° and a minimum when 1 is 0°. In other words, as discussed by [Wil75],
the incident photons are preferentially scattered at right angles to their electric vectors.
For example, a photon which has its electric vector in the D(p,y)3He reaction plane (¢=0°
in Figure 4.1) will be preferentially scattered in the "up-down" direction (i.e. the —y or ¥
direction) while a photon with electric vector $=90° will be preferentially scattered in the
"left-right” direction. With this in mind, the idea behind 2 Compton polarimeter is now
outlined as follows: the y-rays from the D(p,y)>He reacion which Compton scatter in the
HPGe crystal are monitored for a left-right/up-down scattering asymmetry. This is
accomplished, in the current case, by using the quadrated Nal(Tl) annulus which
surrounds the HPGe detector. This annulus consists of four separate Nal(Tl) detectors as
shown in Figure 4.2 on the next page.

In Figure 4.2, the direction of l;ou[, as shown in Figure 4.1, is here going into

the page. Since the four Nal(Tl) segments are viewed by separate photomultiplier tubes,
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Figure 4.2: The HPGe and annular shield viewed head on. The left-right/up-down

Compton scattering asymmetry can be used to determine the y-ray linear polarization.

and, as shown in Figure 2.8, are sent to separate amplifiers, it is possible to distinguish
between the intensity of photons which are scattered up-down (into either Nal 1 or Nal 3
according to Figure 4.2) and the intensity of photons which are scattered left-right (into
either Nal 2 or Nal 4). If we call the up-down sum “Ny" and the left-right sum "Npy",
we can then define the measured left-right/up-down scattering asymmetry, A(0), as:

-N

N
A =—Y¥Y H (4.8)

Nv +NH

Ny and Ny can be expressed in terms of Jg and Jgg (see Equation 4.1), as

follows[W1il75]:
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Ny = Jo do(6.,n=90") + Jgg do(6,,1n=0") (4.9)
Ny = Jo do(6.,m=0") + Jop d6(8,,1n=90")

We can substitute Equations 4.9 into Equation 4.8, and, after rearranging terms, we get:

(4.10)

A®) = [ do(8_,n=90")-do(®_n=0 J(JO ~Joo ]

dO‘(Oc,n =90") + do(Gc,n =0") I+ ]90

The second quantity in the parenthesis on the right hand side of Equation 4.10 is just
P(8) from Equation 4.1, while the first quantity in parenthesis on the right hand side of
Equation 4.10 is a factor that is called [Wil75] the polarization sensitivity, S. Thus, using
these new definitions, we can re-express the experimentally measured asymmetry in

Equation 4.10 as:
A(6) =S - Py(0). 4.11)
Alternatively, we can express Py(0) in terms of A(8) and S:
PyB) = ——. 4.12)
Using Equation 4.12, the y-ray polarization can now be obtained using the

measured A(8) and a calculated S. In order to calculate an S value, we can use Equation

4.6 to re-write S as a function of Eyas follows:

sin” @,
S(Ey) = E, B, . (4.13)
——+———sin" 0,
E' E



90

The expression in Equation 4.13 is greatly simplified in the case of a point
detector geometry (i.e. the case where the HPGe and Nal(T1) detectors all have negligible
spatial extent). In this case, only 8:.=90° gives a non-zero S(Ey). Using Equation 4.7,

Equation 4.13 can be re-written for the point detector geometry:

1

S = .
(Ey) E. - s
m,c? E, +m.c’

Thus, for point detector geometry, it is now possible (using Equations 4.12 and

(4.14)

4.14) to obtain Py(0) for a given D(p,y)3He y-ray. The case of finite geometry is
typically handled [Wil75] by continuing to use Equation 4.12 for P,(0), but, rather than
use Equation 4.14 for S, a new value is experimentally determined using the actual
polarimeter geometry. The experimental method used to determine S(Ey) is discussed in

the next section.
4.5 Polarization Sensitivity

It was necessary to measure scattering asymmetries, A(0), for y-rays of known
polarization, Py{(8), so that Equation 4.12 could be used to determine the polarization
sensitivity, S(Ey), for the current set-up. The procedure for obtaining y-rays of known
polarization involves aligning (i.e. orienting with respect to a symmetry axis) a nucleus in
an excited state, and then observing the subsequent y-decay to the ground state. The
details are described in subsection 4.5.1. Subsection 4.5.2 describes the procedure for
using these y-rays to measure the polarization sensitivity function at E,=1.78 and 4.43
MeV. And finally, sub-section 4.5.3 shows how a value for S(Ey) was obtained at
E,=5.5 MeV.



91

4.5.1 Procedure for Obtaining Polarized y-rays

This subject is discussed in [Wil75]. Other appropriate references include [Lit70]
and [Bas72]. Using inelastic nuclear scattering reactions with an unpolarized incident
beam and an unpolarized target, it is possible to produce nuclel in excited states which
exhibit symmetry about the incident beam axis. This condition of symmetry is described

as follows [LWF59]:
W(m) = W(—m). (4.15)

In this equation, W(m) is the relative population of the mth magnetic sub-state of a
nucleus with total angular momentum J. If all the W(m) are equal, the nucleus is
iSotropicale oriented. However, if the magnetic substates are unequally populated
(subject to the condition of Equation 4.15), we have the condition of aligned nuclear
orientation, whereby a single spatial axis (in this case, the beam axis) is specified. This is
as opposed to polarized orientation, whereby a single direction in space is specified.
Gamma-rays emanating from an aligned nucleus will exhibit a certain degree of linear
polarization. If the decay scheme is well known, the degree of the y-ray polarization can
be predicted.

As an illustrative example, we consider the case of i2C* produced in the reaction
12C(p,p")12C*. Since we are specifically interested in the subsequent y-decay of 12C*
(see subsection 4.5.2), we refer to the reaction as 12C(p,p'y)12C. In order that the
outgoing y-ray be polarized, it is desired that the magnetic substates of 12C* be unequally
populated. This can be arranged by populating a 13N intermediate compound state which

will produce an outgoing inelastic proton in a relative s-wave (/=0). Once this is done,
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Figure 4.3: The nuclear level scheme for the 12C(p,p"y)12C reaction, where T4 is the
total angular momentum of the 13N* state and Jp is the total angular momentum of the

12C* state.

alignment of the 12C* state is assured. Figure 4.3 shows the nuclear level scheme for
this process. By using a beam energy of Ep(lab)=5.37 MeV, we can populate the E=6.89
MeV, J®=3/2+, state of 13N (from conservation of energy, we know that the excitation of
13N is Q+Ep, where Q=1.94 MeV in this case). Using conservation of parity, we see
that this state is formed by an /=2,s=1/2 proton on 12C. This resonance state then decays
by proton emission to 12C*, an E=4.43 MeV, J*=2+, state in 12C. Conservation of
parity shows that the outgoing proton must have I'=0,2,4. From energy conservation,
we see that the outgoing proton should have an energy of less than 1 MeV, and thus we
conclude that it should be in a relative s-wave (I'=0) since the angular momenturn barrier
will block the higher I-values. This is significant based on the following consideration. If
we write down the equation describing conservation of total angular momentum between

the 13N* and 12C* states, we get



S+l =J,+5+". (4.16)

The projections along the symmetry axis must then satisfy

mg + m; = mj + Mg + my, (4.17)

where myj is the magnetic quantum number of the 12C* state.

Equation 4.17 can be simplified based on two observations. First of all, as
mentioned above, I'=0, and thus mp=0. Secondly, since L =T xp is L to the symmetry
axis, the component of [ along the symmetry axis will be zero, and thus m;=0.

Therefore, Equation 4.17 is now

mg = mjy + mg'. (4.18)

Since both mg and mg are *1/2, it is immediately clear that only mj=—1,0,1 will sausfy
Equation 4.18. Since the values of mj=—2 and 2 are not allowed, we have an aligned
nucleus.

The state 12C* will y-decay to the 12C ground state with the emission of pure E2
radiation. The 12C ground state is J=0, and thus has a magnetic substate of zero. This
will produce E2 radiation that is Am=0,*1, and thus purely plane polarized (i.e. in theory
we have Py=1). This polarized y-radiation from 12C(p,p'y)12C was used to determine
the polarization sensitivity function for the Compton polarimeter at Ey=4.43 MeV. In
addition, the 28Si(p,p'y)28Si reaction (also predicted to have Py=1) was used to
determine S(Ey) at Ey=1.78 MeV. Once S(Ey) is known at Ey=1.78 and 4.43 MeV, it
can be reliably extrapolated up to the desired energy of Ey=5.5 MeV.
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In the process of actually determining S(Ey) from the 12C(p,p'y)12C and
288i(p,p'y)28Si reactions, the predicted Py=1 values were not used in the calculations.
Instead, a Py value was experimentally measured for each reaction. The reason for doing
this is that previous experimental work on these reactions [Wil75,Bas72,Lit70] has
shown that Py is not exactly equal to 1.0 as predicted. Instead, the results for
28Si(p,p'Y)28Si indicate P(90°)~0.8, while the results for 12C(p,p'y)12C indicate
Py(90°)~0.9. In the following subsection, the current measurements for Py will be
presented and compared with the results of [Wil75,Bas72,Lit70]. The current results for

S(Ey), calculated using the currently measured Py values, will then be presented.
4.5.2 Measuring the Polarization Sensitivity

By using the formalism discussed in [W1il75,LWF59], it is possible to express
Equation 4.1 in termms of the angular distribution Legendre coefficients. For the case of
pure E2 radiation observed at a laboratory angle of 90°, the expression simplifies to

3045,

Py(90°) = 21 8—3-—, (4.19)
l-—a,+—-a,
2777 8

where aj and a4 are the normalized Legendre polynomial coefficients (see Chapter 5 for a
full discussion of Legendre coefficient expansions). Since the 12C(p,p"y)12C and
28Si(p,p'y)28Si reactions both give pure E2 radiation, the expected value of Py(90°) can
be derived by measuring an angular distribution for the reaction in question, fitting the
results to a Legendre coefficient expansion, and using Equation 4.19 to determine
P(90°). This result is the expected y-ray polarization. By actually measuring an

asymmetry, A(90°), we can then use Equation 4.12 to calculate the polarization
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sensitivity, S(Ey). The polarization sensitivity was actually measured at two separate -

ray energies, as will now be discussed.
The 28Si(p,p'v)?8Si Experiment

The 28Si(p,p'y)28Si reaction was used to measure S(Ey) at E,=1.78 MeV. In
accordance with the method described in sub-section 4.5.1, the ostensible procedure
would be to use the incident proton beam to populate a J*=3/2+ resonance which has
sufficient energy to subsequently decay (by proton emission) into the 2+ excited state of
288i (E*=1.78 MeV). This state will then y-decay to give us the desired E2 photons
which should be purely plane polarized. This was achieved by using a proton beam
energy of EpOab)¥3.34 MeV and populating the JT=3/2+ state of 29P at an excitation
energy of E¥*=5.97 MeV.

The above suggestion, while seeming quite reasonable, was not actually pursued.
The reason is that the previous studies of Py(90°) using 28Si(p,p'y)28Si
[Wil75,Bas72,Lit70] have all used an Ep(lab)=3.1 MeV beam to populate the J™=5/2~
state in 29P instead of the J®=3/2+ state. The exact reason for this choice of beam energy
1s not known. Based on the discussion in sub-section 4.5.1, a population of the J©=3/2+
state might seem more logical. However, since the resulting 28Si* y-ray is pure E2, its
polarization can still be determined using Equation 4.19, and the results
[Wil75,Bas72,Lit70] have all shown the y-ray to be highly polarized. Thus, for purposes
of comparison to previous results, this same beam energy (Ep(lab)=3.1 MeV) was used
in the current experiment.

The actual data taking for this 28Si(p,p'y)28Si experiment took place in the TUNL

target room which follows the 90°-90° analyzing magnets (top left corner of Figure 2.1).
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The target used was a thin layer of 28Si which had been evaporated onto a thin 12C
backing. The experimental set-up used was similar to that at shown in Figure 2.5, except
that the incident proton beam was allowed to pass through the 28Si target and into a beam
dump. In addition to a series of runs taken at a lab angle of 90° (in order to determine
A(50%)), an angular distribution of cross-section was acquired at 13 angles between 35°
and 150°. By fitting this angular distribution to Legendre coefficients, Equation 4.19
could be used to calculate the expected Py(90°). Then, using the expected Py(90°) value
and the measured A(90°) value, Equation 4.12 was used to calculate S(Ey=1.78 MeV).
Figure 4.4 shows the acquired angular distribution for 28Si(p,p'y)28Si. In this
figure, the full energy y-ray peaks acquired for each angle (with the HPGe) were summed
in order to obtain the data points shown. The solid line is a Legendre polynomial fit to

the data where the Ag, Aj, and A4 coefficients were determined (see Chapter 5).

40000 T T T T T T T T
28 ~- ' 28 ~-
Si(p,p'y) 7 Si

30000 E (lab)=3.10 MeV
m p
+—
gzoooo
@)
Q1oooo .
0 L | . | L ] L . . | \
0 30 60 90 120 150 180

Glab

Figure 4.4: Angular distribution of y-rays for the 28Si(p,p'y)28Si reaction. The data

points show statistical error only. The solid line is a Legendre fit to the data.
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The normalized Legendre coefficients, a; and a4, shown in Equation 4.19 are
defined as simply being As/Ag and A4/Ag. The Legendre fit shown by the solid line in
Figure 4.4 indicates the following values: a=0.513+0.008 and a4=0.138+0.011.
Substituting these values into Equation 4.19, the following y-ray polarization 1s obtained
for 28Si(p,p'y)28Si: Py90°)=1.07+0.08. This value includes a 7% systematic error
which has been included. The reason for including the 7% systematic error iS that
P.,(90°) has a theoretical maximum value of 1.0, and thus the result of P(90°)=1.07 is
viewed as 100% polarization in the light of a 7% systematic error. A larger systematic
error does not seem likely given the reasonably high quality of the data.

In comparing the present P,(90°) answer with the previous data, it is seen to be
somewhat higher. The references of [Wil75,Bas72,Lit70] give Py(90")=0.80%0.03,
0.7410.04, and 0.8210.03 respectively. This discrepancy is not seen as an indicator of
an overall constant systematic error in the current procedure due to the fact that the current
12C(p,p'y)12C experimental results lie at more of an average value of the previous points.
The origin of this discrepancy is of possible future interest, but will not be pursued at the
present time.

Along with the HPGe angular distribution data that were acquired for
28Si(p,p'y)28Si, a set of asymmetry measurements, A(90°), was also obtained by
monitoring the Compton scattered y-rays with the 4 Nal(T1) segments (see Equation 4.8).
The method for acquiring these asymmetry measurements was based on a uniform
procedure that was followed throughout the Compton polarimetry process, and this
procedure will be discussed in detail in section 4.6. For right now, it wili suffice to quote
the final result for 28Si(p,p'y)28Si: A(90°)=0.10740.002. Along with the P(90°) result
previously mentioned, the final value for the 1.78 MeV polarization sensitivity 1s then

S(1.78)=0.100%0.008.
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The 12C(p,p'y)12C Experiment

The 12C(p,p'y)12C reaction was used to measure S(Ey) at E,=4.43 MeV. The
rationale for choosing a beam energy of Ep(lab)=5.37 MeV has been well detailed in sub-
section 4.5.1. The target consisted of a thin, self-supporting, 12C foil. The target-
detector geometry was the same as it was in the 28Si(p,p'y)28Si experiment. Figure 4.5
shows the acquired 12C(p,p'y)12C angular distribution along with a Legendre polynomial
fit (solid line). The normalized Legendre coefficients extracted from this fit were:
a7=0.49210.013, a4=-0.239+0.015. Substituting into Equation 4.19, we obtain
Py(907)=0.88+0.04. The previous results from [Wil75,Bas72,Lit70] are, respectively,
PY(90")=().971L0.02,A 0.8020.06, and 1.10+£0.06. Obviously the spread on P ") for
12C(p,p)12C is quite large, but the current result is well towards the middle of the
spread.

Along with the 12C(p,p'y)12C angular distribution data, a set of A(907)
data was also acquired. The final determined value for the asymmetry was
A(90°)=0.036+0.002 which was used along with the extracted P(90°) value in Equation
4.12 to calculate S. The value obtained for the polarization sensitivity at 4.43 MeV was

§(4.43)=0.041+0.003.
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Figure 4.5: Angular distribution of y-rays for the 12C(p,p'y)12C reaction. The data

points show statistical error only. The solid line is 2 Legendre fit to the data.

4.5.3 Extrapolating S to Ey=5.5 MeV

Now, with values determined for S(Ey) at E,=1.78 and 4.43 MeV, it was
necessary to extrapolate the value up to Ey=5.5 MeV (the energy of the y-ray from
D(p,y)3He). The method used here was simply to fit the existing data points to an energy
dependent curve. Since the value of S(Ey) is not expected to change rapidly from 4.43
MeV to 5.5 MeV [Wil75], the final extracted value of S(5.5) should not be too sensitive
to different energy dependent forms used. Ideally, the best possible energy dependent
form would be that resulting from an average of Equation 4.3 over the finite geometry of
the detector. However, this complicated procedure was deemed unnecessary for the
reason mentioned above. Instead, the energy dependent form used was simply that
which would result from a point detector geometry. This energy dependent form was

presented in Equation 4.14.
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Equation 4.20 below shows the energy dependent form to be used in the fit to the

data (C 1s the overall normalization constant):

C

E, m, c’ .
2 + 2
m.C E , +m.c

The constant C is a factor that is obtained by fitting Equation 4.20 to the existing S(Ey)

S(Ey) = (4.20)

data points at Ey=1.78 and 4.43 MeV. Once this curve has been fit to the data, an S(5.5)
value can easily be extracted from Equation 4.20. Figure 4.6 shows the two S(Ey) data
points along with a fit to the data using the form of Equation 4.20. The fit was obtained
(i.e. the constant C was determined) by minimizing the total %2 function. Since the
equation for S(Ey) is linear in C, this x2 minimization can be done analytically by simply
setting [d(%x2)/dC]=0 and solving for C. The error can then be obtained by finding the
increment AC for which the total 2 function changes by one. The final result is
C=0.365%0.019.

As is shown by Figure 4.6, the S data points are fit quite well by the assumed
energy dependence. The value extracted for the polarization sensitivity at 5.5 MeV is
S(5.5)=0.034+0.0034. A total error of 10% has been assumed for the extracted value

based on an estimate for the systematic errors in the Compton polarimetry procedure.
4.6 Acquiring Py(0) data for D(p,y)3He

Once the polarization sensitivity, S, is known at the energy of interest (in this case
5.5 MeV), the task of measuring Py(6) for D(p,¥)3He is thus reduced to measuring a left-
right/up-down asymmetry, A(6), in the Compton scattering. This section starts with an

introduction to the Compton polarimetry data acquisition process, and is then followed by
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Figure 4.6: Data for the polarization sensitivity function, S, shown along with an
empirical fit to the data. The energy dependence of the empirical fit is that of a point

detector geometry.

a closer look at the details.

4.6.1 Introduction to the Data Acquisition Process

Since the geometry of the HPGe crystal and the Nal(T1) annulus is already fixed
(see Figures 2.5 and 4.2), the degrees of freedom that we have in acquiring Compton
polanimeter data is limited to setting thresholds and summing windows in the two
detectors, and also to affecting coincidence requirements on the incoming data.
Specifically, the Compton polarimetry process can be outlined as follows. An incoming
y-ray enters the HPGe crystal and Compton scatters into one of the Nal(Tl) segments as
shown in Figure 4.2. As discussed in section 2.3, the Nal(T1) segments are gated by an

HPGe signal above a certain energy threshold, and thus we only consider Nal(Tl) events
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which are in coincidence with an HPGe event. Experimentally, we can record how much
energy is deposited in the HPGe crystal and how much energy is deposited in the
particular Nal(Tl) segment. To further reduce background, we only consider events for
which the sum of the energy deposited in the HPGe and in the particular Nal(T1) segment
equals the incident y-ray energy (for D(p,y)3He this is 5.5 MeV).

Using these coincidence requirements, we can acquire spectra for the four NaI(T1)
segments which should be equivalent to counting the number of Compton scattered y-rays
in the up, down, left, and right directions. In order to eliminate any possible counting
asymmetries which might result from slightly different efficiencies or gains in the
different Nal(Tl) segments, the annulus shown in Figure 4.2 was rotated in 90°
increments after a set number of runs. After three rotations, a single Nal(T1) segment will
have seen ali four directions (i.e. up, down, left, and right). This allowed us to measure,
simultaneously, an up-down/left-right asymmetry (as defined by Equation 4.8) for each
Nal(Tl) segment. The final quoted asymmetry was then determined by a weighted
average of the four separate results. This asymmetry, A(8), was then used in Equation

4.12 to calculate a Py(6) value.
4.6.2 Experimental Details

One of the important things to be decided in this procedure is where to set the
detector thresholds. A useful figure of merit for this procedure can be derived by
calculating an expression for the error in the y-ray polarization. First, we combine
Equations 4.8 and 4.12 to obtain:

_ I{Ny=Ny)
Py(0) = S[—NV+NH J (4.20)
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Then, we write down the expression for the error:

2
AP(6) = ANR(AN,)" +4Ny(ANy)® | 1 sy Ne=Na @21)
Y (Ny + N, )*§? s N, +N, |

By assuming that Ny=Nyg=N, and (ANy)2=(ANy)2=N, where N is the number of

Compton scattered y-rays recorded, the expression in Equation 4.21 simplifies to:

1

V2N§*

AP(6) =

(4.22)

Equation 4.22 indicates that by maximizing the quantity NS2, we can minimize
the error on Py(B). Since the number of counts, N, at a particular Compton scattering
angle, B, is proportional to the Compton cross section, do/d8., we can associate the
-quantity (do/dB¢)S2? with a figure of merit to be maximized. The do/d6. quantity of
interest can be calculated from the Klein-Nishina formula (Equation 4.6), whereby the
following proportionality can be obtained (absolute numbers are not needed):

E'2[E E

do . ¥ | L+ _sin?6 |[sin® (4.23)
de E¢ |E ' c c
Y Y Y

The relation in (4.23) has been obtained by averaging Equation 4.6 over m and then
integrating over ¢. As we acquire data, we obviously want to minimize the error in
P(8), and therefore we want to maximize the figure of merit, (d6/d8)S2. Figure 4.7
below shows the figure of merit plotted versus B¢, the Compton scattering angle in the

HPGe.
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Figure 4.7: The figure of merit, (d6/d6.)S2, for a 5.5 MeV 7-ray plotted vs. 6.

Figure 4.7 shows that the ideal Compton polarimeter, for a 5.5 MeV 7¥y-ray, would
be designed so as to encorrpass the Compton scattering range from 8,~10° to 6.~135".
In order to translate this angular range into a more tractable experimental quantity, we can
express the figure of merit in terms of Erecojl, the energy deposited in the HPGe crystal
by the Compton scattered y-ray. For a y-ray of energy Ey, Erecoii=Ey-Ey with Ey' as
defined by Equation 4.7. Based on this relation, the angular range defined as 8.~10" to
B8.~135° (for a 5.5 MeV y-ray) becomes Erecgil~0.8 MeV t0 Erecon~5.2 MeV. The figure
of merit plotted vs. Erecoil 18 shown in Figure 4.8.

Based on Figure 4.8, it would appear that from about 0.8 MeV up to near the
"Compton Edge" at 5.2 MeV would indeed be an appropriate range of HPGe energies to
include. With this in mind, an energy window was set (during off-line sorting of the
data) so as to encompass the HPGe energy region from 0.6 MeV-5.26 MeV. This, in
effect, constituted the HPGe threshold for the Compton polarimetry process. Since, for a

5.5 MeV y-ray, the energy deposited in the HPGe plus the energy deposited in the
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Figure 4.8: The figure of merit, (do/d8.)S2, for a 5.5 MeV y-ray plotted vs. Erecoil, the

energy deposited in the HPGe by the Compton scattered y-ray.

Nal(T1) annulus should equal 5.5 MeV, the threshold in the NaI(Tl) annulus was set (in
off-line sorting) to be 240 keV.

In addition to setting thresholds appropriately, the summed energy criterion,
whereby the HPGe and Nal(Tl) energies (acquired in coincidence) sum to the original -
ray energy of 5.5 MeV, was further enforced by creating a summed energy spectrum for
the HPGe+Nal(T1) set-up. This spectrum, an example of which is shown in Figure 4.9,
allowed us to consider only the events for which the total deposited energy was 5.5 MeV,
and thus we were able to greatly reduce the "accidental” coincidences.

The summed energy spectrum shown in Figure 4.9 shows three large peaks. The
peaks at 1.46 MeV and 2.615 MeV are natural background peaks (40K and
radiothorium), while the peak at 5.5 MeV corresponds to the D(p,y)3He peak of interest.
A gate was set around this 5.5 MeV peak. Applying this gate to the Nal(T1) coincidence

spectrum, we can create a final spectrum which should include only Compton
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Figure 4.9: A summed energy spectrum, for D(p,y)3He at 6;,,=90°, representing the

total energy deposited in the HPGe+Nal(T1) set up.

écattered events. An example of this final Nal(T1) spectrum is shown in Figure 4.10
superimposed upon the initial NaI(T1) coincidence spectrum (before the application of the
summed energy criterion). The higher curve in Figure 4.10, which reaches up to 325
counts, is the initial Nal(T1) coincidence spectrum, while the lower curve, most noticeable
between O and 1 MeV, is the final Nal(Tl) spectrum representing Compton scattered
events only. For the final Nal(T1) spectrum, events which fired more than one Nal(T1)
segment have been rejected. Furthermore, any events associated with the 1st and 2nd
escape peaks in the HPGe have been vetoed out of the final Nal(T1) spectrum. This is
done to get rid of the effects dealing with the 511 keV photons which are emitted from the
HPGe 1n these events.

The final NaI(Tl) spectra can then be summed for each Nal(Tl) segment, thus
allowing an extraction of the relative number of Compton scattered y-rays into each

segment. These yields are then used to calculate the asymmetries as has been discussed.
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Figure 4.10: A coincidence energy spectrum (higher curve), for one Nal(Tl) segment,
acquired for D(p,y)3He at 81,p=90°. The lower curve is the final Nal(T1) spectrum

(noticeable between 0 and 1 MeV) representing Compton scattered events only.

Since the asymmetries depend on ratios of yields, the systematic error is thought to be
negligible (thus the error on A(6) will be primarily statistical in nature). The final results
for Py(6) (=A(6)/S) will be presented in Chapter 5.
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Chapter 5
Experimental Results

In this chapter, the experimental results for the current D( p,y)3He experiment will
be presented. This will include results for the o(6), S(6), Ay(8) and P(6) observables
extracted in the following (separate) data analysis methods: the thick target yield analysis;
the binning analysis; and the deconvolution analysis. Also discussed 1n this chapter will
be the techniques for parameterizing the data: the Legendre polynomial expansion, and
the transition matrix element expansion. The discussion of these expansions will lead off
this chapter, and will be followed by a presentation of the results from the various
analysis methods. A comparison of the current data with the previous low energy data of

[Gri63] and [Bai70] will then conclude this chapter.
5.1 The Legendre Polynomial Expansions

5.1.1 Definitions

Using an angular correlation formalism, such as the one used in [Fer65], the o(6)
and Ay((c)) observables can be expanded in terms of the transition matrix elements (see
section 5.2). These expansions can be simplified by grouping all of the factors involving

the transition matrix elements into the Qy, ak, and by coefficients:
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o(8) =Y QAP (cosB)=A, ) Q.a,P, (cosb) (5.1)
where Qp=a¢g=Po=1.0, and
6(6)Ay(0) = AokngkkaL(cose). (5.2)

In Equations 5.1 and 5.2, 6(8) 1s the unpolarized cross section, Ay(B) 1s the
vector analyzing power, the 2y, by are the normalized Legendre polynomial coefficients
(which are dimensionless), the Qy are the finite geometry attenuation factors, and the Py
(Pi ) are the Legendre (1st associated Legendre) polynomials respectively. Due to a
Clebsch-Gordan coefficient which arises in the definitions of the ay and by coefficients
(see section 5.2), the sum over k values is restricted to L' -L|<k <|L'+L], where L is
the multipolarity of the y-ray being considered. The Ag coefficient is the absolute cross
section normalization constant which contains the correct cross section units. The
unnormalized Legendre coefficients (Ag, By) are related to the normalized Legendre
coefficients by this factor of Ag: Ax=Agpag; and By=Apby. It should also be noted, for
future reference, that if Equation 5.1 is integrated over all angles (d{2=sin8d8d¢), the

result is:
or = [6(8)dQ =4nAy, (5.3)

where o is the angle integrated cross section.
By examining Equation 4.5, it is clear that in addition to the ¢(6) and Ay(0)
observables, the P,(B) observable can be expressed in terms of Legendre polynomials as

follows:
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B ZQkaPi (cos®) 5.0

- ZQkaPk(cose)‘

Py(6)
5.1.2 The Qi Coefficients

The original derivation of these coefficients is in [Ros53], although a good

discussion is also contained in [Fer65). According to [Fer65]:

Qx = Jx/Jo, (5.3)
where

Ji = [e(®)P (cosB)d(cosp), (5.6)
0

B being the angle with respect to the HPGe symmetry axis and () being the probability
for y-ray detection (i.e. the efficiency) at that angle. According to Equations 3.5 and 3.6,
the Qx coefficient for a given Legendre polynomial can be viewed as the weighted average
of that Legendre polynomial over the extent of the detector. In this case, the weighting
factor is the probability of detection for a y-ray which enters the HPGe detector at an
angle B with respect the HPGe symmetry axis.

The simplest method for calculating the Qg coefficients is the method of [Ros53],
whereby the probability of y-ray detection is calculated by using the y-ray linear
attenuation coefficient, T (units=cm-1). Knowing the path length through the HPGe at an

angle B, x(B), one can express the probability for y-ray detection, £(B), as follows:

eB)=1-e=b®, (5.7)
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Because of its simplicity, Equation 5.7 is often the preferred expression in the
calculation of the Qg coefficients. Unfortunately, Equation 5.7 gives a probability for
detection which includes the total HPGe response function, whereas we are typically only
interested in the full energy component (i.e. y-rays which deposit all their energy in the
HPGe). The probability for full energy absorption is dependent not only upon path
length, x(B), but also upon the position of the initial interaction, and thus its calculation is
more complicated. The question then arises as to how ciosely Equation 5.7 can
approximate the case of full energy absorption (of interest in the current experiment).

In order to test the validity of using equation 5.7 for the current HPGe geometry,
a monte carlo simulation (the EGS4 code described in section 3.5.2) was used to calculate
the Qy coefficients. By launching 100,000 y-rays from the target center, the Py(cosp)
value was recorded for each y-ray detected at angle . Then, by following the method of

[Bru94], the Qy coefficients were calculated using the following expression:

| &
Q= ﬁng(cosBi), (5.8)

wkere N is the total number of detected events. By calculating the Qg coefficients using
Equation 5.8, the values were seen to agree with the values obtained with Equation 5.710
within 1%. This good agreement can be understood in light of the fact that the Qx
coefficients are very close to one for the current HPGe geometry (e.g. Q»=0.99), and

thus the shortcomings of approximate methods are not so apparent
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5.1.3 Extracting the Legendre Coefficients

This subsection describes the procedure for extracting the Legendre coefficients
from a set of 6(6) and Ay(0) data. Sin;e Equations 5.1 and 5.2 are linear in the
coefficients, the values for ag, by can be extracted using the following method [Cmi94]:
set the first derivative of the x2 function (for either o(6) or 6(8)A(8)) to zero and then
solve for the coefficients. In this manner we obtain a solution which minimizes the total

%2 function. For example, the 2 function for the 6(8) equation can be written as:

2
(Aozk:QkakPk,( - GJ
x2= 2

T ]

where the t subscript refers to the lab angle 0, and the o, Ac; values are simply the cross

) (5.9)

section and error at the angle indexed by t. Taking the derivative with respect to ap,, and

setting the result to zero, we obtain:

k t t

A‘qu 2 cth :
LR o
Equation 5.10 can be written in a more compact form by using matrix notation:
aB =¢, (5.1
where a is the vector of ag coefficients, B is the (k,m) indexed matrix in the second set of

parenthesis in Equation 5.10, and c is the (m) indexed vector on the right hand side of

Equation 5.10. Clearly, we can solve for the ay coefficients as follows:
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a:cB‘l, (5.12)

where B-1 refers to the inverse of the matrix B.
We now look at the errors associated with the ay coefficients. If we rename the

matrix B-1 as the matrix D, we can expand Equation 5.12 as shown below:

ay = ZE(A‘G";‘Z e (5.13)

The variances in the ay coefficients, (Aay)2, are then given by

PP
(Aay)2 = ,E_D“[gm})“’ (5.14)

where the Aay are the errors in the ay coefficients. Since the errors at different angles are

uncorrelated, we can simplify Equation 5.14 to

m,m'

P P
(Aa)? = ):Dm{ ﬁ’-}bm (5.15)

By comparison with Equation 5.10, it is realized that the quantity in parenthesis in

Equation 5.15 is simply Xl— D', and thus Equation 5.15 becomes
0

D

4= — = _kk

(Aay)? A E mk ok = A (5.16)
0 mm’ 0

Thus we have shown that the errors on the ay coefficients can be derived from the

diagonal elements of the D matrix
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The procedure for obtaining the values and errors for the by coefficients is similar
to the one just described for the ay coefficients. However, the Legendre coefficients in
Equation 5.4 are not determined by this procedure, but must be determined by a

parameter search. This is because the observable, P,(8), is not linear in the coefficients.
5.2 Transition Matrix Element Expansions
5.2.1 Introduction

The Legendre polynomial expressions presented in the previous section were
obtained from transition matrix element expansions. One good example of such
expansions can be found in [Fer65]. A more concise set of expansions (as far as current
use is concerned), which includes specific equations for all polarized observables, can be
found in [Sey79]. This latter set of equations was used in the present analysis to express
all of the observables in termns of the transition matrix elernents. It should be pointed out
that the notation used in [Sey79] is slightly different than the notation presented above
(1.e. the current notation). In particular, the current ay coefficients are equivalent to the
a, coefficients presented in [Sey79]. Alternatively, the current Ak, By coefficients
presented in section 5.1.1 are equivalent to the ay, by coefficients in [Sey79].

The matrix element expansions in [Sey79] are presented in terms of complex,
reduced transition matrix elements: R=|R|e*, where |R| is the matrix element amplitude
and ¢ 1s the phase. These matrix elements are identified by their continuum quantum
numbers in the channel spin coupling scheme. In this coupling scheme, the particle spins
in a continuum state are combined vectonally to give a total "channel spin”, s, and then

the channel spin is combined vectorially with the relative orbital angular momentum, /, to
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give a total angular momentum for the state, J. A particular matrix element (going from
the continuum state to a final bound state) is then uniquely identified by specifying the
mode and multipolarity of the transition (e.g. E1, M1) along with J, /, and s.

Using the equations derived in [Sey79], the unnormalized Legendre coefficients

presented in section 5.1.1 are expanded in terms of matrix elements as follows:

Ag= Y (2I+DR[, (5.17)
Ay = Z( ..... )RE[RR'*], (5.18)
By = Y (---)Re[iRR *], (5.19)

where the sums are over the different combinations of matrix elements which are possible
(i.e. RR™), along with their associated quantum numbers. The (-----) symbol refers to a
cofactor which is dependent upon the quantum numbers of the two interfering matrix
elements, and is explicitly defined in [Sey79]. In the case of Equation 5.17, this cofactor
has reduced to 2J+1 (as shown). The main thing to note from Equations 5.17, 5.18 and
5.19 is that the Ay coefficient expansion includes a factor which is linear in Re(RR'*),
and is thus proportional to cos(¢-¢"), while the By expansion includes a factor which is
linear in Re(iRR"™), and is thus proportional to sin(¢-¢"). By examining Equations 5.1
and 5.2, we see that this indicates that o(8) will be proportional to the cosine of the phase
differences between pairs of interfering transition matrix elements, while Ay(6) will be

proportional to the sine of these phase differences.
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5.2.2 Transition Matrix Elements for D(p,y)3He

In order to determine what transition matrix elements (TME's) are present in the
DX P,Y)3He reaction, it is appropriate to consider the angular momentum coupling that is
taking place. Figure 5.1 shows a diagram representing the radiative capture process for
D(p,y)3He. The proton (J®=1/2+) and deuteron (J®=1+) couple together to form a
variety of possible continuum states. These continuum states then decay by y-ray
emission to the 3He ground state (J®=1/2+).

All possible combinations of continuum quantum numbers (six in total) are shown
in Figure 5.1. Given the very low incident beam energy in this experiment (Ej3p=0-80
keV), one would expect relative s-wave capture (/=0) to dominate. However, Figure 5.1
shows that p-wave terms (I=1) have also been considered. One reason for this is that
there are no s-wave E1 transitions, and thus to include E1, we must allow for p-wave
terms. As was discussed in Chapter 4, E1 is the first (and most dominant) term in the
expansion of the electromagnetic field, and its inclusion will be shown to be extremely
important in fitting the data. Assignment of the y-ray mode (E or M) and multipolarity (L)
for a matrix element is done by determining which EL and ML multipoles can satisfy both
conservation of angular momentum and conservation of parity for the reaction in
question. Recall that the parity of an electric multipole (EL) is (-1)-, while the parity of a
magnetic multipole (ML) is (-1).+1. The parity of the continuum state (P) is simply
P=1cpm)(—1)l, where 7tp and ©tp are the intrinsic parities of the proton and deuteron (both
+), and the (-1)/ term is the parity arising from the relative orbital angular momentum of
the two particles. Since the parity of the final 3He ground state is known (+),
conservation of parity can be applied to determine the allowed transitions. The result is a

total of 9 possible matrix elements for the reacdon.
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1. s=1/2, =0, J=1/2 MT1)
2. s=1/2, I=1, J=1/2 (E1)
3. s=1/2, =1, J=3/2 (E1,M2)
4. s=3/2, =0, J=3/2 (M1, E2)
5. s=372, =1, J=1/2 (El)
6. s=3/2, I=1, J=3/2 (E1, M2)
: E =~ 5.5 MeV
I
I
: y-decay
| (EL or ML)
p+ D }
Ecme= 0-53.3 keV |
A
3
He: J =1/27

.Figure 5.1: Angular momentum coupling diagram for D(p,y)3He. The possible channel

spin values are s™=1/2% or 3/2+. The relative orbital angular momentum, /, has been

restricted to s-wave and p-wave capture only.

5.2.3 Constraining the fit

In a transition matrix element (TME) fit to the data, the nine possible D( p,Y)3He
matrix elements shown in Figure 5.1 will yield 17 free parameters (9 amplitudes and 8
relative phases). Trying to find a unique fit with this number of free parameters would be
extremely difficult, if not impossible. Fortunately, there are many reasonable

assumptions that we can make which will greatly reduce the number of free parameters in

the TME analysis.



118

The first assumption we make is to assume a certain structure for the 3He ground
state: we assume it to be describable by a p+D cluster model. In this picture, equivalent
to the assumption used in the direct capture model (see Chapter 6), the proton and
deuteron move about each other in either a relative s-wave or a relative d-wave (no p-
wave due to parity considerations). Since the s-wave is lower in energy, it should be
expected to dominate. Estimates of the D-state probability of 3He typically center around
9% [Vet85,Wel88]. Since the electric multipole operators are expected to be spin
independent to a large degree, we need only consider electric transitions which have As=0
(where As in this case is the change in channel spin between the continuum and final
states). Since the S-state of 3He must have channel spin 1/2 (in order to satisfy angular
momentumn coupling), we need only consider electric matrix elements which have s=1/2
when considering tfansitions to the 3He S-state. This indicates that we can neglect all E2
transitions to the S-state. The As=0 E1 and E2 transitions to the D-state are also
neglected due to the small D-state percentage.

The next assumption we make is to neglect M2 transitions. This is reasonable
based on the results of single particle shell model calculations for y-decay transition rates
in heavy nuclei (the well known Weisskopf estimates [Eis85]). These calculations predict
that M2 should only be the fourth strongest term in the expansion of the electromagnetic
field, following E1,M1, and E2. Based on these results, and the fact that M2 in this
reaction is all p-wave, it seems quite reasonable to neglect it when compared with the
other (allowed) transitions.

Making the above assumptions (i.e. removing all M2 transitions, along with the
s=3/2 E1 and E2 transitions, from Figure 5.1), we are left with four matrix elements:
two p-wave El terms; and two s-wave M1 terms. In particular, the Table 5.1 shows the

four matrix elements which are under consideration in the current analysis.
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The dominant TME's

s 1 J El or M1 Abbreviation
172 0 172 M1 2812
312 0 312 BYs! 4832
172 1 12 El 2Py
172 1 312 El 2p3)p

Table 5.1: The four matrix elements which are under consideration in the current TME

analysis for D(p,y)3He. The abbreviation used is 25+1/5.

As it turns out, a further constraint was necessary in order to obtain unique fits
with this set of matrix elements. This final constraint involved setting the J=1/2 and
J=3/2 E1 amplitudes and phases equal to each other. This final constraint is equivalent té
assuming a pure sin2@ angular distribution for the E1 transitions, and is the assumption
made by the authors of [Gri63]. As discussed in section 4.2, this is the case where the
spin-orbit coupling is negligible. Some important consequences of using this equal

amplitude and phase constraint will be discussed in subsection 5.2.4.
5.2.4 Performing the TME fit

Using Equations 5.17, 5 18 and 5.19, along with the equations given in [Sey79],
we can derive the following exact matrix element expansions for the Ay and By
coefficients in D(p,y)3He (using the matrix elements listed in Table 5.1 with no

constraints applied):
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2 2 2 2 2 2 4 2
Ag= 2’ Pm\ +4‘ Pm‘ +2| S +4} S | , (5.20)

1/2| 3/2

__4p |2 _ 2
Ap= —4‘ P Sm'cos(q) ¢Pl/2)+4| p

2
S ‘cos — s
Sy1/2 “ 172 (¢sl ¢ )

32 12 P

7 ,

2 2 2
A2=—4| P |cos(¢> Y )—ZlP i

3/2 P32 Py

3/2

_ 2 2 : _ _ 2p |4 ‘ - _
B1=-1333"P , Sl/2|sm(¢sl/2 q)pm) 1'333{ P1/2| Sii2 sm(¢53/2 q)pl/z)
2 2 . _ _ 2 4 : _
~0.6671%P_ Sm‘sm(q)Sm 0, ) 6.667, | S3/2|sm(¢53/2 0, )
_ 2p |op g _
By = -0.667P _ Pyz‘sm(q)pm !

In the case of the Py(8) observable, Equation 4.5 can be used to derive the
following expansions for the Fy and Gy coefficients in Equation 5.4 (with the same set of

matrix elerents as in Equation 5.20):

2

: (5.21)

e 12 ~ 2
F2_1.0| P P3/2{cos(¢ 0 )+o_5, P,

P3;2 P12

2 2 2 2
G0=’2P +2‘2P |+|Zs +2|4S ‘

1/2’ 3/2 1/2‘ 3/2

G1=|2P 25 ‘cos(d) -0 )—‘ZP ||25 ‘COS(‘D =6 )
312§ °172 sy TPay 172 P2 Sia Py

Gy = -|%p \2—2‘2P HZP cos®. 0 )
P32 172§ 372 P32 P12 ’

where the Fg and Fy coefficients are zero in this case.
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Using Equations 5.20 and 5.21, along with Equations 5.1, 5.2 and 5.4, we can
fit the acquired data for all observables simultaneously in order to obtain the amplitudes
and phases of the contributing matrix elements. The process of fitting the equations to the
data can be carried out by using the MINUIT minimization package [Jam77] to minimize
the total %2 fit to the data by means of a parameter search. The number of free parameters
in these fits will be seven (four amplitudes and three relative phases). However, if the
final constraint discussed in subsection 5.2.3 is also applied (i.e. if the E1 amplitudes and
phases are set equal to each other), the number of free parameters is reduced by four.
This can be seen by examining Equations 5.20 and 5.21, where it becomes apparent that
by setting the E1 amplitudes and phases equal to each other, we make the ratio of the
281 and 4S3/7 terms essentially arbitrary, and thus reduce the number of free parameters
by four instead of fwo. What we are left with is three free parameters: an M1 s-wave
amplitude (S); an E1 p-wave amplitude (P); and a relative phase (A). In the case of the
equal amplitude and phase assumption, the Legendre coefficients of Equations 5.20 and

5.21 can be re-written as:

Ao = 6|P] +6|S, (5.22)
A1 =0,
Ay = —6|P%,

By = —10[P|S|sin A,
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and,
Fy = L5P[%, (5.23)
Go = 3P[® + 332,
G1=0,
G, = 3P[2.

With the equal amplitude and phase assumption, Equations 5.22 and 5.23 can be
used, along with Equations 5.1, 5.2 and 5.4, in order to determine the P, S and A
parameters for a given set of data. The MINUIT code is still used to do the fitting.
However, it should be pointed out that if we restrict our analysis to the o(6) and Ay(0)
observables (i.e. if we don't consider PY(O)), as is the case in the binning analysis,
Equation 5.22 can be solved exactly for the P, S, and A parameters in terms of the

Legendre coefficients, and thus a 2 minimization using MINUIT is not necessary.
5.3 Thick Target Yield Results

In this section, we present the thick target yield results along with Legendre and
TME fits. Table 5.2 shows the acquired thick target yield data. Since no absolute cross
section has been calculated from this data, the errors shown are statistical only. Figure
5.2 gives a graphical picture of the acquired thick target yield data along with Legendre

fits to each observable. The results are summarized in Table 5.3.
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Thick target

yield results

Bem Ccem(B) (arb.units) Ay(6) P.(8)
- 120.2 0.769 + 0.023 0.089 £ 0.014 0.79 £ 0.30
105.2 09180007 || = -———— || e
91.0 1.000 * 0.009 0.085 £ 0.006 1.06 £ 0.23
61.7 0.825+0.015 || = == || e
604 || @ - - 0.095 £ 0.010 0.79 £ 0.27
60.2 0.805 £ 0.006 e .
31.6 0386 +0.012 || - || e
30.8 || - 0.124 +0.011 0.56 + 0.21
30.1 0358 +0.007 || = ———— || e
1.5 0.157 0004 ||  ——— || = -
0.0 0.157£0.003 ||  +=—-eme-- S

Table 5.2: The acquired D(P,y)3He data for the thick target yield analysis (Ep=80-0 keV)
shown vs. B¢, (evaluated at Ep=80 keV). The ¢(8) data has been normalized to 1.0 at

Ocm=91° (i.e. arbitrary units). The error bars shown are statistical only. Note that at

these energies, Gqn(0)=01ap(B) to better than 1% accuracy.

Legendre fit

a1 a2

by b2

Go

G2 F>

.066 + .014| | -.86+.02

.12+.01 .005+.004

98+.15 -.07+.2

-.52+.35 41£.06

Table 5.3: The Legendre coefficients extracted by fitting the 6(6), Ay(6) and P(6) thick

target yield data. The fits, in this case, are done independently.
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Figure 5.2: The acquired thick target yield data for D(p,y)3He. The solid lines are

Legendre fits to the data (done separately for each observable).
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Figure 5.3 shows the same set of D(p,y)3He thick target yield data shown along
with a TME fit. This fit has been done simultaneously to all the observables by using
Equations 5.22 and 5.23. These equations use the equal amplitude and phase
assumption. Among its other consequences, this assumption necessitates that
o(6)~sin26+constant (i.e. that the cross section be symmetric about 90°). The
implementation of the equal amplitude and phase constraint was necessary in order to
obtain a unique solution. If the data shown in Figure 5.3 were fit with Equations 5.20
and 5.21 (i.e. no equal amplitude and phase constraint), numerous solutions could be
found which, although all having the same 2 per degree of freedom (x2/v=0.83), gave
total M1 fractions varying from 2-13%. In addition, the ratios of the two M1 amplitudes
determined in these fits were completely arbitrary (as were the ratios of the two E1
amplitudes). By using the equal amplitude and phase assumption instead, exact solutions
could be obtained for an M1 s-wave amplitude, S, an E1 p-wave amplitude, P, and a

relative phase, A. Table 5.4 shows the results of the TME fit shown in Figure 5.3.

TME fit
v X2 P S A (deg.) % M1
14 1.49 0.308+0.001 0.160x£0.001 10.420.5 204403

Table 5.4: The results of the TME fit to the thick target D(p,y)3He data using the equal
amplitude and phase assumption (Figure 5.3). All observables are included in this fit.

With 17 data points and 3 varied parameters, there are 14 degrees of freedom 1in this fit

Although the equal amplitude and phase assumption seems to give a reasonable fit
to the data (as shown in Figure 5.3), the %2/v value is larger than in the unconstrained fits

(1.49 as compared with 0.83), and thus the question to ask at this point is how confident
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Figure 5.3: The thick target yield data for D(p,y)3He along with a TME fit (solid line).
This TME fit, done simultaneously to all the observables, used the set of matrix elements

in Table 5.1 along with the equal amplitudes and phases constraint.
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are we in using this assumption? By means of confidence limit tables for the 2
distribution [Bev69], we see that for v = 14 we expect a x2/v of 1.49 or worse about
10% of the time. Thus one could argue that our equal amplitude and phase assumption is
within the realm of reason. Another justification for the equal amplitude and phase
assumption comes from considering the data shown in Figure 5.4. In this figure, the
current binned data from Ep(lab)=30-40 keV (Ecn=20-26.7 keV) are compared with
recently acquired data from the p(d,y)3He reaction over the energy regime Eqn=16.6-26.7
keV [Ric95]. These two reactions complement each other in the sense that, in the center
of mass,B8pg=180"—84p. This allows forward angles in the p(d, Y3He reaction to be
compared to back angles in the D(p,y)>He reaction (which are typically hard to measure
experimentally). Combining these data sets, as shown in Figure 5.4 (plotted vs.
D(p,Y)3He center of mass angle), we see that the data are roughly consistent with a
symmetric distribution. The solid line is a Legendre fit to the data (with no constraints),
and the symmetric character of the data is made quite clear by this fit This result gives us
additonal confidence in the equal amplitude and phase assumption since one of the
rrimary predictions of this assumption is a symmetric angular distribution.

The constrained TME fit shown in Figure 5.3, which gives an M1 fraction of
~20%, included the Py(8) data in the fitting. From looking at the raw Py(6) data, it is
clear that they indicate a predominately E1 solution (a predominately M1 solution would
have Py(8) closer to zero). However, as it turns out in this cas~. the PY(G) data play no
special role in constraining the TME fit results. This is because the 6(6) data and Ay(8)
data alone necessitate a predominately E1 solution (when using the matrix elements in
Table 5.1). Sin~e the error bars on the Py(0) data are much larger than the 6(8) or Ay(6)
data, all possibie solutions present with just the 6(8) and Ay(6) data are also possible

once the Py(0) data has been added in. Thus, the role that the P(8) observable plays in
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Figure 5.4: D(p,y)3He data in the energy region Eqpn=20-26.7 keV, and p(d,y)3He data
in the energy region E.p=16.6-26.7 keV, are plotted vs. By, for D(p,¥)3He. The solid
line, which is a Legendre fit to all the data, shows the symmetric character of the angular

distribution.

the current TME analysis is primarily one of improving statistical accuracy by way of
providing additional data to be fit. The large error bars on the P(8) data make its
contribution to the results extremely small in the current case.

This relative insensitivity of the results to the Py(6) data would change in the
event that other matrix elements were considered. For example, if the three possible d-
wave M1 terms are also included in the fit (the 2S1/2, 4S1/2, and 4S32 TME's), and all
constraints are relaxed, the P,(0) data becomes much more important. Figure 5.5 clearly
demonstrates the importance of the Py(0) data in this case. The dashed line in Figure 5.5
represents a fit obtained using only the ¢(8) and Ay(e) data, while the solid line
represents a fit which included the PY(O) data. It should be pointed out that these two fits

were obtained using exactly the same set of matrix elements (2 E1 and 5 M1 TME's) and
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Figure 5.5: The thick target yield data for D(p,y)3He shown along with two TME fits.

Both of the fits use the matrix elements from Table 5.1 (with no constraints) along with
the three d-wave M1 terms mentioned in the text. The solid line (M 1=27%) includes the

P(6) data in the fitting, while the dashed line (M1=45%) does not.
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exactly the same set of starting values for the amplitudes and phases. This emphasizes
the fact that the only difference between the two fits is the inclusion of the extra
observable (P(0)) in the fit represented by the solid line.

By examining Figure 5.5, it is clear that the two fits are practically
indistinguishable based on the o1 8) and Ay(6) data, but with the inclusion of the P(6)
data, the solid line is clearly the preferred fit. This discrimination between the two fits is
significant from a physics standpoint, because the dashed line predicts an M1 fracuon of
45 *+ 0.7%, while the preferred solid line predicts an M1 fraction of 27 + 0.2%. The
inclusion of the PY(S) data has thus, in this case, helped discriminate between two
possible solutions which otherwise would have been indistinguishable. Of course, we
can use reasonable arguments to neglect d-wave capture in the first place (the centrifugal
barrier). It should élso be pointed out that the solutions obtained using this set of seven
matrix elements are not unique, and thus are not quantitatively useful in the current
analysis. The only reason for considering this fit is to demonstrate a possible use for the

P.(8) observable in a hypothetical set of circumstances.
5.4 Results from the Binning Analysis

In this section, the results for the D(p,Y)3He binning analysis are presented. The
results will be presented in terms of the center-of-bin beam energies, —E—p(lab). The goal
of this section is to demonstrate the energy dependence of the 6(6,E) and Ay(8,E)
observables. Since the P,(6) data was only analyzed for the whole 0-80 keV region, no
P(6) data will discussed in this section.

Tables 5.5 and 5.6 show the results from the binning analysis presented as a

function of Bj,p and E p(lab). The reason for presenting the data as a function of E ;(lab)
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6em(0,E), in nb, as a function of 6},p and E(lab)

B1ab 15 keV | |25 keV | (35 keV ||45_keV ||55 keV keV | |75 keV

1° 0.20 + 0.03| [0.66 + 0.05| [1.28 + 0.08] |1.62 + 0.10 [2.09 + 0.11] |2.32 + 0.12| [2.43 + 0.13
31° 0.29 + 0.03| |1.10 + 0.04 [2.31 + 0.06| [3.65 + 0.08| |5.27 + 0.09| [6.43 + 0.10| |7.64 + 0.11
60° 0.48 + 0.03| |2.07 + 0.08( [4.26 + 0.11|[7.15 £ 0.16/ | 1052 0.2 | [140+ 02| |16.1 £ 02
91° 0.52 + 0.03| [2.38 + 0.08 [5.63 + 0.13}|9.62 £ 0.17|[ 135+ 0.2 ||17.4 + 03 ||21.1 + 03
105° SR | 550 + 0.39(|9.61 + 0.63| [ 120+ 08 [|16.1 £ 1.0|[|189 + 1.2
120° ||0.46 £ 0.04[|1.90 + 0.09| |4.74 + 0.16/ |8.02 £ 0.22| [11.7 £+ 03 || 147+ 03 |[16.1 £ 0.3

Table 5.5: The 6cm(6,E) results for the D(P,Yy)- iie binning analysis presented as a
function of Ojap and Ep(lab). The error bars are statistical only. Since Gem=0lab t0

within 1% accuracy, we henceforth refer to 6¢p as simply ©.

Ay(8,E)
O1ab 15 keV [[25 keV ||35 keV ||45 keV ||55 keV ||65 keV [[75 keV
31° 147 + 138[[.125 + .061| | 216 £ .043||.129 + .034| |.124 + .029] |.126 + .026 |.158 + .024
60° 183 £ .154[.138 + .068] |.087 £ .047| |.096 + .037||.077 + .031| |.094 + .028 |.072 + .026
91° 116 £ .075| [.164 + .039] [.106 £ .025||.069 + .020| [.079 + .017||.081 £ .015||.092 + .014
120° 260+ .200( [.220 + .094]|.032 + .055( [.115 £ .047||.116 + .039| |.070 £ .036| |.120 + 035

Table 5.6: The Ay(6,E) results for the D(p,y)3He binning analysis presented as a

function of 6,1 and Ep(lab).

is simply to provide easy reference for the experimentalist. To obtain the results as a
function of Ep,, use the relation Ecm=(2/3)ﬁp. The reason for presenting the data as a

function of Bj,p instead of O¢p is that B¢y depends on the beam energy, and thus a
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presentation in terms of B)3p saves considerable space. It should be emphasized,
however, that all analysis (i.e. Legendre fits and TME fits) were done using the exact
values of 6.y at each bin energy.

Figures 5.6-5.12 show graphically the acquired D(p,y)3He data for the binning
analysis. For each figure, the 6(6) data (in nanobarns) is plotted along with the Ay (6)
data. The energy bins are identified by the center-of-bin beam energy, Ep(lab). For the
o(0) data, only the statistical error has been shown (as discussed in Chapter 3, the
estimated systematic error 1s 9% ). The solid lines shown in Figures 5.6-5.12 are TME
fits to the data with the matrix elements in Table 5.1. These TME fits include the equal
amplitude and phase constraint. The dashed lines in Figures 5.6-5.12 are Legendre fits to
the data. Figure 5.13 shows graphically the acquired Legendre coefficients for
DX p,Y)3He. Table 5.7 summarizes the results of the Legendre analysis. The extracted by

coefficient was consistent with zero, and is not shown. The total angle integrated cross

section is defined as ot=4mAy, and the results for 6 are shown in Table 5.8.

Legendre Coefficients vs. Energy
15 keV |25 keV |35 keV (|45 keV ||55 keV |65 keV [[75 keV
A¢ (nb)||.425 + .022/ [1.79 + .049| |4.26 + 0.08 |7.14 £ 0.11||10.2 £ 0.13| [129 + 0.2 | | 147 + 0.2
aj 027 + .120{ [.063 £ .063| | -.12+ .04 ||-11+ .04 ||-.10 £ .03 | |-.055+.027| |.024 + .026
ap -.560%.112| | -72+ .06 | |-60+ 04 ||-67 £ .03 ||-69 +0.03|[-77 + .03 [|-86 = 0.02
by 185 + .081| [.223 + .043| |.122 + .027||.107 £ 022||.115 + .018| |0.11 + 0.02] [0.13 + 0.02
Table 5.7: The Legendre coefficients extracted from the D(p,y)3He binning analysis.

The energy shown is the center-of-bin beam energy, Ep(lab). The errors on Ag are

statistical only.
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