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A MEASUREMENT OF THE PARITY-CONSERVING,
TIME-REVERSAL VIOLATING CROSS SECTION

OF POLARIZED NEUTRONS ON ALIGNED HOLMIUM

by

Paul Reece Huffman

A test of parity-conserving, time-reversal (T ) invariance in polarized neutron trans-

mission through an aligned holmium target has been performed at the Triangle Universities

Nuclear Laboratory. The measurement searches for the T -violating five-fold correlation

(FC) term s · (I ×k)(I ·k) in the neutron-nucleus forward scattering amplitude, where s is

the spin of the neutron, k is the momentum of the neutron, and I is the spin of the target.

A 6 MeV polarized neutron beam is produced in the 2H(~d, ~n)3He reaction, and is

transmitted through a rotating, cryogenically aligned, single crystal of 165Ho. The holmium

target is in the shape of a cylinder mounted vertically with its alignment axis pointing

radially out. The holmium is cooled to ∼ 150 mK with a 3He – 4He dilution refrigerator and

undergoes spontaneous nuclear alignment due to the hyperfine interaction. The transmitted

neutron flux is detected using a four-detector array of plastic scintillator detectors. A second

scintillator array is located between the neutron production target and the holmium sample

for flux normalization. A double modulation technique — flipping the neutron spin while

simultaneously rotating the alignment axis of the holmium target — is used to isolate the FC

term. The neutron spin is directed vertically along (I×k), and is flipped every 100 ms in the

eight-step sequence +−−+−+ +− . The target alignment axis is rotated 22.5◦ every four

minutes in the sequence −180◦ → +180◦ → −180◦. The alignment of the target is measured

using thermometry, and is verified with measurements of the deformation effect cross section

at 9.4 MeV. The polarization of the neutron beam is obtained from measurements of the

left-right asymmetry of the 2H(~d, ~n)3He source reaction.

An asymmetry is formed from the transmission yields for the two neutron spin-

states and is fit to the form a0 + a2 sin 2θ where θ is the angle between the alignment



axis and k. The FC term a2, is identified by its sin 2θ angular signature. A value of

a2 = (1.1± 1.0)× 10−6 is extracted, which corresponds to a bound on the T -violating spin-

correlation coefficient A5 of (8.6±7.7)×10−6 , consistent with time-reversal invariance. The

measurement represents an improvement of a factor of four over previous detailed balance

studies of time-reversal invariance in nuclear reactions, and now represents the most precise

direct test of time-reversal invariance in nuclear physics.
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Chapter 1

Introduction

Symmetry concepts have played an important role in understanding basic physics.

The discrete symmetry operators are parity (P), charge conjugation (C ), and time reversal

(T ). While each may separately be violated, the combination of the symmetries via the

CPT theorem [Lüd57] is believed always to be conserved. Parity and charge conjugation

violations were the first to be observed in weak interactions. For many years, the combina-

tion of CP however was believed to be conserved, as was T on its own. But, in 1964, the

CP -violating decay of the neutral kaon system was observed [Chr64], and the combination

of CP -violation and the CPT theorem implied that time-reversal invariance was violated.

To this date however, no experiments have directly observed time-reversal violation in any

system.

The discovery of CP -violation prompted numerous searches for time-reversal violat-

ing interactions. The experiments are generally classified into two categories: those which

conserve parity and those which do not. The most precise parity non-conserving, time-

reversal violating experiments include measurements of the electric dipole moments (edm)

of the neutron [Smi90, Alt92], of atomic 199Hg [Jac93], and of molecules [Cho89]. Using

the bounds set by these measurements, P -odd T -violating interactions are known to be

. 10−11 times smaller than the strong interaction [Hen89, Her92], approaching limits which

are the predictions set by the standard model at the ∼ 10−16 level [Hen89].
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Time-reversal violating interactions which are parity conserving are much less con-

strained. Previous detailed balance tests (27Al + p � 24Mg + α) constrain the strength

of this interaction to only . 10−3 times the strength of the strong interaction [Bla83].

These interactions can only arise within the standard model through second order weak

interactions or can arise in first order in exotic models [Eng95]. Studies of P -conserving,

T -violating interactions are therefore searches for physics beyond the standard model.

Since the discovery of compound nuclear resonance enhancements in parity viola-

tion [Alf83], low energy neutron physics has quickly emerged as a sensitive way of testing

fundamental symmetry violations. On-resonance enhancements of ∼ 105 − 106 have been

observed in parity-violating transmission asymmetries using epithermal neutrons. These

enhancements have lead to a systematic study of the parity-violating interaction through

measurements in many nuclei [Bow93]. This work has laid the foundation for similar studies

of T -violating interactions using both resonance enhancements (as in the parity violating

measurements) [Huf95] and MeV neutron transmission [Kos91].

Searches for T -violating interactions using neutron transmission study P -non-con-

serving, T -violation through the three-fold correlation term, and study P -conserving, T -

violation through the five-fold correlation term. The three-fold correlation refers to an

s · (I × k) vector dependence in the total cross section. Here s is the spin of the incident

neutron, I is the spin of the target nucleus, and k is the momentum of the neutron beam.

Development of a 139La target is underway at Kyoto University (139La shows a 10% parity

violation at 0.73 eV) [Shi93], but experiments to measure this three-fold correlation term

remain in the development stages [Mas93].

The five-fold correlation (FC) term in the neutron total cross has a s · (I ×k)(I ·k)

vector dependence. It is studied via polarized neutron transmission through an aligned

target. The angular dependence of the FC term varies as sin 2θ when s is perpendicular to

(I × k) with θ defined as the angle between I and k. A double modulation procedure —

flipping the neutron spin while simultaneously rotating the holmium alignment axis — is

used to extract the T -violating FC term. Measurements of this term using polarized neu-
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tron transmission through a rotating aligned 165Ho target have previously been performed,

setting bounds of ∼ 10−2 on αT (the ratio of the T -violating to T -conserving nuclear matrix

elements) [Kos90, Kos91]. This measurement laid the foundation for the work discussed in

this thesis, where the upper bound on the P -conserving, T -violating interaction is improved

by a factor of fifty. The large improvement results from a higher neutron polarization, a

higher target alignment, and a larger neutron flux.

Neutrons are produced in the 2H(~d, ~n)3He polarization transfer reaction and are

transmitted through a rotating, cryogenically aligned, single crystal of 165Ho. The holmium

target is in the shape of a cylinder mounted vertically with its c-axis pointing radially

out. The holmium is cooled with a dilution refrigerator to ∼ 150 mK, and undergoes

spontaneous nuclear alignment due to the hyperfine interaction. Polarized neutrons are

transmitted through the holmium target and detected at 0◦ using a four-detector array of

plastic scintillator detectors. A second scintillator array is located between the neutron

production target and the holmium sample for flux normalization purposes. The spin of

the neutron beam is directed along (I × k) and is flipped every 100 ms in the eight-step

sequence + − − + − + + − . The target is rotated 22.5◦ every four minutes in the

sequence −180◦, . . . ,−22.5◦, 0◦, 22.5◦, . . . ,+180◦, . . . ,−180◦. An asymmetry is formed from

the transmission yields for the two neutron spin-states and is fit to the form a0 + a2 sin 2θ

to extract a bound on the FC term a2. This bound is directly compared to measurements

in other systems using the theoretical analysis of Engel et al. [Eng95].

This thesis presents measurements of the five-fold correlation term at 5.9 MeV. The

theoretical framework for this measurement is presented in Chapter 2. The experimental

apparatus and procedures are discussed in Chapter 3. Chapter 4 presents the systematic

effects that can arise and measurements of various quantities needed in the analysis of the

time-reversal data. Chapter 5 presents the analysis of the data and Chapter 6 concludes

this thesis with a presentation of the results of this measurement, including comparisons

with measurements in other systems. The present measurement is now the most precise

direct test of parity-conserving, time-reversal invariance in nuclear physics.



Chapter 2

Theoretical Background

The theoretical framework of this experiment is presented beginning with a brief

description of polarization phenomena. This formalism is then used to discuss the spin-

dependence in the total cross section, including the parity-conserving, time-reversal violat-

ing term of interest. The final section presents the theoretical analysis needed to compare

the results of this experiment with other time-reversal measurements.

2.1 Polarization Formalism

The analysis of the data from experiments involving polarized beams and/or targets

is facilitated if the proper formalism is used to describe the polarization states. Over the

years, numerous conventions have arisen to describe polarization states and polarization

observables, but the most useful is based on the Madison convention [Sat71], and uses the

spherical tensor notation to label the polarizations. This section discusses these tensors. A

general discussion of polarization formalism and observables is given by Simonius [Sim74].

For an ensemble of particles with nuclear spin s, the probability of a particle being in

a given magnetic substate m is given by the density matrix ρmm′ . Since the density matrix

is not the most convenient form to represent polarization phenomena, ρmm′ is expressed in
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terms of irreducible spherical tensors

tkq(s) = ŝ
∑
m

(−1)s−m〈ssm′−m|kq〉ρmm′ , (2.1)

where k denotes the rank of the tensor (0 ≤ k ≤ 2s) with components q (−k ≤ q ≤ k)

[Sim74], 〈abαβ|cγ〉 denotes a Clebsch-Gordan coefficient [Bri71], and ŝ =
√

2s + 1. Spherical

tensors are chosen because they have simple rotational properties compared to the density

matrices.

For beams produced in a polarized ion source, the geometry of the magnetic fields

in the ionizer creates a symmetry axis for the polarization. Similarly, cryogenically aligned

targets will have a symmetry axis defined by the crystal structure. These systems are axially

symmetric and the statistical tensors t̃kq(s) describing the polarization states are diagonal

(t̃kq(s) = 0 for q 6= 0). The statistical tensor in an arbitrary direction ŝ given an initially

axially symmetric tensor t̃k0(s) is

tkq(s) =

√
4π

2k + 1
Y q

k (ŝ) t̃k0(s), (2.2)

where Y q
k (ŝ) is a spherical harmonic. The direction of the unit vector ŝ is given by the polar

angles (θ, φ) defined in Figure 2.1 in accordance with the Madison convention [Sat71].

The neutron beam is produced via the 2H(~d, ~n)3He reaction and thus the polarization

of both the deuteron beam and the neutron beam must be considered. The deuteron has a

spin of s = 1 and, since it is created with a polarized ion source, two tensors are sufficient

to completely describe its polarization state: t̃10(1) and t̃20(1). These are related to the

vector and tensor polarizations Pz and Pzz via Pz =
√

2
3 t̃10(1) and Pzz =

√
2 t̃20(1). The

deuteron beam emerges from the polarized ion source with its polarization along the z -axis.

A Wien filter rotates the polarization symmetry axis along the vertical y-axis (in order

to produce vertically polarized neutrons) and the deuteron beam is then accelerated and

strikes a deuterium gas cell to produce a polarized neutron beam.

The neutron polarization Pn at 0◦ can be expressed in terms of the vector and tensor



CHAPTER 2. THEORETICAL BACKGROUND 6

y

z

x

φ

θ

s

Figure 2.1: The coordinate system for scattering experiments adopted by the Madison
convention [Sat71]. The beam is directed along the z -axis with the y-axis defined by the
scattering plane.

polarizations of the deuteron beam [Ohl72]:

Pn =
3
2 Ky′

y (0◦)Pz

1− 1
4 Azz(0◦)Pzz

(2.3)

where Ky′
y (0◦) is the polarization transfer coefficient and Azz(0◦) is the tensor analyzing

power. The polarization of the neutron beam is along the same direction as the polarization

of the deuteron beam. To measure this polarization, a pair of detectors is placed symmet-

rically about the z -axis at angles ±θ. The left-right asymmetry for the detector pair is

[Ohl72]

ELR =
NL −NR

NL + NR
=

3
2 Ay(θ)Pz

1 + 1
2 Ayy(θ)Pzz

, (2.4)

where NL and NR denote the number of neutrons scattered into the left and right detec-

tors, and Ay(θ) and Ayy(θ) are the (known) vector and tensor analyzing powers for the

2H(~d, ~n)3He reaction.

The polarized ion source is configured to produce a beam with vector polarization

either parallel (+) or antiparallel (−) to the positive y-axis, which leaves four unknown po-

larization states with maximum values of P±z = ±1 and P±zz = 1. Substituting Equation 2.4
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into Equation 2.3, and taking P±zz = |P±z | [Kei94], gives the neutron polarization in terms

of the left-right polarization asymmetry E±LR:

P±n =
Ky′

y E±LR(
Ay(θ)∓ 1

3 Ayy(θ) E±LR ∓ 1
6 Azz(0◦) E±LR

) . (2.5)

A general discussion of polarization transfer reactions can be found in [Ohl72].

The spin of the holmium nucleus is 7/2 and a complete description of its polarization

requires spherical tensors up to rank 7 (0 ≤ k ≤ 7). Even-rank tensors correspond to

alignment, whereas the odd-rank tensors correspond to polarization. A discussion of the

alignment of the holmium requires an understanding of its crystal structure and is deferred

to Section 3.4.1. Due to the crystal structure and method of alignment, the holmium sample

has zero net polarization (t̃k0 = 0 if k is odd). This property is used later to isolate the

five-fold term in the total cross section.

2.2 Spin-Dependent Total Cross Section

The spin-dependent total cross section for neutron scattering has been discussed in

detail by numerous authors ([Alf73, Bar87, Gou90, Hni87, Hni94a, Hni94b]). It is derived

from the optical theorem and forward scattering amplitude in Appendix A. Following the

notation introduced there, the neutron total cross section, σT , is separated into a sum of

partial cross sections, σkK , that depend on the rank of the statistical tensors describing the

polarization states of the beam (k) and target (K). The total cross section is given by

σT =
∑
kK

t̃k0(s) t̃K0(I)σkK , (2.6)

where the beam direction (k̂) is taken along the z -axis, s denotes the spin of the incident

neutron beam, I denotes the spin of the target, and ` is the angular momentum of the

neutron. The spin-orbit angular momentum coupling scheme (`+s = j, j+ I = J) is used

and the quantities t̃k0(s) and t̃K0(I) denote the polarization states of the beam and target
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in their axially-symmetric frames. The partial cross sections, σkK , are [Hni94b]

σkK = 4πλ2 k̂K̂

ŝÎ
Im

∑
Λ

Λ̂CkKΛ(ŝÎk̂)
∑

J`j`′j′

(2J + 1) ˆ̀̂̂′

×
〈
`Λ00|`′0

〉
W

(
JjIK; Ij′

)


` s j

Λ k K

`′ s j′


T J

`′j′`j, (2.7)

where W (abcd; ef) is a Racah coefficient [Bri71],

8>>>>><
>>>>>:

a b c

d e f

g h i

9>>>>>=
>>>>>;

is a 9-j coefficient [Bri71], and

λ is the reduced wavelength. The T -matrix elements, T J
`′j′`j = (1/2i)(SJ

`′j′`j − δ``′δjj′),

contain the elements of the elastic-scattering S -matrix for the reaction (Section 2.2.2). The

spin-correlation coefficients, CkKΛ(ŝÎk̂), are defined by

CkKΛ(ŝÎk̂) =
(4π)3/2

k̂K̂

[[
Y q

k (ŝ)⊗ Y −q
K (Î)

]
Λ0
⊗ Y 0

Λ(k̂)
]

00
, (2.8)

where the product of two spherical tensors Y q
k (ŝ) and Y −q

K (Î) coupled to rank Λ and pro-

jection 0 is given by[
Y q

k (ŝ)⊗ Y −q
K (Î)

]
Λ0

=
∑

q

Y q
k (ŝ)Y −q

K (Î) 〈kKq −q|Λ0〉 . (2.9)

These tensor products can be rewritten as vector products of the spin and momentum unit

vectors (ŝ, Î, and k̂) to more readily illuminate the angular dependences in the total cross

section. This is examined in the next section.

2.2.1 Angular Dependence of the Total Cross Section

The spin-correlation factors CkKΛ(ŝÎk̂) contain all of the geometric features of the

partial cross sections. For a given (kKΛ), the tensor product in Equation 2.8 can be

rewritten using Equation 2.9, to explicitly show the angular dependences as vector products

of the spin and momentum unit vectors. A summary of these relations for all possible ranks

of neutron polarization (k = 0, 1) and ranks of target polarization/alignment to K = 2 is

given in Table 2.1.
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(kKΛ) CkKΛ(ŝÎk̂) P T

(000) 1 + +

(011) −
√

1
3 Î · k̂ − +

(022) 3
2 [(Î · k̂)2 − 1

3 ] + +

(101) −
√

1
3 ŝ · k̂ − +

(110) −
√

1
3 ŝ · Î + +

(111) − i√
2
ŝ · (Î × k̂) − −

(112)
√

3
2 [(ŝ · k̂)(Î · k̂)− 1

3(ŝ · Î)] + +

(121) −
√

3
10 [(ŝ · Î)(Î · k̂)− 1

3 (ŝ · k̂)] − +

(122) i
√

3
2 [ŝ · (Î × k̂)(Î · k̂)] + −

(123) −
√

15
2 [(ŝ · k̂)(Î · k̂)2 − 2

5(ŝ · Î)(Î · k̂)− 1
5(ŝ · k̂)] − +

Table 2.1: The vector dependence of the spin-correlation coefficients and their transforma-
tions under the parity (P) and time-reversal (T ) operators. The symbol + (−) denotes an
even (odd) transformation.

The present experiment measures the partial cross section σ12(Λ = 2) ≡ σFC . A

geometry is chosen where the neutron spin direction (ŝ) is along the y-axis, its momentum

(k̂) along the z -axis, and the target spin (Î) in the x-z plane. In this situation, only three

partial cross sections are important: the unpolarized cross section (σ00), the deformation

effect cross section (σ02), and the five-fold correlation cross section (σFC). The total cross

section to order K = 2 is thus

σT = σ00 + t̃20(I)σ02 + t̃10(s) t̃20(I)σFC . (2.10)

The deformation effect cross section is a measure of how nonspherical the nuclear

mass distribution is. It is independent of the neutron polarization, depending only on the

alignment of the target. Using Equations 2.7 – 2.9, the deformation effect term in the cross

section is

σ02 = 4πλ2

√
5

ŝ2Î
P2(cos θ)

∑
J`j`′j′

(−1)s−`−j′ (2J + 1) ˆ̀̂̂′

×
〈
`200|`′0

〉
W

(
JjI2; Ij′

)
W

(
`j`′j′; s2

)
Im

{
T J

`′j′`j

}
, (2.11)
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where θ is defined as the angle between the directions of the diagonal tensors describing

the target alignment and the beam direction (ie. Î · k̂ = cos θ) and P2(cos θ) is a Legendre

polynomial. In this form, the P2(cos θ) angular dependence is evident. For targets with

I ≥ 2, partial cross sections with higher order alignments can also exist and these have

been discussed in detail by Koster [Kos90]. Holmium is spin I = 7
2 and the higher order

terms (σ0K for K = 4, 6) are negligible in this experiment due to the small t̃40(I) and t̃60(I)

alignment. Measurements of the deformation effect cross section are presented in Chapter 4.

The five-fold correlation (FC) term in the cross section depends on both the beam

polarization and target alignment. As shown in the next section, this term is zero only if

time-reversal is a good symmetry. Using Equation 2.7, σFC is given by

σFC = πλ2

√
15

2ŝ2Î
sin 2θ

∑
J`j`′j′

(−1)s−`−j′ (2J + 1) ˆ̀̂̂′

×`(` + 1)− `′(`′ + 1)− j(j + 1) + j′(j′ + 1)√
s(s + 1)

×
〈
`200|`′0

〉
W

(
JjI2; Ij′

)
W

(
`j`′j′; s2

)
Im

{
iT J

`′j′`j

}
. (2.12)

Note that the five-fold correlation term requires both a polarized beam and an aligned

target. A transfer of two units of angular momentum is required (` + 2 = `′) and the

term exhibits a sin 2θ angular dependence. This sin 2θ angular dependence and the neutron

polarization dependence are used to isolate this term.

2.2.2 Parity and Time-Reversal Operations on σT

The five-fold correlation term is non-zero only if time-reversal invariance is violated.

This section introduces the parity (P) and time-reversal (T ) operators and the behavior of

the partial cross sections under these operations. We conclude by looking explicitly at the

FC term in the cross section.

The parity operator is a reflection in space (r → − r) [Sac87] and operates on a

wave function ψ as

P ψ(r, t) = ψ(−r, t). (2.13)
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The time-reversal operator, on the other hand, is a reflection in time (t → − t) [Sac87]

and operates on a wave function ψ as

T ψ(r, t) = ψ∗(r,−t). (2.14)

These relations, when applied to angular momentum eigenstates with spin I, intrinsic parity

πI , and momentum k̂, give

P |k̂, ImI〉 = πI |−k̂, ImI〉 (2.15)

and

T |k̂, ImI〉 = (−1)I−mI |−k̂, I−mI〉. (2.16)

The behavior of the neutron partial cross sections under the P and T operations are

contained in the spin-correlation coefficients CkKΛ(ŝÎk̂) and the elastic-scattering S -matrix.

Application of Equations 2.15 and 2.16 to CkKΛ(ŝÎk̂) and SJ
`′j′`j will thus determine the

transformations of the partial cross sections under P and T.

The spin-correlation coefficients have simple transformations under the P and T

operations. Beginning with the parity operator, the directions of the spins of both the beam

and target do not reverse sign, whereas the direction of linear momentum does (ŝ, Î, k̂ →

ŝ, Î,−k̂). Using the property of the spherical harmonics, Y m
` (−r̂) = (−1)` Y m

` (r̂), the

CkKΛ(ŝÎk̂)’s transform under the parity operation as

P CkKΛ(ŝÎk̂) = (−1)Λ CkKΛ(ŝÎk̂). (2.17)

Clearly, Λ defines whether the spin-correlation coefficients are even (Λ is even) or odd (Λ

is odd) under the parity operation.

The time-reversal operation, on the other hand, reverses the directions of both the

spins and momenta (ŝ, Î, k̂→ −ŝ,−Î,−k̂). Application of the T operator to the spherical

harmonics gives T Y m
` = (−1)`+m Y −m

` , which implies that the spin-correlation coefficients

transform as

T CkKΛ(ŝÎk̂) = (−1)k+K+ΛCkKΛ(ŝÎk̂). (2.18)
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If k + K + Λ is even (odd), CkKΛ(ŝÎk̂) is therefore even (odd) under the time-reversal

operation. The behaviors of the spin-correlation factors under P and T (to order K = 2)

are summarized in Table 2.1.

The elastic scattering matrix SJ
`′j′`j — commonly referred to as the S -matrix —

contains the dynamics of the nuclear reaction. The S -matrix is defined (for total angular

momentum J) as the probability that a beam in the angular momentum state `j, exits in

the state `′j′ [Bla79]. The S -matrix conserves flux,

∑
`′j′

∣∣SJ
`′j′`j

∣∣2 = 1, (2.19)

and requiring orthogonality between angular momentum entrance states makes the S -matrix

unitary. By definition, if a system is time-reversal invariant, both the time-reversed wave

function, T ψ(t), and the wave function, ψ(t), must be eigenstates of the Hamiltonian of

the system. Combining time-reversal invariance with the unitary property leads to the

reciprocity theorem [Bla79]:

SJ
`′j′`j = SJ

`j`′j′ . (2.20)

Explicitly stated, the S -matrix is symmetric and unaffected by the reversal of initial and

final states, provided that nuclear reactions are time-reversal invariant.

The two terms in the FC partial cross section that are affected by the time-reversal

operation are the spin-correlation coefficient (which reverses sign – Table 2.1), and the

elastic-scattering S -matrix (which remains unchanged – Equation 2.20). Under the T op-

eration, this partial cross section transforms as

T σFC = −σFC . (2.21)

Since the partial cross section changes sign upon application of the T operator, the five-fold

partial cross section σFC must be identically zero for a system that is time-reversal invariant.

A non-zero value of σFC would therefore directly indicate a violation of the time-reversal

symmetry.
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2.2.3 Isolating the Five-Fold Correlation Term

For a neutron transmission experiment, the five-fold correlation partial cross section

can be isolated by forming an asymmetry between the number of neutrons transmitted with

“spin-up” (+) and those with “spin-down” (−). The neutron transmission yield N± is a

function of the incident flux N±0 , the target thickness n, and the total cross section σ±T

[Kra88],

N±(0◦) = N±0 (0◦)e−nσ±T . (2.22)

By forming an asymmetry between the normalized neutron transmission yields,

E =
N+(0◦)/N+

0 (0◦)−N−(0◦)/N−0 (0◦)
N+(0◦)/N+

0 (0◦) + N−(0◦)/N−0 (0◦)
, (2.23)

the five-fold partial cross section can be isolated. Reversing the direction of the neutron spin

(ŝ → −ŝ) leaves the unpolarized and deformation effect partial cross sections unchanged

(σ00 → σ00 and σ02 → σ02), whereas the five-fold correlation partial cross section reverses

sign (σFC → −σFC). Thus, the unpolarized and deformation effect terms in the cross section

are removed by forming this asymmetry and the five-fold correlation term is isolated. The

asymmetry is

E = tanh(n t̃10(s) t̃20(I)σFC)

∼= n t̃10(s) t̃20(I)σFC (2.24)

if σFC is very small. In reducing Equation 2.23, the reciprocity of the S -matrix (SJ
`′j′`j =

SJ
`j`′j′) was used to combine σFC with its time reversed state. A measurement of E is

therefore a direct measure of asymmetric terms in the S -matrix. This means that a non-

zero value of E would violate the reciprocity theorem, and therefore time-reversal invariance.

It is customary to remove the angular dependence in σFC and quote a bound on a

new spin-correlation coefficient A5 defined by

A5 =
1

sin 2θ
σFC

σ00
. (2.25)
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A5 is related to the normalized asymmetry E via

A5 =
a2

t̃10(s) t̃20(I)n σ00
, (2.26)

where a2 is the magnitude of the sin 2θ component in E .

2.2.4 Contributions from False Asymmetries

Although Section 2.2.3 implies that the five-fold correlation term can be uniquely

isolated, T -conserving terms that can mimic a sin 2θ angular dependence in the normalized

asymmetry must be considered. These terms can exist, either from systematic effects or

sequential interactions. A detailed discussion of systematic effects and the steps taken to

remove them is presented in Chapter 4. This section discusses the problem that, regardless

of systematic effects, sequential T -conserving interactions can produce a sin 2θ component

in the normalized asymmetry.

The sequential interaction terms in the asymmetry are present independent of any

systematic considerations. These interactions require a neutron to be scattered through one

interaction channel and then rescattered through another channel with the two reactions

combining to give an angular signature in the asymmetry. Bowman et al. [Bow89] has shown

that only one such combination of interactions exist that can generate a sin 2θ dependence,

namely the (ŝ · k̂) interaction combined with the (ŝ · Î)(Î · k̂) interaction. The real part of

one of these interactions will precess ŝ about either k̂ or Î — depending on the interaction

— resulting in a horizontal component of ŝ in the x-z plane. The imaginary part of the

other amplitude would produce an absorption of the neutron beam that is preferential of

the neutron spin. Both interactions are parity-violating and are known to be small.

Stodolsky [Sto86] was the first to identify these terms, and to show how they can

be removed by analyzing the spin of the neutron beam after it passes through the target.

Kabir [Kab88] expanded this discussion to include all possible combinations of reactions

that can mimic a T -violating signal and how such an analyzer removes these effects. This

procedure, although unambiguous in determining the T -violating asymmetry, requires an-
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alyzing the neutron polarization after the neutrons exit the target. This is a very inefficient

procedure because it requires a second scattering process, effectively reducing the number

of neutrons detected by ∼ 104. Measuring an asymmetry at the 10−6 level is therefore

completely impractical because it would require fluxes of neutrons of order ∼ 1010. For FC

measurements however, it turns out that the T -conserving terms that can generate the FC

angular signature are smaller than the limits of the present measurement and a neutron

spin-analyzer is not required.

The sequential interaction terms that can generate the sin 2θ angular signature have

been independently measured. The (ŝ · k̂) term was measured by Soderstrum et al. [Sod88]

to be (−2.4 ± 2.6) × 10−4. The (ŝ · Î)(Î · k̂) term is measured in the present experiment

(presented in Chapter 4) to be (−1.0 ± 1.2) × 10−5. When combined, effects from the

sequential interaction of these terms must be . 10−9, well below the limits of the present

measurements.

2.3 Microscopic T-Violating Optical Potential

In this section we discuss a framework in which this measurement can be compared

at a fundamental level to measurements in other systems. Parity-conserving, time-reversal

violating interactions do not arise in the minimal standard model [Hax94]. Such interac-

tions can only be generated through weak corrections to P -, T -violating interactions and

are expected to be extremely small [Her92]. P -conserving, time-reversal violation can, how-

ever, be modeled in terms of a meson exchange model [Sim75]. Meson exchange models

treat the nucleons as fundamental particles which interact through the exchange of mesons.

These models have produced a satisfactory description of the nuclear force and are widely

used in describing nucleon-nucleon (NN ) interactions at low energies ( < 300 MeV). This

description also gives a model in which to compare measurements in different systems to

fundamental quantities.

Simonius [Sim75] has shown that P -conserving, T -violation can arise only through
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ρ±

gρ gρ gρ

Figure 2.2: The Feynman diagram representing T -violating ρ-exchange given by Simonius
[Sim75]. ḡρ is the ratio of T -violating to T -conserving coupling constants and gρ is the
standard T -conserving coupling constant.

charged vector meson exchanges. Identical particle interactions — neutron-neutron or

proton-proton — are strongly suppressed by the Pauli exclusion principle and the dom-

inant process is neutron-proton interactions. Pseudoscalar meson exchanges (for example

the π) and uncharged vector mesons (for example the ω) can not contribute, leading to

charged ρ-exchange as the lowest order meson contributing to P -conserving, T -violating

interactions. Processes involving heavier mesons (such as the A1) are suppressed by short-

range nucleon-nucleon repulsion, leaving charged ρ-exchange as the dominant P -conserving

T -violating process.

The charged ρ-exchange interaction is parameterized by ḡρ, the ratio of T -violating

to T -conserving coupling constants. A Feynman diagram depicting this exchange is shown

in Figure 2.2. The ρ-exchange interaction potential is given by Engel et al. [Eng94]:

V ρ
1,2 = Vρ

1,2 [τ1 × τ2]3 (2.27)

with

Vρ
1,2 =

m3
ρg

2
ρ ḡρµν

4πM2

e−mρr12

m3
ρr

3
12

(1 + mρr12)(σ1 − σ2) · `, (2.28)

where r12 = r1−r2, ` = r12× 1
2 (p1 − p2), µν = 3.70 µN is the isovector nucleon magnetic

moment (µN is the nuclear magneton), M is the nucleon mass, and gρ = 2.79 is the normal

strong ρNN coupling constant. The T -violation occurs in the isospin product [τ1 × τ2]3,

where τ1 and τ2 denotes the isospin operators of the two nucleons in the NN system.

The ρ-exchange interaction potential given in Equation 2.27 can be used to construct



CHAPTER 2. THEORETICAL BACKGROUND 17

an optical potential Ū(r) through a microscopic folding model calculation. Such a procedure

has been performed for 165Ho by Engel et al. [Eng94]. A zero-range approximation (mρ →

∞) is used to calculate the expectation value of the ground state interaction. Terms linear

in the target spin I are removed and the resulting expression is used to generate an optical

potential Ū(r). The complete expression for this potential is given by Engel et al. [Eng94].

Two unique features of the potential are worth mentioning. The potential contains

a factor T5,

T5 =
1
2
r−2 {s · (I × r)(I · r) + (I · r)(I × r) · s}

= −2i
√

π [[I ⊗ I]20 ⊗ [Y2(r̂)⊗ s]20]00 , (2.29)

which is a symmetrized form of the five-fold operator C122(ŝÎk̂) with r denoting the neutron

position. Secondly, the radial form of the potential is unique in form and is shown in

Figure 2.3.

The strength of the potential is comparable to the interaction between the incident

neutron and a single valence proton in the outer shell of the nucleus. The effect is therefore

suppressed by a factor of 1/A compared to typical one-body potentials. Koster et al.

estimated the T -violating nuclear matrix elements by taking the ratio of inelastic to elastic

cross sections for scattering into the first 7/2− excited state of holmium [Kos92a]. This

method assumes the potential is dependent upon the nuclear density, which does not contain

this 1/A suppression.

The P -conserving, T -violating potential Ū(r) is used in a coupled-channels optical

model code to calculate the observable A5 given by Equation 2.26, thus relating ḡρ to

a measurable quantity. The coupled-channels code chuck [Kun80] was used to perform

these calculations, using Young’s parameterization of the strong interaction alongside Ū(r)

[You83]. The deformed shape of the holmium nucleus (β = 0.3) was also taken into account.

A5 as a function of energy is given in Figure 2.4 for ḡρ = 1. Note the spin-correlation

coefficient A5 is maximized around En = 6 MeV.

Upon measuring A5, a limit on the T -violating ρ-exchange coupling constant ḡρ can
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Figure 2.3: The radial dependence of the P -conserving, T -violating optical potential mul-
tiplying T5 (ḡρ = 1) [Eng94].

be set using the calculations of Engel et al. [Eng94]. The spin-correlation coefficient A5

scales linearly with ḡρ and a bound can be extracted directly. Short range repulsions were

ignored in the folding-model calculations above, so the bound on ḡρ must be increased by

an additional factor of 2.9 not included in Figure 2.4 [Hax94].

Traditionally, limits on time-reversal violation are given in terms of αT , the ratio of

T -violating to T -conserving nuclear matrix elements. The connection between αT and ḡρ

has been established by Haxton et al. [Hax94] and given by

αT =
3.6
300

ḡρ. (2.30)

The scaling factor comes from taking the ratio of the T -violating nuclear matrix element to

that of the strong interaction. Taking ḡρ = 1, an average nuclear matrix element of 3.6 keV

was calculated using the Simonius ρ-exchange potential [Sim75]. This matrix element is

then divided by the average matrix elements of the strong interaction, of order ∼ 300 keV.
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Figure 2.4: The spin-correlation coefficient A5 for ḡρ = 1 [Eng94].

With this formalism in hand, present experimental bounds can now be compared

with both electric dipole moment and detailed balance experiments. A comparison is pre-

sented in Chapter 6.



Chapter 3

Experimental Apparatus and

Procedure

3.1 Overview

The five-fold correlation time-reversal measurement involves transmitting polarized

neutrons through an aligned holmium target. In this chapter, we discuss the production of

the neutron beam, the cryogenically aligned holmium target, and the electronics and data

acquisition. Neutron beams are created through secondary reactions and the most efficient

reaction available for producing a 6 MeV polarized beam is 2H(~d, ~n)3He. The polarized

deuteron beam is created using the TUNL Atomic Beam Polarized Ion Source (ABPIS)

and accelerated through a FN Tandem Van de Graaff. Neutrons are produced when the

polarized deuteron beam strikes a deuterium gas cell. The neutron flux is transmitted

through a holmium target which consists of a holmium single crystal cooled to ∼ 150 mK by

a dilution refrigerator with a rotating central shaft. The transmitted neutrons are detected

with a four-detector array of plastic scintillator detectors and a similar four-detector array

is positioned between the gas cell and the target to monitor the neutron flux. The beam

polarization is monitored by two liquid scintillation detectors placed at ±36◦ with respect

to the beam direction. Counts from these ten detectors are collected using standard NIM
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Figure 3.1: Block diagram of the TUNL Atomic Beam Polarized Ion Source. The symbols
are defined in the text.

and CAMAC electronics, and stored using the xsys data acquisition system.

3.2 Charged-Particle Beam

3.2.1 Polarized Ion Source

Polarized beams at TUNL are created using a high intensity Atomic Beam Polar-

ized Ion Source (ABPIS). This source is capable of producing both polarized hydrogen and

deuterium beams, and is utilized in the majority of experiments at TUNL. Positive beam

currents of up to a hundred microamperes are available for low energy (< 80 keV) experi-

ments, and negative beam currents of five to seven microamperes are available for injection

into the accelerator. Since the design and construction of the ABPIS is well documented

[Cle95a, Cle95b, Din95], only a brief overview will be given.

A block diagram of the ABPIS depicting the major components of the source and

their relative locations is given in Figure 3.1. Deuterium gas enters the dissociator and flows

through a glass tube surrounded by radio-frequency (RF) coils operating at 13 MHz. This

cavity creates a discharge in the gas which dissociates the deuterium molecules into atoms.

The atoms exit the dissociator through a cryogenic copper nozzle, forming a beam. The

nozzle is cooled to 30 K to reduce the energy spread of the beam and the surfaces of the
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nozzle are coated with nitrogen gas to minimize the recombination of atoms into molecules.

The atomic beam enters the sextupole magnets which focuses atomic substates with

spin projections of mJ = +1/2 and de-focuses substates with mJ = −1/2. The emerging

“atomic-polarized” beam then passes through an RF transition unit and into a second

sextupole.

Nuclear polarization is created in the RF transition units by tuning the RF os-

cillators to frequencies that correspond to the energy difference between hyperfine states.

Two types of transition units are used in the ABPIS: strong field (SF) and medium field

(MF) units. The designs of the two units differ in the strength of the magnetic field and

operational frequency. The SF unit operates between 75–155 G and 330–1485 MHz. This

cavity can be tuned to a given field and frequency to allow transitions between two nuclear

polarization states. In this experiment, SF2 was operated at 80 G and 460 MHz. The MF

unit operates at a lower magnetic field and frequency, 8–40 G and 7.5–28 MHz. These

cavities can be tuned to allow multiple transitions between nuclear polarization states to

occur. Both MF units were used to create the polarized deuteron beam. MF1 was operated

at 25 G and 28 MHz and MF2 was operated in the “weak-field” mode at 8 G and 8 MHz.

In practice, the power to the RF transition units can be rapidly toggled between

two separate units to reverse the direction of the spin of the beam. For the two polarization

states used in this experiment, MF1 was continuously on, while SF2 and MF2 were toggled

to produce “spin-up” and “spin-down” beams respectively. The transition schemes used to

produce the two spin-states can be expressed in a series of deuterium level diagrams. These

diagrams depict the hyperfine splitting of the atomic and nuclear substates as a function of

magnetic field. The stronger the magnetic field, the larger the energy separation between

states. The SF transitions occur at large magnetic fields where the energy separation is

large, and the MF transitions occur at low magnetic fields where the separation is small.

Figures 3.2 and 3.3 give the energy level diagrams and the transition schemes. The six

levels are numbered according to the substate, where the left set of arrows corresponds to

the atomic polarization substate and the right set corresponds to the nuclear polarization
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Figure 3.2: The ABPIS transition scheme for “spin-up” deuterons expressed in terms of
energy level diagrams. The six levels are numbered according to the substate, where the
left set of arrows denotes the atomic polarization and the right set denotes the nuclear
polarization.
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Figure 3.3: The ABPIS transition scheme for “spin-down” deuterons expressed in terms
of energy level diagrams. The six levels are numbered according to the substate, where
the left set of arrows denotes the atomic polarization and the right set denotes the nuclear
polarization.
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substate.

In each of the two spin-states, the first sextupole de-focuses states 4, 5, and 6. MF1

then induces a transition between states 3 and 4. The second sextupole de-focuses state 4,

leaving states 1 and 2 remaining. For the “spin-up” transition, SF2 induces a transition

between states 2 and 6, leaving the beam in a state with maximum polarization P +
z = 1

and P +
zz = 1. The “spin-down” transition utilizes MF2 in the “weak-field” mode to induce

transitions between states 1 and 4 and states 2 and 3 to produce a beam with maximum

polarization P−z = −1 and P−zz = 1. The actual polarizations are approximately 80% of the

maximum.

The polarized beam emerges from the transition units and enters the electron cy-

clotron resonance (ECR) ionizer. The ECR ionizer produces high energy electrons in a

plasma created with N2 buffer gas. Electrons are confined within the plasma both axi-

ally and radially with magnetic fields and are excited by microwave power. Ionization of

the polarized beam occurs as the atoms collide with the electrons, leaving a positive ion

beam. These ions are accelerated to 1500 V and pass through the cesium oven. The cesium

charge-exchange reaction is utilized to add two electrons to the deuterium ions. Efficiencies

of about 10% for conversion from positive to negative beam are observed. The resulting

negative beam is then ejected into the accelerator.

Due to the geometry of the sextupole magnetic fields, the beam emerges with the

symmetry axis of its polarization along the axis of the source. Since experiments can

require an arbitrary direction of the symmetry axis, a Wien filter is utilized to orient the

spin direction. A magnetic field is used to rotate the spin direction and a perpendicular

electric field used to prevent deflection of the beam. In this experiment, the polarization

symmetry axis was rotated perpendicular to the beam axis and oriented along the vertical

y-axis. This required a magnetic field of 1953 G. The polarized deuteron beam then exits

the ABPIS and enters the TUNL low energy beam transport facility. The beam has an

energy of 80 keV, corresponding to the frame voltage of the source.
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Figure 3.4: The TUNL low energy beam transport facility.

3.2.2 Beam Transport

The charged particle beam is transported from the ABPIS, through the accelerator,

and into the experimental area. The low energy beam transport facility is shown in Fig-

ure 3.4. Upon exiting the Wien filter, the beam passes through a 30◦ analyzing magnet and

is focused through a series of electrostatic quadrupoles, magnetic quadrupoles, and Einzel

lenses before injected into the accelerator. Typical currents of 5–7 µA of polarized beam

were observed on the low energy Faraday cup.

The accelerator is a High Voltage, Inc. Tandem Van de Graaff model FN. It accepts

negative beam and accelerates it towards the positive potential at the terminal. The beam

passes through a carbon foil removing both electrons, and is then accelerated away from

the positive terminal [VdG60]. The energy of the beam is therefore 2eVTerminal. The

terminal is encased in a tank containing a mixture of nitrogen, carbon dioxide, and sulfur

hexafluoride. Two tubes consisting of alternating glass and stainless steel plates connect the

terminal to each end of the tank and serve both as a beam pipe and voltage divider circuit.

The terminal is biased by two pelletron charging systems and controlled through a corona

feedback system. A beam transmission efficiency of about 70% was observed through the
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accelerator for energies used in this experiment.

The positive beam emerges from the accelerator and is transported to the exper-

imental area through the high energy beam transport facility shown in Figure 3.5. The

beam is analyzed and deflected 59◦ towards the polarized target facility. The magnetic field

of the analyzing magnet fixes the energy of the beam. The magnetic field is regulated with

feedback from a nuclear magnetic resonance probe. A pair of tantalum slits are located

at the exit of the analyzing magnet for energy control of the beam through the corona

feedback circuit. The beam is then transported directly to the neutron production target

using magnetic steerers and magnetic quadrupoles to steer and focus the beam. Three sets

of tantalum slits are connected through feedback circuits to magnetic steerers to control the

position of the beam. A NEC beam profile monitor allows monitoring of the shape of the

beam. The third set of feedback slits are located directly in front of the neutron production

target and fixes the position of the beam on the target. Typical beam currents on target

were 0.5–2.0 µA.

3.2.3 Spin Transport

The spin of the deuteron beam is rotated by magnetic fields due to the interaction

of the field with the deuteron’s magnetic moment. Therefore, the spin rotation due to

the analyzing magnets must be considered. For the time-reversal measurement, the spin

is chosen to be along the vertical y-axis, the same direction as the magnetic fields in the

bending magnets. Since the spin will precess about the direction of the magnetic field, the

direction of the polarization symmetry axis is unchanged when the beam reaches the target.

However, measurements of false T -violating effects (Section 4.4) require placing the spin of

the deuteron beam in the x-z plane, which will undergo precession.

If a beam with non-zero spin I, charge q, mass m, and magnetic moment µ is deflected

through a bending magnet of angle θ, spin components perpendicular to the magnetic field

will precess through an angle

α =
µm

I~q
θ = gθ. (3.1)
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Figure 3.5: The TUNL high energy beam transport facility.
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Figure 3.6: Spin precession of the deuteron beam during transport.

For deuterons, |g| = 0.857, and the direction of the precession is given by the sign of the

charge of the beam. For example, if a negative beam enters a bending magnet at an angle

φ, it will emerge at an angle φ′ where

φ′ = φ + θ(1− g). (3.2)

A pictorial representation of the orientation of the polarization symmetry axis (spin-axis)

required to obtain the spin-axis along the x -axis or z -axis at the target is shown in Figure 3.6.

A Wien filter magnetic field of −850 G was used for the x -axis orientation and 1166 G for

the z -axis orientation. The direction of the Wien filter was rotated 90◦ with respect to the

direction used in producing vertically polarized deuterons.
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3.3 Neutron Production and Detection

3.3.1 Neutron Production

When a polarized deuteron beam strikes a deuterium gas target, a polarized neutron

beam is produced. The outgoing neutron flux is proportional to the incident deuteron flux

and the density and thickness of the production target. The time-reversal measurement

requires the highest possible neutron fluxes. To achieve this, the neutron production target

was designed for high density and thickness. The 2H(d,n)3He reaction has Q = 3.269 MeV.

Three factors determined design of the most efficient gas cell: density and thickness

of the gas, energy spread of the beam, and solid angle considerations. Standard deuterium

gas cells at TUNL operate with a maximum of 8 atm (1.3 mg/cm3) of deuterium gas at room

temperature. Typical lengths are, at most, 6 cm giving the product ρt = 7.9 mg/cm2. For

this experiment, the density of the gas is increased by cooling the cell with liquid nitrogen

while maintaining 8 atm of pressure. The fixed size of the holmium target and the entrance

window of the gas cell determines the solid angle (Section 3.3.2). A shorter cell allows

a larger solid angle and is therefore preferred. The length of the cell combined with the

density of the gas also determines the energy spread of the neutron beam. The length is

chosen to correspond to a 2.5 MeV energy spread in the beam with 8 atm of gas. A longer

room temperature gas cell could have been designed to give the same product of ρt, but the

effective solid angle would have been greatly reduced.

The final design is 3.81 cm long and 0.851 cm diameter. The beam enters the

cell through a 15.2 µm Havar foil and the deuteron beam is stopped by a 0.51 mm gold

cylindrical tube surrounding the gas and a 0.51 mm foil on one end. The incoming beam is

collimated by four tantalum slits forming a 0.625 cm diameter beam 5.91 cm in front of the

Havar foil. These slits are connected to feedback steerers to center the beam on the Havar

foil and prevent deuterons from hitting the copper surrounding the gas cell. Figure 3.7

depicts a cross sectional view of the gas cell and beam collimation.

The cell is cooled to liquid nitrogen temperatures by a coldfinger connecting the
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Figure 3.7: Cross sectional view of the deuterium gas cell and collimation (actual size).

cell to a 25 l liquid nitrogen bath. The cooling system of the cell is shown in Figure 3.8.

The copper coldfinger is mechanically clamped to the gas cell and extends 71 cm to the

liquid nitrogen. A base temperature of 86 K is obtained with 8 atm gas and no beam.

The temperature of the gas cell is monitored with a calibrated 1000 Ω (at 0 ◦C) platinum

thermometer attached to the gas cell and regulated using a 5.0 Ω heater thermally anchored

to the cell. The heater is powered by a locally designed temperature controller similar to

a Linear Research LR-130. Beam currents of up to 2.0 µA are observed at 3 MeV, adding

up to 6 W of heat to the cell. To minimize systematic effects in the normalized detector

asymmetry due to beam heating effects (discussed in Appendix D), the temperature of the

gas cell is stabilized at 168 K. Variations in temperature are observed to be less than 0.5 K

with beam on the cell.

The cell is housed in a thin-walled stainless steel vacuum can that connects to the

vacuum of the beam line. The cell is pumped by both the beam line vacuum pumps and

by activated charcoal surrounding the coldfinger.

The cell was filled using the system shown in Figure 3.9. Deuterium gas of 99.9%

purity is filtered through a liquid nitrogen cooled cold trap containing activated charcoal.

The cell is filled to 5 atm of gas at room temperature, cooled to 168 K, and then pressurized
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Figure 3.8: Cooling system for the deuterium gas cell.
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Figure 3.9: Gas handling system for the deuterium gas cell.

to 8 atm. The gas enters the cell through a 1/8” OD stainless steel tube thermally anchored

to the coldfinger. Once filled, the cell is isolated from the filling system, fixing the volume

of the gas. The pressure is monitored and a relief valve is present to protect the Havar foil

separating the gas from the beam line vacuum. The relief value was set to open at 8.5 atm.

With a gas thickness of ρt = 8.84 mg/cm2, a 4.86 MeV deuteron beam is required

to produce a neutron beam with an average energy of 5.9 MeV. The 59◦ analyzing magnet

was set to a field of 0.736400 T, requiring a terminal voltage of VTerminal = 2.39 MV. The

energy losses of the deuteron beam in the gas cell produce an energy spread in the neutron

beam. This spread is calculated using the computer code babel [Bow82]. For an incident

deuteron beam with energy 4.9 MeV, the energy spread of the neutron beam was calculated

to be ±1.3 MeV with an average energy of 5.9 MeV. Energy losses from the Havar foil

and deuterium gas are summarized in Table 3.1. The neutron beam energy was verified

by locating resonances in oxygen near 6 MeV using the procedures described by Wilburn

[Wil93]. The calculations from babel agree with the measured energy values to within

100 keV.

3.3.2 Neutron Collimation

An open geometry is used in this experiment with the detectors located such that

neutrons are not detected unless they pass through the holmium target. The solid angle
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Location Ed En

Havar Entrance 4.86
2H Entrance 3.83 7.10
2H Center 2.60 5.86
2H Exit 1.36 4.55

Ēn(spread) 5.86 (2.55)

Table 3.1: Deuteron and neutron energies in the deuterium gas cell. Energies are given in
MeV.

13 cm 70 cm

7.2°

Figure 3.10: The neutron solid angle subtended by the 0◦ detectors.

is fixed by the entrance window of the deuterium gas cell and the holmium target. The

locations of the gas cell, target, and 0◦ detectors are shown in Figure 3.10, with the dashed

lines depicting the acceptance angle. The detectors are placed 70 cm directly behind the

target and subtend a solid angle of 15.8 msr.

Monte-Carlo calculations of the inscattering from surrounding material and the

small angle scattering within the holmium target were performed using the program mcnp

[JFB93]. These calculations are presented in Appendix B. They indicate that less than 1%

of the counts arise from small angle scattering from the holmium target and less than 1%

of the counts arise from scattering from surrounding material. These mcnp calculations

were important in confirming estimates of the neutron fluxes and in estimating cross-talk

between adjacent neutron detectors.
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Figure 3.11: Cross-sectional view of the monitor scintillator array (actual size).

3.3.3 Neutron Detection

A four-detector array of neutron detectors monitors the neutron flux emerging from

the gas cell. The scintillation material is machined into four segments forming a square

opening around the solid angle of the beam. The detectors thus monitor a “halo” of the

beam surrounding the solid angle. Pilot-U scintillation material [NET] is used to obtain

short scintillation pulses. Pilot-U has a 1.36 ns decay constant, a density of 1.032 g/cm3,

and ratio of H:C atoms of 1:1.1. A cross-sectional view of the scintillator array is shown in

Figure 3.11. The opening forms a square 1.9 cm on edge and the scintillators are 1.27 cm

thick.

The scintillators are connected to the photomultiplier tubes through highly polished

lucite light guides. The guides are 2.54 cm long, 2.86 cm diameter on one end, and 1.27 ×

2.10 cm on the other end. The connections between the photomultiplier tubes, light guides,

and scintillators are made with Bicron BC-630 optical grease [Bic] and mechanically pressed

together. The outer surfaces of the light guides and scintillators are covered with aluminum

foil for light reflection and wrapped with electrical tape to seal out external light.

The four phototubes extend from the light guides perpendicular to each other at a

45◦ angle with respect to the vertical axis. Positioning the phototubes along the vertical
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Figure 3.12: Monitor detector assembly

and horizontal directions is not possible due to the location of the dilution refrigerator.

The phototubes are Hamamatsu R-1398 [Ham94], 1-1/8” head-on type photomultiplier

tubes, which have a 10-stage current amplification, a maximum anode to cathode voltage of

−1900 V, and a rise time of 2.0 ns. The maximum anode to cathode current is 0.2 mA, which

ultimately determines the maximum counting rates. The tubes are biased between −1000 V

and −1100 V using a LeCroy HV4032A power supply, and connected to a transistorized

voltage divider base. A Mumetal shield surrounds each base to minimize magnetic fields.

The four detectors are assembled in the configuration shown in Figure 3.12. This assembly

operates reliably at count rates up to 15 MHz.

A similar four-detector array was constructed for the 0◦ transmission detector. The

scintillation material is Pilot-U and a polished lucite light guide provides the transition from

the 6.35 × 6.35 × 10.2 cm thick scintillator to the 2” diameter photomultiplier tube. The

tubes are Hamamatsu 1828-01 [Ham94], 12-stage tubes with typical rise times of 1.3 ns.
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Figure 3.13: 0◦ detector assembly

The tubes have a maximum anode current rating of 0.2 mA and maximum voltage rating

of −3000 V. They are surrounded with magnetic shielding and typically biased between

−1600 V and −1700 V with a LeCroy HV4032A power supply. A side view of the 0◦ detector

array is shown in Figure 3.13. This array operated reliably at count rates up to 10 MHz.

Due to the high counting rates in the monitor and 0◦ detector arrays, a standard

voltage divider circuit can not supply enough current to maintain linearity in the high

gain stages of the photomultiplier tubes. A transistorized base is used to minimize voltage

deviations and thus gain nonlinearities. The transistors are chosen to have a high forward

current ratio (β = 65) while withstanding high voltage biases. The resistor values are

selected to obtain the standard voltage division recommended by Hamamatsu [Ham94]

and capacitors added to provide ample charge for pulse operation. A schematic of the

transistorized voltage divider circuit for both sets of detectors is provided in Appendix C

(Figures C.1 and C.2).

The voltage divider circuits are assembled on a printed circuit board. The compo-

nents are matched to assure consistency and attached directly to the photomultiplier tube

bases. The monitor circuit is mounted inside a chamber machined to both house the circuit

board and serve as part of the detector mounting hardware. The voltage distribution for
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a fixed input voltage applied to the individual circuits are given in Tables C.1 and C.2 of

Appendix C. The detectors are electrically isolated to maintain a single ground connection

for the electronics.

3.3.4 Neutron Polarimeter

The neutron polarization is monitored using the left-right asymmetry from the

2H(~d, ~n)3He reaction. The polarimeter consists of two liquid scintillator detectors (NE-

213) placed at ±36◦ with respect to the beam direction 66 cm from the cell. The detectors

are mounted in the horizontal (x-z ) plane and face the center of the deuterium gas cell.

The scintillators are 4.5 × 15.8 × 7.6 cm thick and are painted with reflective paint. Each

scintillator is connected to a Hamamatsu type H1161 phototube [Ham94] through a pol-

ished lucite light guide. The phototube base uses a standard voltage divider circuit, and

are biased to −1650 V using a Fluke 415 high voltage supply.

3.4 Target

3.4.1 Holmium

Holmium is chosen as the target nucleus because it is monoisotopic (165Ho) and single

crystals have a large internal hyperfine field. The large hyperfine field allows cryogenic

alignment of the nuclei in the absence of an external magnetic field. In addition, large

metallic single crystal samples are commercially available, making holmium an ideal nucleus

for the five-fold correlation time-reversal measurement.

The 165Ho nucleus has spin and parity Iπ = 7
2

−. Holmium is a rare earth element

which exhibits unique magnetic properties. The crystal structure of metallic holmium is

hexagonal close-packed. Below 131 K, holmium undergoes a magnetic-ordering transition

to an antiferromagnetic state. A second transition occurs to a ferromagnetic state below

20 K [Koe66]. In the ferromagnetic state, the magnetic moments are directed 10◦ out of the

a-b basal plane and are parallel within a given plane. In successive planes, the moments
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are rotated 30◦ about the c-axis, forming a cylindrically symmetric spiral structure about

the c-axis.

Holmium has two unpaired 4f electrons, which generate a large internal hyperfine

field. Holmium has both a magnetic dipole and electric quadrupole moment, both of which

interact with the field, to create a hyperfine energy splitting between nuclear levels. The

internal field orients the nuclei if the thermal energy is comparable to or less than the energy

splitting. In the absence of an external magnetic field, nuclear alignment with respect to

the c-axis occurs when the sample is cooled below 1 K.

The interaction of the nuclear magnetic dipole moment with the effective hyperfine

field can be modelled by the Hamiltonian H = µ B
I Iz, with energy eigenvalues Em = Am.

The electric quadrupole interaction is modelled by the Hamiltonian H = P [I2
z − 1

3I
2] and

has energy eigenvalues Em = P [m2 − 1
3I(I + 1)]. The coefficients A and P in

Em = Am + P [m2 − 1
3I(I + 1)] (3.3)

have been determined empirically by Krusius et al. [Kru69]. They found A = 0.319 ±

0.003 k (eV) and P = 0.004 ± 0.001 k (eV).

The probability that a given nucleus is in substate m is given by the Boltzmann

distribution function

am =
exp(−Em/kT )∑

m

exp(−Em/kT )
. (3.4)

The tensor t̃ planar
K0 describing the alignment of the nucleus along the axis of its magnetic

moment is given by [Kra86]

t̃ planar
20 = 6

√
5Î

√
(2I − 2)!
(2I + 3)!

[∑
m

m2 am −
1
3
(I + 1)

]
. (3.5)

Combining Equations 3.3, 3.4, and 3.5 gives the tensor alignment as a function of temper-

ature and is shown in Figure 3.14. The tensor alignment t̃ planar
20 reaches a maximum value

of
√

7
3 at T = 0 K and 96% of the maximum at 100 mK.

The symmetry axis of the alignment is directed along the c-axis of the crystal and

only the c-axis components of the magnetic moments contribute to this alignment. The
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Figure 3.14: t̃ planar
20 as a function of temperature.

polarization tensor along the symmetry axis is related to the planar alignment tensor using

Equation 2.2

t̃20 = P2(cos 80◦) t̃ planar
20 , (3.6)

where 80◦ corresponds to the angle between the magnetic moments and the c-axis of the

crystal. The maximum value of t̃20 for holmium is therefore

t̃20 =

√
7
3

P2(cos 80◦) = −0.695. (3.7)

The single crystal sample used for this experiment was grown by Ames Laboratory

[Ame] and machined in a cylindrical shape with the c-axis perpendicular to the cylinder

axis. The 101.6 g sample is 99.8% holmium. The cylinder is 2.29 cm diameter and 2.8 cm

in height.

The crystal is cleaned using an electropolishing technique. First, the oxide surface

layer of the crystal is removed with fine sandpaper and an acid solution. The solution
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consists of a mixture of 20 ml lactic acid, 5 ml phosphoric acid, 10 ml acetic acid, 15 ml

nitric acid, and 1 ml sulfuric acid. The acid solution is applied with a cotton swab and

rinsed with ethanol following the techniques given by Roman [Rom65]. The electropolishing

apparatus consists of a stainless steel beaker (used as the cathode) holding a solution of

1–2% perchloric acid in methanol. The beaker is suspended in a dry-ice/acetone bath. The

holmium is suspended in the perchloric acid solution and a 0.5 A current applied between

the holmium sample and the beaker. The electropolishing takes approximately five minutes.

The sample is removed from the bath, rinsed first in the dry-ice/acetone bath and then with

methanol. The electropolishing technique is described by Beaudry et al. [Bea78]. In order

to assure good thermal contact between the holmium and the copper mounting holder, a

layer of gold is evaporated onto the surface of the holmium.

3.4.2 Dilution Refrigerator

The holmium sample is cooled with the aid of a 3He – 4He dilution refrigerator. The

refrigerator is a homebuilt model, similar in design to a SHE model DRI-420 commercial

refrigerator. It has a cooling power of 85 µW at 110 mK with a base temperature of 42 mK.

A central shaft extends from room temperature to the sample holder to allow the target to

be rotated. The design and construction of the refrigerator is discussed by Koster [Kos90]

and this section serves only to overview the dilution refrigerator in general.

In order to understand the basic principles behind the operation of a dilution re-

frigerator, we must first look at the properties of a 3He – 4He mixture. Depending on

the relative concentrations of 3He and 4He, the mixture can exist either as a normal fluid

or superfluid. As the temperature of the mixture is lowered, a phase separation occurs

which separates the mixture into two components: a 3He-rich solution which “floats” on

top of a heavier 4He-rich solution. In the operating regime of a dilution refrigerator (below

500 mK), the 3He-rich layer is essentially pure 3He, while the 4He-rich layer is a mixture of

approximately 94% 4He and 6% 3He. Since below 500 mK, superfluid 4He is essentially in

its quantum mechanical ground state, the 4He-rich phase can be thought of as a 3He gas in
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an inert 4He background. The dilution refrigerator (DR) utilizes the latent heat involved

in this phase separation to cool samples to temperatures as low as 5-10 mK.

The refrigerator consists of four main components: the coldplate, still, heat exchang-

ers, and mixing chamber. A block diagram showing the principal parts of a DR is shown

in Figure 3.15. The phase separation occurs in the mixing chamber and continuous cooling

is possible through recirculation of 3He.

The still contains the 4He-rich solution, and when pumped on, 3He is preferentially

removed due to the lower vapor pressure of the 3He. In order to maintain equilibrium, 3He

will continuously diffuse across the phase boundary in the mixing chamber into the 4He-rich

phase. By connecting a sample to the mixing chamber, the latent heat required for the 3He

to cross the phase boundary can be removed from the sample, allowing the sample to reach

milli-Kelvin temperatures. Heat exchangers are required to minimize the heat load from

the incoming 3He and the coldplate precools the incoming 3He to 1.2 K before it enters the

heat exchangers. Quality heat exchangers are essential in achieving low temperatures.

The DR is housed inside of a liquid helium cryostat. The cryostat consists of a

liquid nitrogen shield surrounding a liquid helium bath. A vacuum jacket surrounds the

liquid nitrogen bath, the liquid helium bath, and the dilution refrigerator.

3.4.3 Rotation Apparatus

A shaft extending from the top of the cryostat to the sample allows for rotation of the

holmium sample while cold [Kos92b]. The hardware for the rotation apparatus consists of

a stepping motor, a 25:1 gearbox, a shaft encoder, and a computer controller. The stepping

motor is connected to the central shaft through an anti-backlash 25:1 gearbox. The shaft

enters the vacuum can through a rotating fluid seal and extends roughly 200 cm to the

target. The shaft consists mainly of 3/16” OD thin-walled stainless steel tubing, separated

by solid copper couplers to minimize the thermal radiation from room temperature entering

through the shaft. The shaft extends to directly above the target, connecting to the sample

holder.
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Figure 3.15: Schematic of a dilution refrigerator.
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The sample holder is shown in Figure 3.16. The central shaft extending from the

top of the refrigerator connects to a precision ground 0.5000” stainless steel bearing shaft

(Berg S8-70 [Ber]). The shaft passes through two greaseless, high-precision, stainless steel

bearings (Berg B2-11-U [Ber]) mounted directly above the sample to insure the stability

of the target during rotation. The deviations of the sample during rotation were less than

.005 cm side-to-side movement and .007 cm vertical displacement. The angular position is

reproducible to within 0.16◦.

The holmium sample is mounted into a copper holder machined .003 cm smaller

than the sample. The sample is mounted using a press-fit connection into the cylindrical

holder. The holmium is cooled in liquid nitrogen and then placed into the heated copper

holder. When thermal equilibrium is reached, the sample is firmly inside the holder. When

the sample and holder are cooled by the refrigerator, the larger thermal expansion coefficient

of the copper further tightens this connection.

A small magnet is mounted inside the bearing shaft for positioning purposes. The

field from this magnet is measured with a Hall probe and used to verify angular positioning

of the target. The field varies with angle as cos θ.

The sample holder is connected to the mixing chamber through three copper braids.

Each braid consists of 110 strands of .016 cm copper wire extending 15 cm. The braids are

long enough to insure a full 360◦ rotation of the target.

The heat capacity of holmium at 300 mK is 7.3 J/mole-K [Kru69]; 3.6 J of heat

must therefore be removed in cooling the sample from 1.2 K to 100 mK. Good thermal

connections between the mixing chamber and sample are essential. The largest thermal

resistance was in the braids connecting the mixing chamber to the sample holder. This

resistance is calculated to be 750 K/W, assuming the screw connections have a thermal

resistance of 20 K/W [Lau79]. The sample typically cools from 1.2 K to 100 mK in eight

to ten hours.
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Figure 3.16: The sample holder for the holmium target.
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3.4.4 Thermometry

The temperature of the target is measured using resistance thermometry and con-

firmed by the deformation effect measurements. A calibrated Dale 1000 Ω resistor is

mounted to the sample holder and connected to a SHE model PCB conductance bridge.

A similar thermometer is connected to the sample holder and used for temperature stabi-

lization. This thermometer is input to a locally designed temperature controller (identical

to the one used for the deuterium gas cell temperature control) and drives a 500 Ω metal

film resistor connected to the sample holder. The temperature is controlled at 160 mK,

corresponding the warmest temperature reached during rotation. Deviations in the sam-

ple temperature are less than 2 mK during collection of the data. The thermometers are

calibrated against a commercially obtained germanium thermometer.

3.5 Data Acquisition Electronics

Data are taken using the TUNL xsys [Rob81] data aquisition system running on a

DEC µVAX 3200 workstation. Signals are processed using standard NIM electronics and

stored using CAMAC modules interfaced to the µVAX using a MBD-11.

The time-reversal measurement utilizes ten neutron detectors, a polarized neutron

beam, and a rotating aligned target. Counts from the neutron detectors are routed into

different data areas for each neutron spin-state and target alignment angle. Beam current

integration is performed and the stability of the electronics is monitored.

The 0◦ and monitor detector anode signals are transported from the target area to

the control room using low loss RG-8 coaxial cables. These signals are fed to a Phillips 708,

Octal 300 MHz discriminator and the events above threshold are counted with a Phillips

7132, 32-Channel, 225 MHz scaler. The linear pulses from the detectors are 10 ns full

width half maximum and the phototube gains were set to yield maximum pulse heights of

−500 mV for the 0◦ detectors and −150 mV for the monitor detectors (measured using a

50 Ω termination). The discriminator thresholds were set to −40 mV for the 0◦ detectors
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Figure 3.17: Block diagram of the detector electronics

and −25 mV for the monitor detectors and the outputs from the discriminators were set to

10 ns. With 2.0 µA of beam, count rates of 4.4 MHz were observed for the 0◦ detector array

and 14.1 MHz for the monitor detector array. A block diagram of the detector electronics

is given in Figure 3.17.

Anode signals from the two polarimeter detectors are fed to a Link 5020 PSD module

which discriminates between neutrons and gamma rays. The neutron output signal from the

Link module is shaped using a LeCroy 222 gate and delay generator before being counted

by the Phillips 7132 scaler. A second LeCroy 222 is configured as a 100 kHz pulser. Its

output is ANDed with the live-time output of the Link 5020 module and used for dead-

time corrections (Ngated). Since the dead-time of the Link 5020 module is approximately

400 ns per event, the dead-time of the system is dominated by this module. The dead-time
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correction factor δ for the polarimeter detectors is calculated using

δ =
Npulser

Ngated
. (3.8)

Typical count rates of 70 kHz with dead-times of 10% were observed in each detector. A

schematic of the polarimeter detector electronics is given in Figure 3.18.

Beam current integration (BCI) is performed using a TUNL constructed current-to-

frequency converter designed by Wilburn [Wil95]. A schematic of the integrator circuit is

given in Appendix C (Figures C.7 and C.8). At full scale current, this integrator produces

a 500 kHz output pulse train. The charge from the stopped deuteron beam is collected and

integrated to monitor the incident flux. A window is set around the beam current to inhibit

data collection if the beam current deviates from a set level (typically 20% of the average).

Pulses from the integrator are counted using the Phillips 7132 scaler. A block diagram of
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Figure 3.19: Block diagram of the spin-flip timing and beam current integration electronics.

the BCI circuit is included in Figure 3.19.

The neutron spin is toggled every 100 ms in the eight-step sequence +−−+−++−.

Two NIM modules control the spin-flip sequence and the data acquisition system: the

TUNL spin-state controller and the polarized target veto module. Circuit schematics for

these modules are given in Appendix C (Figures C.3, C.4, and C.5) and the block diagram

of the electronics is shown in Figure 3.19.

The spin-state controller (SSC) is driven by an external clock input. Each clock

pulse toggles the output of the fiber+ and scaler+ outputs in the eight-step sequence + −

− + − + + − . The fiber− and scaler− outputs are toggled oppositely (− + + − + − − +).

The fiber± outputs (TTL) are connected to the ABPIS transition-oscillator module and

used to toggle the RF cavities in the ABPIS to reverse the spin of the deuteron beam

(Section 3.2.1). The scaler± outputs are converted to NIM level signals and used to route
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the data according to the neutron spin-state. The SSC is inhibited during a CAMAC crate

inhibit and is externally reset at the start of each run. The preset output produces a pulse

for each eight-step sequence and is used for indexing the spectra.

The polarized target veto module (PTVM) controls the SSC and vetoes the data

flow during the time the spins are being flipped. A 50 MHz crystal oscillator is divided

down into a 10 Hz clock to drive the SSC. This oscillator is needed to provide the required

stability for the circuit. The vetoing is performed in the Phillips 7132 scaler and controlled

with the TTL veto output from the PTVM. The veto signal is 7 ms in length, beginning

2 ms before the spin-flip. A strobe pulse (NIM) occurs 1 ms before the spin-flip and is used

to set a LAM in the hit register (BiRa 2351) for reading the scalers. A block diagram of

the spin-flip electronics is shown in Figure 3.19. A timing diagram of the spin-flip circuit is

given in Figure 3.20.

Stability of the electronics is essential in assuring that equal times are spent in each

spin-state. A separate 50 MHz oscillator is used as a pulser to test and monitor vetoing of

the data. A schematic is given in Appendix C (Figure C.6). The pulses are counted with

the Phillips 7132 scaler (see Figure 3.19) and routed according to the neutron spin-state.

Eight-step sequences for which the pulser counts differ by more than 100 counts out of

20× 106 counts in either of the two spin-states are eliminated in the analysis (Section 5.1).

The pulser also measures the long-term stability of the circuit.

The target rotation occurs at the end of each run (256 eight-step sequences). The

rotation is controlled by an external personal computer connected to a Texas Instruments

Model 525 Programmable Controller (TIPC). The angle value is sent to the TIPC from

the µVAX using a BiRa 304 isolated output CAMAC module. This output is read by

the TIPC and used in a relay ladder logic program running in the TIPC to determine the

angle value. The TIPC reads the target angular position of the shaft using the 13 bit

binary shaft encoder and compares it with the current angle value. The stepping motor is

driven in the appropriate direction to rotate the target. A 22.5◦ rotation is performed after

each run and takes approximately 20 s to complete. Once the angular position is reached,



CHAPTER 3. EXPERIMENTAL APPARATUS AND PROCEDURE 51

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Clock

Fiber +
Scaler +

Fiber −
Scaler −

Veto

s

0.1

Clock

Veto

Strobe

s

Strobe

5 ms 2 ms

1 ms

0.0

0.0

Figure 3.20: Spin-flip timing diagram



CHAPTER 3. EXPERIMENTAL APPARATUS AND PROCEDURE 52

the angle is output to a BiRa 322 isolated input CAMAC module and read by the µVAX

before data collection begins. Each run lasts approximately four minutes and a complete

angular sequence (−180◦, −157.5◦, . . . , −22.5◦, 0◦, 22.5◦, . . . , 180◦, . . . , −157.5◦) takes

approximately two hours.

The data is read by the MBD-11 after each spin-flip. The data are sorted according

to the neutron spin-state and stored in the µVAX. The data acquisition system controls

the rotation of the target after the Borer 1008 preset scaler has reached 256 eight-step spin

sequences. At this time, the data are written to disk and a new run is started. The temper-

ature of the target is stored for each spin sequence using an analog-to-digital converter. The

deuterium gas cell pressure and temperature are recorded at the end of each run. Analysis

is performed using the xsys data acquisition system and standard FORTRAN programs.

3.6 Experimental Procedure

Preparation for the FC measurement begins two days prior to the collection of data.

The target is first cooled with liquid nitrogen for 12 hours. Next, liquid helium is added to

cool the refrigerator and sample to 4.2 K. The 3He is then condensed into the refrigerator

and circulated to begin the cooling process. The sample reaches 100 mK in six to eight

hours after circulation begins. The following day, the polarized deuteron beam is extracted

from the polarized ion source, tuned for maximum intensity and polarization, and then

accelerated and transported to the target area.

Measurements begin with a four hour measurement of the deformation effect at

9.4 MeV. Next, the energy of the beam is then lowered to 5.9 MeV where the deformation

effect is small for the FC measurement. Data are collected for seven days, stopping every

24 hours to fill the cryostat with liquid nitrogen and liquid helium.

Measurements are taken with the neutron spin direction reversed every 100 ms in

the eight-step sequence + − − + − + + − . The alignment axis of the target is varied every

256 eight-step sequences in the angular sequence −180◦ → +180◦ → −180◦ in 22.5◦ steps.
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This double modulation technique reduces the systematic effects and allows this asymmetry

to be measured with high precision.

The final day of this measurement is used to perform measurements of possible T -

conserving interactions which could lead to false T -violating asymmetries. Measurements

of other parameters needed in the analysis of the data such as the multiple scattering events

with the detectors and the ratio of neutron to gamma ray counts are also performed. A

second deformation effect measurement is performed to verify the alignment obtained from

thermometry and to verify the operation of the rotation apparatus. These measurements

are discussed further in Chapter 4.

Analysis of the data is performed off-line at a later time.



Chapter 4

Supplemental Measurements

Analysis of the time-reversal data requires knowledge of various parameters not

measurable during the experiment. These include multiple scattering events within the

detectors and the background of gamma rays counted. Parameters such as the temperature

of the target are known from thermometry, but must be verified using other techniques,

and lastly, T -conserving interactions that could mimic a sin 2θ angular dependence must

be investigated. This chapter serves to present these measurements.

4.1 Multiple Scattering Events

The segmentation of the neutron detectors discussed in Chapter 3 gives rise to mul-

tiple scattering events within two or more detectors. These events are counted in multiple

detectors, thereby artificially increasing the neutron count rate. Before analysis of the

time-reversal data, these events must be removed.

The multiple scattering events — or cross-talk — occurs when a neutron or gamma

ray is scattered within one scintillator and then scatters within another. Two counts are

therefore stored for one event. The standard mechanism for removing these multiple events

is coincidence rejection using NIM electronic logic modules. The large neutron flux into the

detectors prohibit the use of such electronics because of the high accidental rate1 The cross-
1The probability that two neutrons arrive in different detectors at the same time, mimicking the cross-talk
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talk can however be measured at lower neutron fluxes and a correction factor determined

for each detector pair.

The cross-talk measurements are performed at 5.9 MeV (the same energy as the

time reversal measurements) using two different beam currents: I = 1.25 µA and 0.125 µA.

Measurements are performed for both the 0◦ and monitor detectors. Since the percentage

of counts due to cross-talk is directly proportional to the beam current, the accidental rate

can be removed by extrapolating to a beam current of I = 0 µA.

Data are taken using the detector and discriminator electronics shown in Figure 3.17.

The NIM level outputs from the discriminator are connected to a Phillips 755 quad four-

fold logic unit, which is used to perform the coincidence measurements. The output of the

logic unit is directed into an Ortec 715 counter/timer. The beam current is integrated and

routed into the time base of the scaler for beam current normalization.

Four types of measurements are performed: (a) total count rates for each detector,

(b) two-fold coincidences between detector pairs, (c) three-fold coincidences, and (d) a four-

fold coincidence. These measurements were performed for both detector arrays and for each

beam current configuration. The results are summarized in Table 4.1 using the numbering

scheme where (1) corresponds to the upper left, (2) the upper right, (3) the lower right, and

(4) the lower left detectors with respect to the beam direction. The three- and four-fold

coincidence rates are at least two orders of magnitude smaller than the two-fold rate and do

not contribute to the total cross-talk. Only the two-fold coincidence rate is therefore used

in the analysis of the time-reversal data.

The total number of counts in a detector, Na, contains the actual yield, Na
0 , plus an

additional term due to the cross-talk. Defining X (a, b) as the cross-talk ratio for a detector

pair, the neutron yield for detector number 1 for example is

N1 = (1 + X (1, 2) + X (1, 3) + X (1, 4)) N1
0 . (4.1)

The two-fold coincidence values given in Table 4.1 contain both the cross-talk and accidental

rate. We define η(a, b) to be the ratio of the number of two-fold coincidences between

effect.
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0◦, 1.25 µA 0◦, 0.125 µA Mon., 1.25 µA Mon., 0.125 µA

Count rate

1 977612 ± 313 106463 ± 103 2594057 ± 509 293163 ± 171
2 953558 ± 309 102973 ± 101 2590418 ± 509 297469 ± 172
3 974013 ± 312 104552 ± 102 2402893 ± 490 281035 ± 168
4 992392 ± 315 108295 ± 104 2587490 ± 509 305743 ± 175

Two-fold coincidence

1 & 2 21526 ± 47 1512 ± 12 70085 ± 84 856 ± 9
1 & 3 11552 ± 34 473± 7 62427 ± 79 749 ± 9
1 & 4 24124 ± 49 1730 ± 13 69350 ± 83 879 ± 9
2 & 3 20800 ± 46 1445 ± 12 64557 ± 80 901 ± 9
2 & 4 10938 ± 33 425± 7 67932 ± 82 828 ± 9
3 & 4 22994 ± 48 1641 ± 13 62966 ± 79 921 ± 10

Three-fold coincidence

1, 2 & 3 341 ± 6 10± 1 1250 ± 12 2± 0
1, 2 & 4 370 ± 6 13± 1 1170 ± 11 3± 0
1, 3 & 4 363 ± 6 12± 1 1218 ± 11 2± 0
2, 3 & 4 344 ± 6 12± 1 1270 ± 11 2± 0

Four-fold coincidence

1, 2, 3 & 4 14 ± 1 1± 0 26± 2 0± 0

Table 4.1: Measurements of the cross-talk between neutron detectors. The numbering
scheme for the detectors is described in the text.
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Detector pair 0◦ (%) Monitor (%)

X (1, 2) 0.678 ± 0.006 0.010 ± 0.002
X (1, 3) 0.183 ± 0.004 0.006 ± 0.002
X (1, 4) 0.759 ± 0.007 0.014 ± 0.002
X (2, 3) 0.654 ± 0.006 0.015 ± 0.002
X (2, 4) 0.161 ± 0.004 0.007 ± 0.002
X (3, 4) 0.727 ± 0.007 0.034 ± 0.002

Table 4.2: Measured cross-talk ratio between detector pairs. The numbering scheme is
described in the text.

detectors a and b to the total count rate in the two detectors. This ratio is related to the

cross-talk via

η(a, b) =
X (a, b)

(
Na

0 + N b
0

)
(Na + N b)

+
kI2

(Na + N b)
(4.2)

where the second term denotes the accidental rate. (The accidental rate scales quadratically

with beam current I with k denoting the proportionality constant.) We take Na ≈ Na
0 and

Na ∝ I which are true at the one percent level, yielding

η(a, b) = X (a, b) + k′I. (4.3)

Thus, by measuring the ratio η(a, b) at two values of I, X (a, b) can be extracted:

X (a, b) =
1.25 η0.125(a, b) − 0.125 η1.25(a, b)

1.25 − 0.125
. (4.4)

Using the two-fold coincidence values given in Table 4.1, the cross-talk for each detector

pair is summarized in Table 4.2.

The number of multiple counts between adjacent detectors is determined by multi-

plying the average number of counts in a detector pair by the cross-talk percentage between

that pair. This procedure is performed for each pair of detectors and the remaining counts

are then used in the analysis of the time-reversal data.
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Figure 4.1: The electronics for the time-of-flight measurements.

4.2 Ratio of Neutrons to Gamma Rays

The use of plastic scintillators prohibits pulse shape discrimination between neu-

trons and gamma rays. Since the time-reversal violating interaction can only arise through

neutron scattering events, the “background” of gamma ray counts must be removed before

analysis of the data. These counts reduce the magnitude of the T -violating signal.

The ratio of neutrons to gamma rays is measured for the 0◦ detector array using

time-of-flight techniques. A pulsed deuteron beam is incident upon the cryogenically cooled

deuterium gas cell to produce neutrons. The deuteron beam pulses pass through a capacitive

pick-off loop for timing purposes. The neutrons and gamma rays are transmitted through

the holmium target and detected at 0◦. The timing of the scintillation pulses is used along

with the pick-off signal to determine the time-of-flight spectrum for the reaction.

The electronics for the time-of-flight measurements are shown in Figure 4.1. Mea-

surements are performed individually for the four detectors. An Ortec 467 time to pulse

height converter converts the timing difference between the pick-off and scintillation pulses

into a voltage pulse. The voltage pulses are then digitized with an ADC and stored using

the TUNL data acquisition system.

Two time-of-flight spectrum are taken for each of the four main detectors. A typical

spectrum is shown in Figure 4.2. The vertical axis represents the number counts in each

channel and the horizontal axis represents the channel number or time segment. The gamma

rays reach the detectors first and appear as a small peak in the highest channel numbers.
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Figure 4.2: Typical time-of-flight spectrum for a 0◦ detector. The vertical axis depicts the
number of counts and the horizontal axis depicts the channel number as described in the
text. Time increases from right to left.

The large peak corresponds to the neutrons and occurs at a later time in the lower channels.

Each channel corresponds to 0.17 ns.

The ratio of neutrons to gamma rays in an individual detector is determined by

dividing the number of counts in the gamma ray peak by the number of counts in the

neutron peak. Since the discriminators are set at the same energy, the ratios for all eight of

the time-of-flight spectrum are then averaged to determine the normalization factor. These

values are summarized in Table 4.3. The corrections are then applied to the asymmetry

extracted in Chapter 5.

Measurements of the time-of-flight spectrum for the monitor detectors are not pos-

sible due to the short distance separating the detectors from the neutron production cell.

The background of gamma rays is expected to be much smaller than observed in the 0◦

detectors due to the reduced thickness of the scintillation material. This ratio is estimated
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Detector Nγ/Nn (%)

1 6.57 ± 0.02
2 6.32 ± 0.02
3 6.43 ± 0.02
4 6.21 ± 0.02

Average 6.38 ± 0.01

Table 4.3: The ratio of neutrons to gamma rays in the 0◦ detectors.

to be less than 1% and no corrections are made in the analysis of the time-reversal data.

4.3 Deformation Effect

Measurements of the deformation effect cross section are performed to both verify

the tensor alignment of the holmium target obtained from thermometry and confirm the

direction of the alignment axis of the holmium crystal. These measurements are performed

immediately before and after the time-reversal data are taken. Measurements of the defor-

mation effect cross section at four additional energies were also performed during the initial

testing stages of this experiment.

The deformation effect arises due to the non-spherical mass distribution of the hol-

mium nucleus. When the nuclei in the holmium crystal are aligned, the cross section

becomes dependent upon the direction of the alignment. The spatial orientation of the nu-

clei thus allow transmission cross section measurements to probe different axes of the nuclei

as the crystal is rotated. The difference between the cross section for an aligned target and

an unaligned target is referred to as the deformation effect.

The shape of the holmium nucleus is well known [Kos94, Mar70, Fas73, McC68,

Fis67, Mar66, Wag65] and can be described with an angle-dependent radius given by

r(θ) = r0A
1
3

1 +
∑

K=2,4,6

βKY 0
K(θ)

 , (4.5)
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where r0 = 1.26 fm is the reduced radius, A = 165 is the atomic number, βK is the

deformation parameter, and Y 0
K(θ) is a spherical harmonic. Deformation parameters β2 =

0.30± 0.025, β4 = −0.02± 0.05, and β6 = 0.08 ± 0.13 have previously been determined for

holmium [Kos94]. A deformation parameter of β2 = 0.3 implies a highly deformed nucleus.

Deformation effect cross section measurements were performed by transmitting un-

polarized neutrons through the aligned 165Ho target. The 0◦ neutron yield is proportional

(via Equation 2.22) to the total cross section, which for an unpolarized neutron beam,

consists of the unpolarized and deformation effect partial cross sections:

σT = σ00 + t̃20(I)σ02. (4.6)

The deformation effect term exhibits a P2(cos θ) angular signature (Equation 2.11) and by

varying the alignment angle with respect to the beam direction, this angular signature can

be used to extract the product t̃20(I)σ02 from the total cross section through measurements

of the neutron yield. Comparison with previous deformation effect measurements provides

an independent verification of the magnitude of the tensor alignment t̃20(I) of the holmium

target. The phase of the angular variation of the cross section also determines the direction

of the alignment axis of the crystal.

At each of the four energies at which σ02 was measured, four to six hours of data were

taken with the angle θ between the target alignment axis and neutron momentum varied

every four minutes in the angular sequence −180◦, . . . , −22.5◦, 0◦, +22.5◦, . . . , +180◦,

. . . , −180◦, . . . . The neutron yield as a function of run number — or angular sequence

— was then used to extract the deformation effect term in the total cross section. Data

from a measurement of the neutron yield for 9.4 MeV neutrons is shown in Figure 4.3.

The oscillation is due to the deformation effect and is superimposed on a large constant

background arising from the unpolarized cross section. The slow linear drift is due to gain

drifts in the photomultiplier tubes.

The logarithm of the normalized neutron yield as a function of angle — ln
(

N(θ)
N0

)
—

is fit to the form C+AP2(cos θ) in order to extract the magnitude of the deformation effect
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Figure 4.3: The transmission yield for 9.4 MeV neutrons. Each run number corresponds
to four minutes of data taken in the angular sequence −180◦ → +180◦ → −180◦ in 22.5◦

steps. The oscillation arises from the deformation effect.

term. As with the five-fold correlation term discussed in Chapter 2, the angular dependence

is removed

σ2 =
σ02

P2(cos θ)
, (4.7)

yielding a quantity which can be directly compared to previous measurements. The angular

coefficient A from the fit is related to the deformation effect cross section via

σ2 =
A

n t̃20(I)
, (4.8)

where n = 0.065 at/b is the target thickness and t̃20(I) is the tensor alignment of the

holmium target. The fits are performed using a general least squares routine contained in

the Numerical Recipes subroutine svdfit
2 [Pre92].

2See Chapter 5 for a description of this routine.
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Energy (MeV) t̃20(I) σ2 (mb)

1.93 -0.59 -246 ± 41
5.86 -0.62 5± 3
6.57 -0.59 -3± 8
8.41 -0.59 -174 ± 23
9.37 -0.62 -237 ± 7
10.5 -0.59 -338 ± 44

Table 4.4: Measured values of the deformation effect cross section and the tensor alignment
of the target during these measurements.

Measurements of the deformation effect cross section are presented in Table 4.4.

The 1.93 MeV measurement was made using the 3H(p,n)3He neutron production reaction.

A detailed discussion of this reaction and the tritium production target is given by Wilburn

[Wil93]. The remaining measurements were performed using the 2H(d,n)3He reaction dis-

cussed in Section 3.3.1. Measurements at 5.86 and 9.37 MeV were performed during the

FC experiment and the remaining measurements were performed at an earlier date.

The new deformation effect cross section values are shown in Figure 4.4 in addition

to the previously measured values. The six new values are consistent with the previous

measurements, thus confirming the target alignment obtained from thermometry. The errors

in the deformation effect measurements are dominated purely by non-statistical fluctuations

arising from gain drifts in the photomultiplier tubes.

A Fourier transform of the yield can also used to extract the deformation effect term.

Using the fast Fourier transform technique provided in the speakeasy computer software

package [SPE93], the P2(cos θ) angular signature can be isolated. Since the P2(cos θ) oscil-

lation will have a period of π radians, the power spectrum of the Fourier transform will have

a sharp peak at this point. As can be seen from Figure 4.5, the angular signature of the

P2(cos θ) is evident. Note that frequency components greater than 4π are aliased into lower

frequencies due to the discrete angular rotation sequence (Nyquist’s theorem [Tho84]).

The phase of the oscillation in Figure 4.3 is fixed by the location of the crystal align-
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Figure 4.4: The deformation effect cross section as a function of energy. The solid curve
corresponds to an optical model fit given by Koster [Kos94].

ment axis. The alignment axis was previously located using x-ray diffraction techniques

[Kos90] and the deformation effect measurements are used as independent verification. Us-

ing the Macintosh computer package jmp [JMP94], the phase was extracted by performing

a non-linear fit to the function C+AP2(cos(θ+φ)). A value of φ = 1.9◦±2.2◦ was extracted

for the phase of the oscillation. This phase is consistent with zero and taken to be zero in

subsequent analyses.

For the time-reversal measurement, the deformation effect cross section was mea-

sured immediately before and after the time reversal data were taken. These measurements

were performed at 9.4 MeV where the deformation effect is large. In order to reduce system-

atic effects that might arise from the deformation effect term, the time reversal measurement

is performed at 5.9 MeV where the deformation effect cross section is small. These effects

and others are discussed further in the next section.



CHAPTER 4. SUPPLEMENTAL MEASUREMENTS 65

0

-100

-200

-300

0 1π 2π 3π 4π

Radians

σ 2 
(m

b)

Figure 4.5: The Fourier transform of the 9.4 MeV neutron yield given in Figure 4.3. The
vertical axis is normalized to give the magnitude of the deformation effect cross section.

4.4 Systematic Effects

Possible time-reversal conserving interactions that could mimic the sin 2θ angular

signature of the five-fold correlation term, independent of systematic considerations, have

been discussed previously in Section 2.2.4. Systematic effects that could lead to a false

asymmetry such as detector and target misalignments and finite size effects, for example,

must be considered. Although most of these effects can not generate the sin 2θ angular

signature of the FC, upper bounds on the magnitude of these interactions must be estimated

before excluding them in the analysis of the time-reversal data.

To begin, it is useful to identify effects that are known to be present and the level

at which they become observable. The deformation effect is discussed in the previous sec-

tion. It is measured to be ∼ 10−3 times the total cross section, and has a cos 2θ angular

dependence independent of the neutron spin. A term arises from the unequal tensor polar-
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izations of the two spin-states of the deuteron beam. The difference in these polarizations

contributes a constant offset in the asymmetry. It is measured to be equal to or less than

5 × 10−4. Two reactions that possess analyzing powers are present: the 2H(~d, ~n)3He neu-

tron production reaction and 165Ho(~n, ~n) elastic scattering. The magnitude of the analyzing

power in the neutron production reaction is ∼ 10−2, while the small angle (< 2◦) Mott-

Schwinger analyzing power in n+165 Ho elastic scattering is ∼ 1. Lastly, the neutron spin is

vertical to within 5◦ and the position of the alignment axis of the holmium crystal is known

to within . 4.1◦.

The following subsections examine possible systematic effects in detail and set limits

on mechanisms that could contribute to the normalized asymmetry.

4.4.1 Misalignments

Only one term in the cross section can directly contribute to a sin 2θ angular de-

pendence (Section 2.2.1). This is the partial cross section σ12(Λ = 2) which depends on

(ŝ · Î)(Î · k̂). The angular dependence arises when the neutron spin has a component in

the horizontal direction, directed along the x -axis, perpendicular to the momentum of the

beam. The (ŝ · Î) term will have a sin θ dependence, and when combined with the cos θ

dependence of the (Î · k̂) term, can generate the sin 2θ dependence of the FC term. This

direct contribution term is expected to be negligible because the term is parity violating

(∼ 10−6) and must also couple with the deformation effect (∼ 10−3) to be present. However,

we have attempted to set a bound on this term experimentally.

The measurement was performed by placing the neutron spin in the horizontal x-z

plane, perpendicular to the neutron momentum. This maximizes any effect. Data were

taken using the angular sequence used in both the deformation effect and time-reversal

measurements. The direction of the neutron spin was reversed every 100 ms in the eight-

step sequence + − − + − + + − and 256 eight-step sequences were accumulated at

each angle. One complete angular sequence was taken, consisting of 32 runs. The beam

polarization was 67% and the target alignment was 90%. (The same magnitude as in the FC
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measurement, thus allowing a direct comparison between the measured asymmetries). The

neutron yield was corrected for both dead-time and cross-talk using the same procedures

discussed in Chapter 5. An asymmetry was formed between neutron spin states and fit to

the form C+D sin 2θ. The coefficient D was measured to be (−1.0± 1.2)× 10−5 , consistent

with zero.

In the time-reversal measurement the neutron spin is directed along the vertical

y-axis or perpendicular to the horizontal x-z plane, so the (ŝ · Î)(Î · k̂) interaction term is

suppressed by at least one order of magnitude. Also, a further factor of two suppression is

expected because only the horizontal component of the neutron spin that is perpendicular

to the neutron momentum can contribute to the sin 2θ signature. Experimentally, the

(ŝ · Î)(Î · k̂) interaction term is therefore . 5 × 10−7, below the limits of the actual time

reversal measurement3.

False asymmetries arising from misalignments of the target can occur in a number

of ways. First consider a misalignment of the c-axis of the crystal. This can not be large,

because the deformation effect measurements confirm that this direction is known to within

1.9◦±2.2◦ (Section 4.3). But a c-axis misalignment can present a problem if the cos 2θ term

is non-zero. The misalignment mixes the amplitudes of the sin 2θ and cos 2θ terms in the

asymmetry; A(sin φ sin 2θ + cos φ cos 2θ), where φ is the misalignment angle of the c-axis,

measured to be less than 4.1◦. The cos 2θ component in the asymmetry is non-zero4 and

. 1× 10−5. The contribution to the sin 2θ component is at most 7× 10−7, below the limits

of the present measurement.

A second c-axis misalignment issue is the reproducibly of the angle between the

different rotation directions. The angular position of the target is measured with a shaft

encoder located at the top of the cryostat. The torque on the thin shaft extending to

the sample holder can change the actual angle of the target. The reproducibility of the

angle of the target was measured using a laser directed onto a plane mirror attached to the
3The results of the time-reversal measurement are presented in Chapter 5 and the sin 2θ component of

the asymmetry is measured to be (1.1± 1.0) × 10−6.
4The cos 2θ component in the normalized asymmetry is (8.5± 1.5) × 10−6. This term is attributed to a

combination of the deformation effect and an analyzing power reaction coupled with a detector misalignment.
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target. The reflected beam was directed onto a wall several meters away, allowing a precise

measurement of the relative angular position. Deviations between rotation directions were

measured to be less than ±1◦ (Chapter 3), and therefore are smaller than the 7 × 10−7

limits set by the angular phase of the deformation effect cross section.

A misalignment of the rotation axis of the target can also produce a reduced tar-

get thickness due the beam passing only through one side of the target. The target was

aligned optically and is centered to within 0.25 mm at room temperature. At operating

temperatures below 1 K, a horizontal position displacement due to thermal contraction is

not expected due to the symmetric design of the mounting apparatus. A 1 mm displace-

ment would reduce the target thickness by 5 × 10−3. To simulate a time-reversal violating

signature, this effect must couple with both an angle dependent interaction such as the

deformation effect (which is ∼ 10−3) and an analyzing power effect (which is ∼ 10−2) in

order to produce a spin-dependent angular signature. These effects are thus . 5× 10−8.

Variations in the target thickness can give rise to angle dependent effects. For

example, if the cross sectional area of the target is oval in shape, this could, when coupled

with a holmium analyzing power effect, lead to a angular dependence in the asymmetry.

The thickness of the target is circular to within 0.1 mm, leading to a maximum transmission

asymmetry ∼ 10−4. The n +165 Ho analyzing power reaction further reduces this effect by

∼ 10−2. The effect is thus . 10−6. In fact, it is only a problem if both the 0◦ detector is

misaligned and the angular signature arising from the variation in target thickness has a

sin 2θ angular dependence, neither of which is evident in the data.

A left-right movement of the target during the rotation sequence can also produce

an angle dependent variation in target thickness. As above, this variation must couple

with a n +165 Ho analyzing power effect (∼ 10−2) to contribute to the asymmetry. Left-

right movement of the target was measured to be less than 0.5 mm at room temperature,

yielding maximum variations in the target thickness of ∼ 10−4, therefore setting similar

bounds . 10−6 on a contribution from this term.

A misalignment of either the zero degree or monitor detector leads to a constant
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offset in the asymmetry due to the analyzing power of the 2H(~d, ~n)3He reaction. Alignment

of the detectors was performed using an optical transit and the detectors are centered to

within 2 mm, yielding a maximum misalignment angle of 0.2◦. The false asymmetry arising

from such a misalignment is derived by Koster [Kos90] and is given by

E =
m δ (P +

n − P−n )
2 + m δ (P +

n + P−n )
(4.9)

where P±n is the neutron polarization, δ is the misalignment angle of the detector, and m is

the linear component of the analyzing power (Ay(θ) = mθ). The average value of Pn for this

experiment was 67% and the maximum difference between P±n was less than 10%. Using

the analyzing power for the 2H(~d, ~n)3He reaction (Ay(20◦) = −.02 with m = −.06 [Gus83]),

neutron polarizations of P +
n ∼ 74% and P−n ∼ 60%, and a misalignment angle of δ = 0.2◦,

the constant asymmetry arising from a misalignment of the 0◦ detector is thus . 10−5. This

term is considerably smaller than the term arising from the difference in tensor polarizations

(∼ 5×10−4) and can only contribute when combined with an angular dependent interaction

such as the deformation effect (∼ 10−3). These effects are thus . 10−8 and are therefore

negligible.

Large analyzing powers from small angle neutron scattering within the holmium

sample are possible via Mott-Schwinger scattering. These effects have been measured for

neutron scattering in lead [Hus77], having values as large as Ay(1◦) ' 1.0. These effects are

symmetric about 0◦ and the large size of the detectors will average out contributions from

these effects. The outer edges of the 0◦ detector are at ±5◦ with respect to the holmium

target and the analyzing power at this angle is ' 0.2. An effect from this term would

arise from a misalignment of the 0◦ detector, causing the average analyzing power on the

two sides of the detector to be unequal. For a 0.2◦ misalignment of the 0◦ detector array,

a contribution to the asymmetry is ∼ 10−2. In fact, a cos 2θ variation in the asymmetry

arising from the deformation effect (∼ 10−3) coupled with an anayzing power reaction is

present at the ∼ 10−5 level, consistent with this estimation. To contribute to the FC

term of interest however, the angle dependent interaction must exhibit a sin 2θ angular
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signature. No T -conserving interactions are known to exhibit this angular signature and

thus a combination of two interactions must combine to produce a sin 2θ component in

the asymmetry. Contributions to the FC term in the asymmetry from small angle Mott-

Schwinger scattering are therefore negligible.

4.4.2 Beam and Detector Related Effects

False asymmetries can arise from intensity and polarization changes in the deuteron

beam, which lead to similar changes in the neutron beam. Large density and temperature

changes in the neutron production target can produce similar effects. These fluctuations

are ideally removed by the combination of normalization to the monitor detector array and

the fast spin-flip sequence.

The neutron production target can produce variations in the neutron flux due to

density changes within the gas cell. When the deuteron beam is stopped in the gas cell,

it deposits up to 6 W of heat into the cell. This heat is removed by the liquid nitrogen

bath and the system takes about one hour to reach thermal equilibrium. The density

changes are time dependent and will produce an exponential decrease in the normalized

yield. Temperature stabilization of the neutron production target is therefore required to

remove effects from these terms. Prior to the time-reversal measurement, variations in the

neutron flux due to beam heating were observed and a discussion of the effects are presented

in Appendix D. Variations in the yield when normalized to the beam current are ∼ 10−20%

and an asymmetry formed between these yields typically shows time dependent variations

∼ 10−3 for a 80 K temperature rise. The temperature of the gas cell was stabilized to

with 0.5 K as discussed in Chapter 3, reducing these variations by two orders of magnitude.

Normalization to the monitor further reduces these effects by an order of magnitude. These

effects are discussed further in Appendix D and contributions from this effect are . 3×10−7

and do not contribute to the asymmetry.

Effects arising from terms independent of the neutron polarization such as gain

drifts in the photomultiplier tubes are removed by the eight-step spin sequence and target
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rotation. A detailed discussion of these terms is presented in Appendix E. Effects from

polarization independent terms are shown to be less than ∼ 10−9.

4.4.3 Miscellaneous Effects

The neutrons produced in the giant dipole resonance (γ,n) reactions can contribute

to the asymmetry. Cross sections for these reactions are ∼ 20 mb [Kel69], two orders of

magnitude smaller than the neutron cross section. Further, the ratio of neutrons to gamma

rays is measured to be 6.4%. The gamma rays resulting from the stopped deuteron beam

have energy of ∼ 7 MeV and higher energy gamma rays produced directly by the deuteron

beam are not expected. The ratio of gamma rays alone suppresses contributions from (γ,n)

reactions by an order of magnitude and the small number of higher energy gamma rays in

the giant resonance region (10-20 MeV) further suppresses this effect. An angle dependent

term such as the deformation effect (∼ 10−3) must couple with a spin-dependent analyzing

power effect ∼ 10−1 to produce an angular signature. Effects from (γ,n) reactions are thus

. 10−7 even if all of the gamma rays have energies in the giant dipole resonance region.

A rotation of the neutron spin due the magnetic fields within the target can lead to

a horizontal component of the neutron spin in the x-z plane. This horizontal component

can then interact through the (ŝ · Î)(Î · k̂) term to produce a sin 2θ angular dependence.

As a worst case, assume all of the domains in the sample are in the same direction and

each has a maximum internal field of 3 T. The neutron will interact with this field over the

length of the sample (∼ 2.5 cm), producing a maximum rotation of 0.04◦. Thus neutron

spin rotations due to the magnetic fields in the target are negligible.

In conclusion, T -conserving false asymmetries are measured to be smaller than

those of the FC term of interest, allowing this measurement of the neutron transmission

asymmetry to test time-reversal invariance directly.



Chapter 5

Data Analysis

Data were taken in two angular rotation sequences for the time-reversal measure-

ment. The first data set was taken in the angular rotation sequence −180◦ → +180◦ →

−180◦ in 22.5◦ steps. At each angle, 256 eight-step neutron spin sequences were accumu-

lated using the sequence + − − + − + + − . The second data set was taken using the

same neutron spin sequence but with an angular sequence of −135◦ → +135◦ → −135◦

in 90◦ steps. At each angle, 1024 eight-step sequences were accumulated. This angle se-

quence maximizes sensitivity to the sin 2θ component of interest, but information on higher

order components are lost. The two data sets are analyzed as separate measurements and

combined in the final step of the analysis.

During collection of the data, counts from each neutron detector are routed and

stored according to both the neutron spin-state and eight-step sequence number. Sequences

which fail to meet rejection criteria (specified later) are removed and the remaining data are

corrected for both dead-time and detector cross-talk. The neutron yield for each spin-state

is normalized to the counts in the monitor detector array and an asymmetry for each eight-

step sequence is formed between the two neutron spin-states. The 4096 asymmetries for a

complete angular rotation sequence in a single rotation direction are then fit to a trigono-

metric series to extract the angular components in the asymmetry. These components are

averaged for each rotation sequence and the amplitude of the T -violating term in the asym-
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metry is extracted. This chapter describes the rejection scheme used in the data analysis,

the corrections for dead-time and cross-talk, the statistical analysis, the curve fitting of the

data, and concludes with the extraction of the T -violating spin-correlation coefficient.

5.1 Data Rejection and Dead-Time Corrections

Precise measurements of an analyzing power require that equal amounts of time are

spent in the two neutron spin-states. Eight-step sequences with unequal times, whether

caused by electronic inhibits or beam current fluctuations, are eliminated as a first step in

the analysis.

The first criteria used for rejection of the data insures that the beam current remains

consistent throughout the eight-step sequence. The beam current is collected and integrated

using the electronics discussed in Chapter 3 and an inhibit window is placed around the

average value of the beam current. Deviations in the beam current of more than ∼ 30%

of the average raise the inhibit of the CAMAC crate, thereby inhibiting data collection.

Eight-step sequences in which these events occur are removed in the analysis using a pulser

rejection system.

During data collection, counts from a 50 MHz pulser are routed and stored in the

same manner as counts from the neutron detectors. Since the number of pulser counts

in each spin-state remains constant with time, sequences in which this number deviates by

more than 100 counts from the average are removed1. A typical time spectrum of the pulser

counts for a 256 spin-state sequence is shown in Figure 5.1. Each channel corresponds to an

eight-step sequence or 0.4 s of data and the dips in the spectrum occur when the CAMAC

crate is inhibited by the beam current window.

The second rejection criteria utilizes a software window placed around the average

value of the beam current. The average value is calculated for each 256 sequence run and

sequences where the number of beam current pulses differ by more than ±20% of the mean
1The maximum asymmetry in an individual eight-step sequence arising from unequal times is thus .

5× 10−6.
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Figure 5.1: A sample pulser spectrum for one 256 spin-sequence run. The dips correspond
to sequences in which the CAMAC crate was inhibited. Data is rejected if either of the two
spectra contain deviations of more than 100 counts from the average.
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are removed. This insures a consistent beam current during both an individual eight-step

sequence and the entire 256 sequence run.

An asymmetry is then calculated for the beam current counts in the two spin-states

and averaged over the entire run. Sequences in which this asymmetry exhibits a five or

more standard deviation fluctuation from the average are removed. Ideally, the monitor

normalization would remove effects arising from unequal beam currents, but as discussed

in Appendix D, this normalization only suppresses these effects by an order of magnitude.

The final rejection criteria uses the monitor detector array. An asymmetry is formed

between the counts in the two neutron spin states for each of the individual monitor detectors

and an average value and standard deviation is determined for the entire run. Sequences

where the asymmetry in two or more monitor detectors exhibit a more than four standard

deviation fluctuation from the mean are removed.

This set of rejection criteria removes a total of 1.4% of the accumulated data. The

first subset of data consists of 1568 runs of 256 sequences per run. A total of 5243 spin-

sequences are removed, comprising 1.3% of the total number of eight-step sequences. The

second subset contains 264 runs of 1024 sequences per run. A total of 4607 or 1.7% of these

sequences are removed. The pulser rejection scheme accounts for 35% of the data removed

with the remaining contributed to the beam current and asymmetry rejection criteria.

The next procedure in the analysis of the data is corrections to the yields for both

the dead-time in the detectors and the cross-talk between adjacent detectors. Dead-time

in the data acquisition electronics can arise from each of the three components within the

system: the CAMAC scaler, the discriminator, and the time width of the voltage pulse

from the detectors. The scaler operates at 225 MHz and the discriminator at 300 MHz.

The contributions from either of these two components are negligible compared to the 10 ns

width of the voltage pulse. The dead-time is dominated by the length of this pulse, yielding

for example, a 10% dead-time at a count rate of 10 MHz. The dead-time correction factor

δ±i can thus be calculated (assuming it arises completely from the width of the voltage
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pulse) for an individual detector i using

δ±i = 1 +
N±i

3.72 × 107
, (5.1)

where N±i is the count rate in an individual 0◦ or monitor detector and 3.72 × 107 is the

maximum number of counts for a 100 MHz pulser in a given spin-state2. The dead-time

corrections are applied individually to the detectors (Ñ ′±i = δ±i N±i ). Typical corrections

were ∼ .5 % for the 0◦ detectors and ∼ 1 % for the monitor detectors.

Once dead-time corrections are made, corrections for the cross-talk between detector

pairs can be performed for both the 0◦ and monitor detectors. Using the measured cross-

talk values presented in Table 4.1, the cross-talk corrected yields Ñ±i for both the 0◦ and

monitor detectors are given for example in detector (1) by

Ñ±1 = Ñ ′±1 −
X (1, 2)

2

(
Ñ ′±2 + Ñ ′±1

)
(5.2)

− X (1, 3)
2

(
Ñ ′±3 + Ñ ′±1

)
− X (1, 4)

2

(
Ñ ′±4 + Ñ ′±1

)
.

Similar expressions are used in correcting the yield for the other three detectors.

5.2 Statistical Analysis

The corrected yields are then used in forming a normalized asymmetry Ei for each

of the four 0◦ detectors in each eight-step sequence. The four detector asymmetries are

then combined to form an average asymmetry for the sequence. This section describes the

procedures for forming these asymmetries and the associated errors in the measurements.

The normalized asymmetry for an individual 0◦ detector i is calculated using Equa-

tion 2.23 or

Ei =

Ñ+
i (0◦)

Ñ−i (0◦)
−M

Ñ+
i (0◦)

Ñ−i (0◦)
+M

, (5.3)

where Ñ±i (0◦) corresponds to the number of counts in a given 0◦ detector and M corre-

sponds to the monitor normalization factor. Ideally, the monitor normalization factor M
2The time spent in an individual spin-state for an eight-step sequence is 0.093 s/spin-state×4 spin-states.
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is calculated as the ratio of the total number of counts in the two spin-states of the four

monitor detectors:

M =
Ñ+

1 (M) + Ñ+
2 (M) + Ñ+

3 (M) + Ñ+
4 (M)

Ñ−1 (M) + Ñ−2 (M) + Ñ−3 (M) + Ñ−4 (M)
(5.4)

However, this ratio does not remove effects arising from the drifts in efficiencies of the

individual detectors and must therefore be formed in such a way to remove these effects.

The count rate in a given detector is proportional to both the incident neutron flux

I±i and the detector efficiency εi, (Ñ±i ∝ I±i εi). By forming a ratio between the number

of counts in the two spin-states for a given detector, the efficiency will cancel, thus leaving

the ratio of the count rates in the detector equal to the ratio of the incident fluxes:

Ñ+
i

Ñ−i
=

I+
i εi

I−i εi
=

I+
i

I−i
. (5.5)

The fluctuations in an asymmetry arising from detector efficiencies are thus completely

removed using this technique.

The monitor normalization factorM can be calculated to good approximation using

the ratio of the geometric means of the four monitor detectors:

M = 4

√√√√ 4∏
i=1

Ñ+
i (M)

Ñ−i (M)
. (5.6)

The geometric mean approximation is equal to the arithmetic mean for identical sample

values and is slightly less than the arithmetic mean for numbers that are similar in size.

For the present arrangement, the counts in the four monitor detectors are equal to within

10%, allowing this approximation to be sufficient. The normalization to the geometric mean

greatly reduces the non-statistical fluctuations that could appear from detector efficiency

changes and is therefore superior to the arithmetic mean.

The statistical error inM is determined using the errors from the number of counts

in each individual detector. Assuming a binomial distribution where the error in an indi-

vidual measurement of Ñ counts is given by ∆Ñ =
√

Ñ , the error in M is given by

∆M =
M
4

√√√√ 4∑
i=1

[
δ+
i (M)

Ñ+
i (M)

+
δ−i (M)
Ñ−i (M)

]
(5.7)
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using standard error propagation techniques [Bev69]. The factors δ±i (M) are the dead-time

correction factors for the monitor detectors.

The average asymmetry of the detectors is formed by averaging the individual asym-

metries of the four detectors:

E =
1
4

4∑
i=1

Ei. (5.8)

However, the error in E can not be calculated by combining the four individual errors, ∆Ei,

since correlations exist due to the normalization to the single value ofM. The error in the

asymmetry is thus given by

∆E =
M
2

√√√√√√ 4∑
i=1

(
Ñ+
i (0◦)

Ñ−i (0◦)

)2 [
δ+
i (0◦)

Ñ+
i (0◦)

+ δ+
i (0◦)

Ñ−i (0◦)

]
(

Ñ+
i (0◦)

Ñ−i (0◦)
+M

)4 +

 4∑
i=4

(
∆M
M

Ñ+
i (0◦)

Ñ−i (0◦)

)
(

Ñ+
i (0◦)

Ñ−i (0◦)
+M

)2


2

. (5.9)

The values of E and ∆E for each spin state are then used in the extraction of the angular

components. For display purposes, an average asymmetry for each run of 256 eight-step

sequences is calculated and shown in Figure 5.2 for a 40 hour time segment of data. Each

run corresponds to the average asymmetry for an angular position when taken in the 22.5◦

rotation sequence. A T -violating signal would appear as a sin 2θ oscillation on top of the

constant background, similar to the oscillations arising from the deformation effect shown

in Figure 4.3. No oscillation is present and a fit to this data can be used to extract an upper

bound on the T -violating FC term of interest.

5.3 Least Squares Fitting

The magnitude of the angular components in the asymmetry is extracted using a

least squares fit to the form

E(x) = a0 +
7∑

k=1

ak sin (kθ(x)) +
8∑

k=1

bk cos (kθ(x)) (5.10)

for the 22.5◦ rotation sequence and

E(x) = a0 +
2∑

k=1

ak sin (kθ(x)) + b1 cos (θ(x)) (5.11)
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Figure 5.2: The normalized spin-flip asymmetry for 5.9 MeV neutrons. Each run corre-
sponds to the average value of the asymmetry for the 256 spin-sequences taken in the 22.5◦

angular sequence.

for the 90◦ rotation sequence. Here, θ(x) for the 22.5◦ rotation sequence is related to x via

θ(x) = π
(x

8
− 1

)
(5.12)

and for the 90◦ rotation sequence via

θ(x) = π

(
x

2
− 3

4

)
. (5.13)

The integer x is given by x = 0, 1, . . . ,m− 1 for a clockwise rotation and x = m− 1,m −

2, . . . , 0 for a counterclockwise rotation. The number of angles in the sequence determines

m, where for the 22.5◦ rotation sequence m = 16 and for the 90◦ rotation sequence m = 4.

The number of trigonometric terms included in Equations 5.10 and 5.11 are determined

using the angle of rotation with Nyquist’s theorem [Tho84]. Higher frequency components

can exist, but will be aliased into the lower frequency terms.
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For fitting purposes, the complete set of data is divided into subsets consisting of

a complete angular rotation in one direction. For example, in the 22.5◦ rotation sequence,

each subset would consist of 16 runs either starting at an angle of −180◦ or +180◦. The

amplitudes ak and bk given in Equation 5.10 or 5.11 are determined for each subset and the

values of these coefficients are then averaged to extract the amplitudes for the entire set of

data.

The general least squares fit is performed using the method of singular value de-

composition (SVD) [Pre92]. In a standard least squares routine, the chi-square (χ2) of the

fitting function is minimized to extract the best fit to the data. For a function that has basis

components that fit the data equally well (as is expected for all of the trigonometric terms

in this function), the inversion matrix for the normal equations of the fit can develop sin-

gularities. The technique of SVD is the method of choice in such a fit because singularities

are avoided, providing a proper least squares fit to the data.

The fits were performed using the Numerical Recipes subroutine svdfit [Pre92].

The angular position θ and the corresponding asymmetry E ± ∆E for each eight-step se-

quence are used to extract the fitting coefficients ak and bk defined by Equation 5.10 or

5.11. The output of the subroutine svdfit contains both the fitting coefficients and the

SVD of the data. The SVD array is then used with the subroutine svdvar to extract the

statistical error in the fitting coefficients.

The total error or sample standard deviation (containing both the statistical and

non-statistical contributions to the error) can be calculated using a weighted standard

deviation [Bev69]

σk = ξk

√√√√√√√√√√
N∑

j=1

1
(N −M − 1)

1
(∆E)2

j

(Ej − Efit)
2

N∑
j=1

1
N

1
(∆E)2

j

, (5.14)

where ξk is the correlation coefficient, Ej is an individual eight-step asymmetry with error

∆Ej, Efit is the asymmetry calculated using Equation 5.10 or 5.11 and the extracted values

of the fitting coefficients ak and bk, N is the total number of eight-step sequences included in
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the fit, and M is the number of trigonometric terms in the fit. The correlation coefficients

ξk for the fitting coefficients are extracted using the same procedure described above in

extracting the statistical error, but with the error for each eight-step asymmetry set to

∆Ei = 1.0. The errors returned from the svdvar routine thus contain only the correlations

in the fitting parameters and can be included directly into the calculation of the standard

deviation. Both the statistical error and standard deviation are calculated for the fitting

coefficients.

The fitting procedure was first tested using randomly generated data sets consisting

of Gaussian distributed noise on a constant background. Three sets were generated, one

with random noise alone, one with a 2σ sin 2θ oscillation included in addition to the noise,

and one with a 5σ sin 2θ oscillation included in the same manner. Each data set was then

fit to Equation 5.10 above and values for both the coefficients ak and bk and their standard

deviations were extracted. The results from these fits are summarized in Table 5.1.

The fitting coefficients extracted from the random noise data set show no evidence of

any non-statistical effects. The data set containing the 2σ sin 2θ oscillation similarly shows

no non-statistical effects. This is expected since five greater than 1σ effects are should arise

due purely to statistical fluctuations. The 5σ sin 2θ term in the third set of data is clearly

present and can be extracted using this fitting procedure. Thus this fitting procedure can

extract small angular oscillations appearing on top of a large constant background.

In the fit to the time-reversal data, all fifteen of the angular fitting coefficients

contained in Equation 5.10 are expected to be zero under ideal conditions. Since each is

an independent variable, the values extracted should be gaussian distributed about zero.

Therefore, one expects 68% of these coefficients to be less than 1σ from zero, 95% to be less

than 2σ from zero, and 99.7% to be less than 3σ from zero. This implies that on average, 10

coefficients would lie between 0 and 1σ from zero, 4 coefficients would lie between 1σ and

2σ from zero, and one coefficient would lie between 2σ and 3σ from zero. Fits to numerous

sets of random noise verify these distributions of the fitting coefficients.

The same fitting procedures applied to the sets of randomly generated noise are
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Random Noise

Fitting Coefficient T-ratio Fitting Coefficient T-ratio

Constant −499.86 ± .11× 10−5 475.1 cos θ −.07 ± .15 × 10−5 .5
sin θ −.20± .15× 10−5 1.4 cos 2θ −.18 ± .15 × 10−5 1.2
sin 2θ .05± .15× 10−5 .4 cos 3θ −.15 ± .15 × 10−5 1.0
sin 3θ −.14± .15× 10−5 1.0 cos 4θ .03 ± .15 × 10−5 .2
sin 4θ .17± .15× 10−5 1.1 cos 5θ .20 ± .15 × 10−5 1.4
sin 5θ −.09± .15× 10−5 .6 cos 6θ .16 ± .15 × 10−5 1.1
sin 6θ −.20± .15× 10−5 1.4 cos 7θ −.03 ± .15 × 10−5 .2
sin 7θ −.28± .15× 10−5 1.9 cos 8θ .01 ± .15 × 10−5 .1

Random Noise + 2σ sin 2θ

Constant −500.35 ± .11× 10−5 475.6 cos θ .03 ± .15 × 10−5 .2
sin θ −.15± .15× 10−5 1.0 cos 2θ .21 ± .15 × 10−5 1.4
sin 2θ .20± .15× 10−5 1.4 cos 3θ −.02 ± .15 × 10−5 .1
sin 3θ .08± .15× 10−5 .5 cos 4θ .21 ± .15 × 10−5 1.4
sin 4θ .08± .15× 10−5 .5 cos 5θ .06 ± .15 × 10−5 .4
sin 5θ −.02± .15× 10−5 .1 cos 6θ −.04 ± .15 × 10−5 .3
sin 6θ .14± .15× 10−5 .9 cos 7θ .20 ± .15 × 10−5 1.4
sin 7θ .11± .15× 10−5 .8 cos 8θ .10 ± .11 × 10−5 .9

Random Noise + 5σ sin 2θ

Constant −498.67 ± .11× 10−5 474.0 cos θ .07 ± .15 × 10−5 .5
sin θ .23± .15× 10−5 1.5 cos 2θ −.31 ± .15 × 10−5 2.1
sin 2θ .85± .15× 10−5 5.7 cos 3θ −.08 ± .15 × 10−5 .5
sin 3θ −.07± .15× 10−5 .5 cos 4θ −.08 ± .15 × 10−5 .6
sin 4θ .10± .15× 10−5 .7 cos 5θ .15 ± .15 × 10−5 1.0
sin 5θ −.16± .15× 10−5 1.1 cos 6θ .05 ± .15 × 10−5 .4
sin 6θ −.03± .15× 10−5 .2 cos 7θ .09 ± .15 × 10−5 .6
sin 7θ .24± .15× 10−5 1.6 cos 8θ −.13 ± .11 × 10−5 1.2

Table 5.1: The effects of the addition of a sin 2θ signal in a randomly generated set of data.
The T-ratio is defined as the ratio of the extracted value of the fitting coefficient to its
standard deviation.
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applied to the asymmetries in the time-reversal measurement. A general least squares fit is

performed on each subset of data consisting of a complete rotation in one direction. The

fitting coefficients are then combined using a weighted average to obtain the coefficients

for the entire data set. In the first data set, 98 subsets of data are fit individually and

the fitting coefficients averaged using the statistical error in the fitting coefficients as the

weighting factor. The second data set contains 66 subsets and are fit and averaged similarly.

The average values of the fitting coefficients for the two sets of data are summarized in

Table 5.2. The statistical error and standard deviation are in very good agreement and

have been quoted to four significant figures to quantify this agreement. The data suggest

that the cosine coefficients contain non-statistical fluctuations as would be expected from

the discussion presented in Appendix E, whereas these non-statistical terms are removed in

the sine coefficients. The values of the sine coefficients of the fit are consistent with gaussian

statistics and no anomalies are observed.

Once the fitting procedure is performed on the time reversal data, the fitting co-

efficients and their associated statistical errors and standard deviations are averaged to

determine the value of the sin 2θ coefficient for the combined set of data. The two values

are combined using a standard weighted average, yielding a coefficient of

a2 = 1.1± 1.0± 1.0 × 10−6 (5.15)

for the sin 2θ term. The first value corresponds to the central value of the measurement,

the second value corresponds to the statistical error, and the third value corresponds to the

total error or standard deviation. Since the two errors are equal within the limits of this

measurement, only one error will be used in further discussions of this measurement.

The spin-correlation coefficient A5 must next be calculated using the amplitude a2 of

the sin 2θ oscillation. Experimental quantities such as the polarizations and target thickness

are removed, leaving a quantity which can be directly compared with measurements in other

systems. Measurements of the beam polarization and target alignment are discussed in the

next section, followed by the calculation of the spin-correlation coefficient A5.
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22.5◦ Rotation Sequence

Coefficient ± Stat. Error ± Std. Deviation T-ratio

Constant −433.21 ± .1053 ± .1054 × 10−5 411.5
sin θ −.42± .1489 ± .1491 × 10−5 2.8
sin 2θ .18 ± .1489 ± .1491 × 10−5 1.2
sin 3θ .12 ± .1489 ± .1491 × 10−5 .8
sin 4θ −.02± .1489 ± .1491 × 10−5 .2
sin 5θ −.06± .1489 ± .1491 × 10−5 .4
sin 6θ −.13± .1489 ± .1491 × 10−5 .9
sin 7θ −.05± .1489 ± .1491 × 10−5 .3
cos θ −.47± .1489 ± .1491 × 10−5 3.2
cos 2θ .86 ± .1489 ± .1491 × 10−5 5.8
cos 3θ .00 ± .1489 ± .1491 × 10−5 .0
cos 4θ −.17± .1489 ± .1491 × 10−5 1.1
cos 5θ .28 ± .1489 ± .1491 × 10−5 1.9
cos 6θ .18 ± .1489 ± .1491 × 10−5 1.2
cos 7θ −.23± .1489 ± .1491 × 10−5 1.5
cos 8θ .18 ± .1053 ± .1054 × 10−5 2.6

90◦ Rotation Sequence
Constant −567.93 ± .1400 ± .1398 × 10−5 405.7

sin θ .10 ± .1980 ± .1977 × 10−5 .5
sin 2θ .05 ± .1400 ± .1398 × 10−5 .4
cos θ −.41± .1980 ± .1977 × 10−5 2.1

Table 5.2: The fitting coefficients of the least squares fit to the two sets of time-reversal
data. Note the close agreement between the statistical error and the standard deviation.
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Ky
y′(0

◦) 0.58± 0.03
Azz(0◦) −0.51 ± 0.01
Ay(36◦) 0.039 ± .002
Ayy(36◦) 0.24± 0.01

Table 5.3: Known parameters of the 2H(~d, ~n)3He reaction. Values at 0◦ are taken from
[Lis75] and values at 36◦ are taken from [Gus83].

5.4 Beam and Target Polarizations

The beam polarization is measured using the left-right asymmetry of the 2H(~d, ~n)3He

reaction. The experimental setup for this measurement is discussed in Chapter 3 and the

framework for extracting the neutron polarization is presented in Chapter 2. The average

asymmetry for the two spin-states (ELR = 0.5(E+
LR +E−LR)) is formed in a manner to remove

the unknown detector efficiency and is given by

ELR =

√
N+
L

N−L

N−R
N+
R

− 1√
N+
L

N−L

N−R
N+
R

+ 1
, (5.16)

where L and R denote the left and right detectors and ± denote the neutron spin state. The

counts in the two detectors are corrected for dead-time and spin-states failing the rejection

criteria discussed above are removed. The asymmetry is then used along with the parame-

ters from the polarization transfer reaction to extract the average neutron polarization.

The left-right asymmetry was measured to be 0.048 ± 0.00001 during the time-

reversal measurement. When combining this value with the known parameters of the

2H(~d, ~n)3He reaction summarized in Table 5.3, a neutron polarization of Pn = 0.67 ± 0.05

is determined.

The target alignment is calculated using the temperature of the sample and the

known temperature dependence of the alignment presented in Chapter 2. The temperature

was controlled at 160 mK with fluctuations of about 2 mK. The error in the temperature

arises from both these fluctuations and the calibration of the Dale thermometer. This
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a2 1.1± 1.0× 10−6

φ 0.0638 ± 0.0001
Pn 0.67 ± 0.05
t̃20 0.62 ± 0.03
n 0.065
σ0 5.14

Table 5.4: A summary of the experimental parameters in the time-reversal measurement.
The target thickness n is calculated in Appendix B using Monte-Carlo techniques. The
unpolarized cross section σ0 is taken from the optical model predictions of [McL88].

thermometer was calibrated against a Lake Shore calibrated germanium thermometer. The

error in the germanium calibration is 3% at this temperature, resulting in an error of 5%

in the calibration of the Dale thermometer. The measured temperature of the sample

was taken as T = 160 ± 8 mK. Combining this value with the measured values of the

energy eigenvalues of the magnetic dipole and electric quadrupole interactions presented in

Chapter 2, a target alignment of t̃ planar
20 = 1.36 ± .07 is determined. This is approximately

90% of the maximum value.

5.5 Spin-Correlation Coefficient

The final step in the analysis procedure is the calculation of the spin-correlation

coefficient A5. This coefficient is related to the amplitude of the sin 2θ coefficient a2, the

beam polarization and target alignment, the target thickness, the unpolarized cross section,

and the background of gamma rays.

The spin-correlation coefficient is given by

A5 =
a2(1 + φ)
Pn t̃20 n σ0

, (5.17)

where φ represents the background of gamma rays. This background has the effect of

artificially lowering the asymmetry and must be corrected for when calculating the spin-

correlation coefficient. Using the experimental parameters summarized in Table 5.4, the
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spin-correlation coefficient is determined to be

A5 = 8.6± 7.7 × 10−6. (5.18)

This value is consistent with time reversal invariance and sets a bound at the 95% confidence

level of

A5 ≤ 2.2× 10−5. (5.19)



Chapter 6

Results and Conclusions

In order to compare the results extracted in the previous chapter with time-reversal

measurements in other systems, the spin-correlation coefficient A5 must be converted into

a fundamental quantity. The conversions of A5 into either ḡρ (the ratio of T -violating to

T -conserving coupling constants) or αT (the ratio of T -violating to T -conserving nuclear

matrix elements) has been discussed in detail in Chapter 2. Using this framework and the

value of A5 extracted in Chapter 5

A5 = 8.6± 7.7 × 10−6, (6.1)

a bound on ḡρ can be extracted and is given by

ḡρ = 2.3± 2.1 × 10−2. (6.2)

For comparison purposes, the value of ḡρ can be converted into αT , yielding

αT = 2.8± 2.5× 10−4. (6.3)

This value thus sets a bound on time-reversal violation at the 95% confidence level of

αT . 7.1 × 10−4. (6.4)

This bound can now be compared with measurements of time-reversal invariance in other

systems.
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Previously, the detailed balance measurement of Blanke et al. [Bla83] had provided

the most stringent direct test of time-reversal invariance. They tested detailed balance

through differential cross section measurements of the mirror reactions 27Al(p, α)24Mg and

24Mg(α,p)27Al. Measurements were performed in the resonance region (∼ 10 MeV) with

the differential cross sections for the two reactions agreeing to within ∆ = 5.1× 10−3 (80%

confidence).

Numerous analyses have been performed to relate ∆ to either ξ (the ratio of T -

violating to T -conserving amplitudes in the reaction) or αT . Ultimately, a bound on ḡρ

is desired, but none of the analyses perform this final step. Therefore, we compare this

experiment with our value of αT .

The original analysis performed by Blanke et al. [Bla83] extracts a bound of ξ ≤

5 × 10−4 (80%). This result depends on the unknown phase between the T -violating and

T -conserving parts of the reaction amplitude. In fact, if this phase is π
2 , this measurement

provides no information on ξ. Harney et al. [Har90] have further criticized the extraction

of ξ by noting that the bound is not independent of the normalization procedure. Finally,

the step in converting ξ to αT is not performed.

A preliminary analysis by Boosé et al. [Boo86a] completes this step by converting ξ

to αT . Using the value of ξ quoted by Blanke et al., they extract a bound on αT of 2.7×10−3

(80%). A complete analysis [Boo86b] does not however give an αT value. Further, both

analyses contain an erroneous factor of 1
4 in the definition of the observable [Har90].

An independent analysis performed by French et al. [Fre87] extracts a bound on αT

of 3.5 × 10−3 (99%). This analysis pays careful attention to confidence limits, but ignores

the statistical error in the original data, thus artifically lowering the bound.

The most recent limit has been presented by Harney et al. [Har90], yielding a value

of αT = 2.6 × 10−4 at the 80% confidence level. This is the most precise value claimed in

the literature, but it gains a questionable factor of 1
n in precision by grouping data points

that lie within a given correlation length into a single measurement, yielding n independent

measurements. The bound thus depends heavily on the correlation length and the grouping
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of the data. Typical values of n were 26 to 44.

An analysis similar to Harney et al. has been performed by Bunakov et al. [Bun93]

using a Bayesian approach. They extract a similar value of ξ = 1.33×10−3 (80%) compared

to the analysis of Harney (ξ = 1.25×10−3 (80%)), but do not convert this value to a bound

on αT . This analysis also contains the factor of 1
n , depending upon the correlation length

and grouping of the data.

The analyses by Harney et al. [Har90] and Bunakov et al. [Bun93] obtain a lower

bound by grouping data into independent measurements. Davis has shown that the T -

violating observable when energy-averages are considered, is the variance of the deviation of

the cross section from zero [Dav88]. Thus independent measurements at the same precision

can not be used to lower the variance, but serve only to raise the confidence level of the

bound.

The comparison of our value of ḡρ to the detailed balance measurements depends

heavily on which analysis is chosen. The most recent analyses of Harney et al. [Har90] and

Bunakov et al. [Bun93] obtain a factor of ten lower bound using the questionable procedure

of grouping the data into independent measurements. We believe this procedure is not valid

and therefore compare our results to the bounds set by French et al. [Fre87] and Boosé et

al. [Boo86a]1. Using these for comparison, our measurement represents an improvement of

a factor of four to five over the detailed balance measurements of Blanke et al. [Bla83].

A second set of measurements that set constraints on the P -conserving, T -violating

interaction are the P -non-conserving, T -violating electric dipole moment (edm) measure-

ments. Haxton et al. [Hax94] have identified three mechanisms whereby P -non-conserving,

T -violating observables can be generated through weak corrections to P -conserving, T -

violating interactions. Measurements of the neutron electric dipole moment (d . 8 ×

10−26 e cm [Smi90, Alt92]) and the atomic electric dipole moment of 199Hg (d . 1.3 ×

10−27 e cm [Jac93]) are used to set constraints on αT . The neutron edm bound on αT

depends inversely on the as of yet unknown P -violating πNN coupling constant fπ [Hax94].
1In a similar comparison, Haxton et al. [Hax94] chooses to compare their results to those set by French

et al. [Fre87].
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This term is predicted to be large in meson exchange models [Des80], but measurements to

date have shown the value is small and consistant with zero [Ade85]. Since the magnitude

of this term is controversial, we do not consider this mechanism further.

The atomic edm measurement of 199Hg, on the other hand, sets a bound independent

of fπ, that is αT . 1.1 × 10−4 at the 95% confidence level [Hax94]. This bound is more

restrictive than the bound set by the present measurement, but we emphasize it is not

a bound on a dynamical process. The P -conserving, T -violating bounds set from dipole

moment measurements are indirect bounds on αT . Values of αT arising from these edm

measurements are complementary to the bounds set by the present direct measurement.

The present bound of αT . 7 × 10−4 represents the most precise direct test of

parity-conserving, time-reversal invariance in nuclear physics. It represents a factor of four

improvement over the previous measurements of Blanke et al. [Bla83, Boo86a, Fre87].

Future improvements of the direct bounds on P -conserving, T -violating interactions

using measurements of the five-fold correlation term in the total cross section are possible in

the epithermal energy regime. These measurements take advantage of resonance enhance-

ments. A search for resonances suitable for such a test has been carried out, and a number

of candidates have been located [Huf95]. Neutron depolarization in the crystal is a potential

problem, and measurements of the neutron depolarization in holmium have been performed

[Alf95]. Future measurements searching for d-wave admixtures (required for a FC test)

in small s-wave resonances in holmium are planned. A FC measurement in the resonance

region could in favorable cases lower the direct bounds on time-reversal invariance by one

to two orders of magnitude.



Appendix A

Spin-Dependent Cross Section

For a given reaction ~A(~a, a′)A′, the total angular momentum, J = ` + s + I, is

conserved. The spin-orbit spin-coupling scheme is used to couple the incident projectile

spin, s, the target spin, I, and their relative angular momentum, `:

`+ s = j j + I = J . (A.1)

The total cross section, σT , is given by the generalized spin-dependent optical the-

orem

σT = 4πλIm
{
Tr

(
ρMm,M ′m′ f

′
M ′m′,Mm (0◦)

)}
= 4πλIm

{∑
Mm

∑
M ′m′

ρMm,M ′m′ f
′
M ′m′,Mm (0◦)

}
, (A.2)

where ρMm,M ′m′ is the density matrix and f ′M ′m′,Mm (0◦) is the forward scattering amplitude

[Phi63]. Since the polarizations of the target and incident beam are uncoupled, the density

matrix can be factored into a direct product of the density matrices of the individual nuclei

ρMm,M ′m′ = ρMM ′ ρmm′ , (A.3)

and can further be expressed in terms of statistical tensors tkq (Section 2.1) using

ρMM ′ =
∑
kq

tkq (−1)J−M Ĵ−1
〈
JJM ′,−M |kq

〉
(A.4)
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where Ĵ =
√

(2J + 1) [Sat83]. Insertion of Equation A.4 into Equation A.3 yields the

generalized density matrix expressed in terms of statistical tensors

ρMm,M ′m′ =
∑

KQkq

tKQ(I)tkq(s) (−1)I+s−M−m Î−1ŝ−1

×
〈
IIM ′−M |KQ

〉 〈
ssm′−m|kq

〉
. (A.5)

The generalized spin-dependent scattering amplitude is given by Satchler [Sat83]

and is expressed in terms of angular momentum coupling constants and the S -matrix for

the given reaction. For arbitrary angles θ and φ, the scattering amplitude is

f ′M ′m′,Mm (θ, φ) =
λ

2i

∑
JMJ

∑
`′`
j′j

〈`s0m|jm〉 〈jImM |JMJ 〉

×
〈
`′sM ′

`m
′|j′MJ −M ′〉 ˆ̀ei(σ`+σ′`)

×
〈
j′IMJ −M ′,M ′|JMJ

〉
× (4π)

1
2 Y

M ′`
`′ (θ, φ)

[
SJ

`′j′,`j − δ`′`δj′j
]
, (A.6)

where λ is the reduced wavelength and 〈abαβ|cγ〉 is a standard Clebsch-Gordan coefficient

[Bri71]. In the forward direction, (0◦, φ) ≡ k̂, the spherical harmonic Y
M ′`
`′ (0◦, φ) is restricted

to M ′
` = 0 due to symmetry. Also, the Coulomb Phase Shift, σ`, can easily be shown to

vanish for neutron scattering:

σ` = arg Γ (` + 1 + in) (A.7)

where n is the usual Coulomb parameter,

n =
ZaZAe2µ

~2k
= 0. (A.8)

This implies that

σ` = arg Γ (` + 1) = 0

σ′` = arg Γ (`′ + 1) = 0.
(A.9)

Including these conditions into Equation A.6 gives the complete forward scattering ampli-

tude:

f ′M ′m′,Mm (0◦, φ) =
λ

2i

∑
JMJ

∑
`′`
j′j

ˆ̀〈`s0m|jm〉 〈jImM |JMJ 〉
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×
〈
`′s0m′|j′MJ −M ′〉 〈

j′I(MJ −M ′)M ′|JMJ

〉
×(4π)

1
2 Y 0

`′ (k̂)
[
SJ

`′j′,`j − δ`′`δj′j
]
. (A.10)

Substitution of Equations A.5 and A.10 into Equation A.2 gives an expression for

the total cross section:

σT = Im
{

(4π)
3
2

2i
λ2

∑
Kk
Qq

∑
JMJ

∑
`′`
j′j

∑
Mm
M′m′

tKQ (I) tkq (s)

× (−1)I+s−M−m Î−1ŝ−1 ˆ̀〈
IIM ′−M |KQ

〉
×

〈
ssm′−m|kq

〉
〈`s0m|jm〉 〈jImM |JMJ 〉

〈
`′s0m′|j′m′

〉
×

〈
j′Im′M ′|JMJ

〉
Y 0

`′ (k̂)
[
SJ

`′j′,`j − δ`′`δj′j
]}

. (A.11)

For convenience, define Ψ to be

Ψ =
∑
MM′
MJ

(−1)−M−m 〈jImM |JMJ 〉
〈
IIM ′−M |KQ

〉 〈
j′Im′M ′|JMJ

〉
(A.12)

where

σT = Im
{

(4π)
3
2

2i
λ2

∑
Kk
Qq

∑
J

∑
`′`
j′j

∑
mm′

tKQ (I) tkq (s)Ψ

× (−1)I+s ŝ−1Î−1 ˆ̀〈
ssm′−m|kq

〉
〈`s0m|jm〉

×
〈
`′s0m′|j′m′

〉
Y 0

`′ (k̂)
[
SJ

`′j′,`j − δ`′`δj′j
]}

. (A.13)

Converting the Clebsch-Gordan coefficients in Equation A.12 into Wigner 3-j symbols using

〈abαβ|c − γ〉 = (−1)a−b−γ (2c + 1)
1
2

 a b c

α β γ

 (A.14)

[Bri71] gives

Ψ =
∑
MM′
MJ

(−1)−M−m (−1)j+j′−2I+2MJ+Q (2J + 1)K̂

×

 j I J

m M −MJ


 I I K

M ′ −M −Q


 j′ I J

m′ M ′ −MJ

 . (A.15)
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After rearranging terms using the symmetry properties of the 3-j symbols a b c

α β γ

 = (−1)a+b+c

 b a c

β α γ



= (−1)−a−b−c

 a b c

−α −β −γ

 (A.16)

[Bri71] one obtains

Ψ =
∑
MM′
MJ

(−1)−M−m (−1)j+j′−2I+2MJ+Q (2J + 1)K̂

×

 j J I

−m MJ −M


 I K I

−M ′ Q M


 J I j′

MJ −M ′ −m′

 . (A.17)

Since MJ = M + m = M ′ + m′, one can rewrite Equation A.17 into a form that can be

readily simplified:

Ψ = (−1)j−I+Q+m′−m (2J + 1)K̂
∑
MM′
MJ

(−1)j′−I+m+M ′

×

 j J I

−m MJ −M


 I K I

−M ′ Q M


 J I j′

MJ −M ′ −m′

 . (A.18)

Carrying out the summations using

W (abcd; ef)

 c a f

γ α φ

 =

∑
βδε

(−1)f−e−α−δ

 a b e

α β −ε


 d c e

δ γ ε


 b d f

β δ −φ

 , (A.19)

[Bri71] one obtains

Ψ = (−1)j−I+Q+m′−m (2J + 1)K̂W
(
jJKI; Ij′

)  K j j′

Q −m m′

 . (A.20)
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Substituting Ψ into Equation A.13 yields

σT = Im
{

(4π)
3
2

2i
λ2

∑
KkQq

tKQ (I) tkq (s) (−1)I+s
∑
`′`j′j

ˆ̀Î−1ŝ−1K̂

×
∑
J

(2J + 1)
∑
mm′

(−1)j−I+Q+m′−m W
(
jJKI; Ij′

)

×

 K j j′

Q −m m′

 〈
ssm′−m|kq

〉
〈`s0m|jm〉

×
〈
`′s0m′|j′m′

〉
Y 0

`′ (k̂)
[
SJ

`′j′,`j − δ`′`δj′j
]}

. (A.21)

Converting the remaining Clebsch-Gordan coefficients into 3-j symbols and rearranging the

order of the Racah coefficients using W (abcd; ef) = W (badc; ef) [Bri71] one obtains

σT = Im
{

(4π)
3
2

2i
λ2

∑
KkQq

tKQ (I) tkq (s)
∑
J

(2J + 1)
∑
`′`j′j

ˆ̀Î−1ŝ−1K̂k̂̂̂′

×
∑
mm′

(−1)j+I+Q+m′−m (−1)`+`′−2s+q+m+m′ W
(
JjIK; Ij′

)

×

 K j j′

Q −m m′


 s s k

m′ −m −q


 ` s j

0 m −m



×

 `′ s j′

0 m′ −m′

 Y 0
`′ (k̂)

[
SJ

`′j′,`j − δ`′`δj′j
]}

. (A.22)

Rearranging the 3-j symbols into a form that can be simplified gives

σT = Im
{

(4π)
3
2

2i
λ2

∑
Kk
Qq

tKQ (I) tkq (s)
∑
J

(2J + 1)
∑
`′`
j′j

ˆ̀Î−1ŝ−1K̂k̂̂̂′

×
∑
mm′

(−1)j+2m′+`+`′−s+Q+q (−1)7s+2k+2j′+j+2`′+`

×W
(
JjIK; Ij′

)  k s s

−q m′ −m


 K j′ j

−Q −m′ m



×

 j′ `′ s

−m′ 0 m′


 j ` s

m 0 −m

 Y 0
`′ (k̂)

[
SJ

`′j′,`j − δ`′`δj′j
]}

. (A.23)
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After noting that j′+m′ must be an integer, the sum over the m’s can be carried out using

∑
b

(2b + 1)

 a b c

α β γ


 b e h

β ε η




a b c

d e f

g h i


=

∑
φνδρ

 c f i

γ φ ν


 a d g

α δ ρ


 d e f

δ ε φ


 g h i

ρ η ν

 , (A.24)

[Bri71] which yields

σT = Im
{

(4π)
3
2

2i
λ2

∑
KkQq

tKQ (I) tkq (s)
∑
`′`j′j

ˆ̀Î−1ŝ−1K̂k̂̂̂

× (−1)2j+2s+`′+Q+q
∑
J

(2J + 1)W
(
JjIK; Ij′

) ∑
Λ

(2Λ + 1)

×

 K Λ k

−Q MΛ −q


 Λ `′ `

MΛ 0 0




K Λ k

j′ `′ s

j ` s


×Y 0

`′ (k̂)
[
SJ

`′j′,`j − δ`′`δj′j
]}

. (A.25)

From the second 3-j symbol in Equation A.25, MΛ = 0. Likewise, from the first 3-j symbol,

Q = −q. Rearranging the 3-j and 9-j symbols gives

σT = Im
{

(4π)
3
2

2i
λ2

∑
Kk

∑
q

tK−q (I) tkq (s)
∑
J

(2J + 1)
∑
`′`j′j

ˆ̀Î−1ŝ−1K̂k̂̂̂′

× (−1)2j+2s+`′+K+Λ+k W
(
JjIK; Ij′

)∑
Λ

(2Λ + 1)

 Λ k K

0 q −q



×

 ` Λ `′

0 0 0




j′ `′ s

j ` s

K Λ k


Y 0

`′ (k̂)
[
SJ

`′j′,`j − δ`′`δj′j
]}

. (A.26)
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If `+Λ+ `′ is odd, the Clebsch-Gordan coefficient 〈`Λ00|`′0〉 is zero. Also, since j + s must

be an integer, most of the factors of −1 can be eliminated. After converting the 3-j symbols

into Clebsch-Gordan coefficients one obtains

σT = Im
{

(4π)
3
2

2i
λ2

∑
Kk

∑
Λq

tK−q (I) tkq (s)
∑
J

(2J + 1)
∑
`′`
j′j

ˆ̀Î−1ŝ−1k̂̂̂′

× (−1)K+q W
(
JjIK; Ij′

)
Λ̂2 〈Λk0q|Kq〉

〈
`Λ00|`′0

〉

×


j′ `′ s

j ` s

K Λ k


Y 0

`′ (k̂)
[
SJ

`′j′,`j − δ`′`δj′j
]}

. (A.27)

Equation A.27 can easily be rewritten into the form of Hnizdo and Gould [Hni94b].

Noting that T J
`′j′`j = (1/2i)[SJ

`′j′,`j − δ``′δjj′ ] and

〈Λk0q|Kq〉 = (−1)Λ+2k−K−q K̂

Λ̂
〈kKq −q|Λ0〉 , (A.28)

the total cross section in the spin-orbit representation can be rewritten as a sum of partial

cross sections that depend on the rank of the polarization of the beam (k) and target(K).

Factoring out the diagonal polarization tensors t̃kq defined by Equation 2.2, one obtains an

expression for the total cross section

σT =
∑
kK

t̃k0(s)t̃K0(I)σkK , (A.29)

where

σkK =
(4π)

5
2

ŝÎ
λ2Im

∑
Λq

(−1)ΛΛ̂ 〈kKq −q|Λ0〉Y q
k (ŝ)Y −q

K (Î)

×
∑

J`j`′j′

(2J + 1)ˆ̀ˆ̀′
−1

̂̂′ Y 0
`′ (k̂)

〈
lΛ00|l′0

〉

×W
(
JjIK; Ij′

)


` s j

Λ k K

`′ s j′


T J

`′j′`j. (A.30)
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Using the property of the spherical harmonics

Y 0
`′ (k̂) =

√
4π

(2`′ + 1)
=

Λ̂
ˆ̀′Y

0
Λ (k̂) (A.31)

and the tensor product notation given by Equation 2.9, we obtain the form given by Hnizdo

and Gould [Hni94b]:

σT =
∑
kK

t̃k0(s)t̃K0(I)σkK (A.32)

where

σkK = 4πλ2 k̂K̂

ŝÎ
Im

∑
Λ

Λ̂CkKΛ(ŝÎk̂)
∑

J`j`′j′

ˆ̀̂̂′
〈
`Λ00|`′0

〉

×W
(
JjIK; Ij′

)


` s j

Λ k K

`′ s j′


T J

`′j′`j (A.33)

and

CkKΛ(ŝÎk̂) =
(4π)

3
2

k̂K̂

[[
Y q

k (ŝ)⊗ Y −q
K (Î)

]
Λ0
⊗ Y 0

Λ(k̂)
]

00
. (A.34)



Appendix B

Multiple Scattering Events

Monte-Carlo calculations of the neutron transport through the experimental setup

are performed to estimate the percentage of scattered events reaching the 0◦ detectors.

These calculations are performed on a Sun Sparc-2 using the computer code mcnp-4A

[JFB93] — or the Monte-Carlo N-Particle Transport Code System. This code is used for

neutron transport calculations through three-dimensional volumes using the current ENDF

neutron cross sections to model the reactions.

The three-dimensional geometry for the calculation is specified in the input file.

Outer surfaces of the materials are specified using planes, cylinders, cones, or spheres.

Volume elements are then specified by the union of these surfaces to define a closed cell.

The cell is parameterized by specifying its material composition and density.

The amount of computer time required for a calculation increases exponentially with

the number of geometrical cells. To minimize the time required for these calculations, only

relevant materials were included in the geometry. For the present calculations, the geometry

includes the following materials: the copper and gold surrounding the deuterium gas cell, the

copper coldfinger and stainless steel housing of the gas cell, the lower sections of the liquid

nitrogen jacket, the liquid helium jacket, and the vacuum cans for the dilution refrigerator,

the holmium target and its mounting apparatus, and the monitor and 0◦ detector arrays.

These include all materials within the solid angle of the 0◦ detector and the immediate
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surrounding area.

The neutron production target was modeled using a general source tailored to the

2H(d,n)3He reaction. The neutrons emerge in a uniform distribution from a cylindrical

volume of diameter 0.63 cm and length 3.81 cm. The neutron energy is chosen randomly

between 5 and 8 MeV. The flux from the reaction is forward peaked about the direction

of the neutron momentum using an exponential weighting of the form p(µ) = ceaµ, where

µ specifies the direction cosine. The coefficient a was determined using a fit to the known

angular cross section of the 2H(d,n)3He reaction, yielding a value of a = 24.6.

The material cells and neutron source parameters are included in the input file for

the calculations. A sample input file is given at the end of this appendix. The first section

of the file defines the material cells using the union of the surfaces defined in the section

immediately following. The next sections define the materials used in the calculations, the

rotation angles for surfaces not perpendicular to the coordinate axes, the source configu-

ration, and the tally cards which will be discussed later. The remaining lines specify the

cut-off energy for neutrons in the simulation (taken to be 1.5 MeV), the number of neu-

trons produced in the production cell, and the starting random number. Note that the

code is designed so that two calculations using the same random number and geometry are

identical.

Calculations were performed for a number of geometries in the initial design stages

of this experiment. The locations of the detectors and neutron production target are chosen

such that unscattered neutrons reaching the 0◦ detectors must pass through the holmium

sample. Quantities such as multiple scattering events — or cross-talk — between the

detectors are estimated from these calculations. Cross-talk values of ∼ 1% are calculated

between the 0◦ detectors, consistent with the measured values presented in Chapter 4.

The code mcnp can tally the number of neutrons passing through a surface and

flag neutrons that scatter before reaching this surface. These tally mechanisms are used to

estimate the effective target thickness, the efficiencies of both the 0◦ and monitor detectors,

and the number of neutrons reaching the detector from small angle scattering within the
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holmium.

The experimental setup for the time reversal measurement is used in calculating the

small angle scattering events within the holmium sample. Information contained within the

tally outputs give the number of neutrons entering a surface having scattered somewhere,

but give no information on the location of this scattering event. Multiple tallies must

therefore be used to extract the small angle scattering percentage within the holmium.

The small angle scattering events — or inscattering — within the holmium is deter-

mined using the tally outputs tracking the number of neutrons that scatter, pass through

the holmium, and pass through the front surface of the 0◦ detector array. A second Monte-

Carlo calculation is performed with an empty cell in place of the holmium sample extracting

the same information. Combining the information contained in these two calculations, the

small angle scattering events within the holmium sample is determined.

Three calculations are performed for both the sample in and sample out configura-

tions. For consistency, the neutron projections for each pair of calculations were identical

using the same initial random number. The results of these calculations suggest that ∼ 1%

of the counts in the 0◦ detector arise from small angle scattering events within the holmium

sample.

Scattering events from other sources into the 0◦ detectors can not be estimated

because the majority of these scattering events occur before the sample, in the area sur-

rounding the gas cell. In principle, these scattered neutrons do not effect the time-reversal

measurement because the majority of these neutrons pass through the holmium. These

events are less than 10% of the total count rate and the percentage that enter the detector

not passing through the holmium is less than 1%.

The above calculations can also be used to measure the thickness of the holmium

sample. Taking the ratio of the number of neutrons that scatter within the holmium to

the total number that enter the sample, and using the known cross section of σ = 5.1 b,

the target thickness is found to be n = 0.065 at/b. This value is larger than the chord

approximation value of Koster [Kos90], which yielded n = 0.058 at/b. The mcnp calculation



APPENDIX B. MULTIPLE SCATTERING EVENTS 103

takes into account the non-uniform beam profile, in which a larger neutron flux passes

through the center of the target than at the edges, increasing the effective target thickness.

A target thickness of n = 0.065 at/b is used in the analysis of the time-reversal data

presented in Chapter 6.

The relative efficiencies of the two sets of detectors can be calculated in the same

manner by taking the ratio of the number of neutrons scattered within the scintillation

material to the number of neutrons entering. These calculations were used in the initial

design stages of the experiment to determine the optimum thickness for the monitor detector

array. This thickness was chosen to be 1.27 cm based on the detector efficiency and count

rates in the photomultiplier tubes. In the present experimental setup, these efficiencies were

calculated for both detector arrays. The 0◦ detector array has an efficiency of 62% and the

monitor array has an efficiency of 15%.

In summary, these calculations set limits on small angle scattering events within

the holmium sample, determine the effective target thickness of the holmium sample, and

estimate the efficiencies of the two detector arrays. These calculations were also essential

in the initial design stages of this experiment.
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Sample input file for the MCNP calculations using the geometry of the FC expt.

1 0 24 -25 -26 $ BEAM SPOT OF GAS CELL (GC)

2 1 -8.80 29 -30 -27 $ HOLMIUM (HO)

3 2 -1.032 -21 22 15 -19 20 -18 $ DETECTOR TOP LEFT

4 2 -1.032 -21 22 19 -16 20 -18 $ DETECTOR TOP RIGHT

5 2 -1.032 -21 22 15 -19 17 -20 $ DETECTOR BOTTOM LEFT

6 2 -1.032 -21 22 19 -16 17 -20 $ DETECTOR BOTTOM RIGHT

7 2 -1.032 1 -2(-10 19 14 -12:-14 12 20 $ MONITOR 1 (MO)

-7:-3 12 14 -7 -10) $

8 2 -1.032 1 -2(-10 -19 14 11:-14 -11 $ MONITOR 2

20 8:-4 -11 14 8 -10) $

9 2 -1.032 1 -2(9 19 -13 -12:13 12 -20 $ MONITOR 3

-7:-5 12 -13 -7 9) $

10 2 -1.032 1 -2(9 -19 -13 11:13 -11 -20 $ MONITOR 4

8 :-6 -11 -13 8 9) $

11 3 -2.70 -116 115 -146 143 $ OUTER WALL (OW)

12 3 -2.70 -114 113 -140 141 $ LN2 JACKET (LN2)

13 4 -7.9 -112 111 -138 135 $ LHE DEWAR (LHE)

14 4 -7.9 -110 109 -132 133 $ DR VACUUM CAN (DRVC)

15 4 -7.9 -131 154 -147 109 $ TOP OF DRVC

16 4 -7.9 -133 134 -110 $ BOTTOM OF DRVC

17 4 -7.9 -137 138 -148 111 $ TOP OF LHE

18 4 -7.9 -135 136 -112 $ BOTTOM OF LHE

19 3 -2.70 -139 140 -149 113 $ TOP OF LN2

20 3 -2.70 -141 142 -114 $ BOTTOM OF LN2

21 3 -2.70 -145 146 -150 115 $ TOP OF OW

22 3 -2.70 -143 144 -116 $ BOTTOM OF OW

23 4 -7.9 -108 -103 106 $ COLDFINGER (CF)

#(-105 -108 107 106) $

24 5 -8.96 -35 36 -25 24 $ COPPER GAS CELL BODY

25 6 -19.3 -36 33 -25 24:25 -34 -35 $ GOLD SLEEVE

26 5 -8.96 -41 42 -43 44 45 -46 35 $ GC CLAMP

27 5 -8.96 -47 48 -42 $ GC COLDFINGER

28 5 -8.96 -49 53 29 -30 :30 -106 107 $ COPPER THING

-49:-51 106 107 -52:-105 $ LHE WOULD BE 135 -111

-49 107 52 $ 151 -138

29 4 -7.9 -63 -60 59 66 $ VACUUM HOUSING

30 4 -7.9 -62 63 -60 $ TOP OF VACUUM HOUSING

31 4 -7.9 -61 -64 65 60 $ VACUUM FLANGE HOUSING

32 0 54 -55 -58 29 -30 $ TALLY CELL #1

33 0 56 -57 58 29 -30 $ TALLY CELL #2

34 0 -23 155 31 #(-151 152 -153) $ WORLD #1 (INCL CANS)

#11 #12 #13 #15 #17 $

#18 #19 #20 #21 #22 $

35 0 -151 152 -153 #2 #14 #16 #23 $ WORLD #2 (INCL HO & CF)

#28 #32 #33 $

36 0 -31 -32 #1 #24 #25 #26 $ WORLD #3 (INCL GS)

#27 #29 #30 #31 $

37 0 -31 32 20 #7 #8 $ WORLD #4 (INCL MO 1&2)

38 0 -31 32 -20 #9 #10 $ WORLD #5 (INCL MO 3&4)

39 0 -155 #3 #4 #5 #6 $ WORLD #4 (INCL DETECT)

40 0 23 $ VOID

1 PY -8.414 $ BACK OF MO (1/2" THICK)

2 PY -7.144 $ FRONT OF MO
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3 P 1 0 1 3.592 $ TOP LEFT SIDE OF MO

4 P -1 0 1 3.592 $ TOP RIGHT SIDE OF MO

5 P 1 0 -1 3.592 $ BOTTOM LEFT SIDE OF MO

6 P -1 0 -1 3.592 $ BOTTOM RIGHT SIDE OF MO

7 PX 2.54 $ RIGHT SIDE OF MO

8 PX -2.54 $ LEFT SIDE OF MO

9 PZ -2.54 $ BOTTOM OF MO

10 PZ 2.54 $ TOP OF MO

11 PX -.9525 $ LEFT OF MO BEAM HOLE

12 PX .9525 $ RIGHT OF MO BEAM HOLE

13 PZ -.9525 $ BOTTOM OF MO BEAM HOLE

14 PZ .9525 $ TOP OF MO BEAM HOLE

15 1 PX 0 $ LEFT OF DETECTOR SETUP

16 2 PX 0 $ RIGHT OF DETECTOR SETUP

17 3 PZ 0 $ BOTTOM OF DETECTOR SETUP

18 4 PZ 0 $ TOP OF DETECTOR SETUP

19 PX 0 $ VERTICAL PLANE TO SEGMENT DETECTOR

20 PZ 0 $ HORIZONTAL PLANE TO SEGMENT DETECTOR

21 PY 90.488 $ BACK OF DETECTOR

22 PY 85.408 $ FRONT OF DETECTOR

23 SO 200 $ WORLD

24 PY -14.6 $ BACK OF GC

25 PY -10.78 $ FRONT OF GC

26 CY .3175 $ CYLINDER FOR GC

27 CZ 1.14554 $ CYLINDER OF HO

29 PZ -1.397 $ BOTTOM OF HO

30 PZ 1.397 $ TOP OF HO

31 S 0 -22.83 -2.5 17.75 $ WORLD DIVISION #7

32 PY -8.415 $ WORLD DIVISION #8

33 CY .42545 $ CYLINDER FOR GOLD SLEEVE

34 PY -10.73 $ THICKNESS OF GOLD DISK

35 CY .635 $ CYLINDER FOR COPPER GC BODY

36 CY .47625 $ OUTER CYLINDER FOR GOLD

37 C/Z 0 -13.013 2.54 $ CYLINDER OF GC OUTER HOUSING

38 C/Z 0 -13.013 2.6162 $ 30 MILS THICK

39 PZ -1.27 $ BOTTOM OF OUTER HOUSING

40 PZ 1.27 $ TOP OF OUTER HOUSING

41 PZ .9525 $ TOP OF GAS CELL CLAMP

42 PZ -.9525 $ BOTTOM OF GAS CELL CLAMP

43 PX 1.1113 $ RIGHT OF GC CLAMP

44 PX -1.1113 $ LEFT OF GC CLAMP

45 PY -13.965 $ BACK OF GC CLAMP

46 PY -12.06 $ FRONT OF GC CLAMP

47 C/Z 0 -13.013 .9525 $ GC COLDFINGER CYLINDER

48 PZ -10 $ LENGTH OF GC COLDFINGER

49 CZ 1.4288 $ OUTER EDGE OF HO COPPER (CU)

51 CZ .357 $ OUTER SHAFT OF MIDDLE OF HO CU

52 PZ 3.937 $ BOTTOM OF TOP OF HO CU

53 CZ 1.15 $ INSIDE OF COPPER THING

54 CZ 1.1475 $ TALLY SURFACE #1

55 CZ 1.1485 $ TALLY SURFACE #2

56 CZ 1.1470 $ TALLY SURFACE #3

57 CZ 1.1480 $ TALLY SURFACE #4

58 PY 0 $ TALLY SURFACE #5

59 C/Z 0 -13.012 2.45 $ INNER CYLINDER
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60 C/Z 0 -13.012 2.55 $ OUTER CYLINDER

61 C/Z 0 -13.012 4.00 $ FLANGE CYLINDER

62 PZ 2.76 $ TOP OF HOUSING

63 PZ 2.65 $ DITTO

64 PZ -2.35 $ FLANGE

65 PZ -3.62 $ FLANGE

66 PZ -11.22 $ BOTTOM OF HOUSING

103 PZ 19.812 $ TOP OF CF

104 PZ 18.542 $ BOTTOM OF TOP INSERT ON CF

105 PZ 4.572 $ TOP OF INSERT FOR COPPER ON CF

106 PZ 2.032 $ BOTTOM OF CF

107 CZ 0.125 $ TOP OF CF SHAFT

108 CZ 0.24985 $ CF SHAFT

109 CZ 2.4511 $ INSIDE OF DRVC

110 CZ 2.54 $ OUTSIDE OF DRVC

111 CZ 2.794 $ INSIDE OF LHE

112 CZ 2.8575 $ OUTSIDE OF LHE

113 CZ 3.7306 $ INSIDE OF LN2

114 CZ 3.81 $ OUTSIDE OF LN2

115 CZ 4.9213 $ INSIDE OF OW

116 CZ 5.08 $ OUTSIDE OF OW

131 PZ 23.67 $ TOP OF TOP OF DRVC

132 PZ 23.34 $ TOP OF DRVC

133 PZ -5.544 $ BOTTOM OF DRVC

134 PZ -5.874 $ BOTTOM OF BOTTOM OF DRVC

135 PZ -8.414 $ BOTTOM OF LHE

136 PZ -8.890 $ BOTTOM OF BOTTOM OF LHE

137 PZ 22.38 $ TOP OF TOP OF LHE

138 PZ 21.47 $ TOP OF LHE

139 PZ 19.53 $ TOP OF TOP OF LN2

140 PZ 18.92 $ TOP OF LN2

141 PZ -10.32 $ BOTTOM OF LN2

142 PZ -10.95 $ BOTTOM OF BOTTOM OF LN2

143 PZ -11.91 $ BOTTOM OF OW

144 PZ -12.22 $ BOTTOM OF BOTTOM OF OW

145 PZ 16.99 $ TOP OF OW TOP PLATE

146 PZ 15.34 $ TOP OF OW

147 CZ 5.24 $ OUTER EDGE OF TOP OF DRVC

148 CZ 8.255 $ OUTER EDGE OF TOP OF LHE

149 CZ 18.415 $ OUTER EDGE OF TOP OF LN2

150 CZ 22.86 $ OUTER EDGE OF TOP OF OW

151 CZ 2.55 $ WORLD DIVISION #3

152 PZ -6 $ WORLD DIVISION #4

153 PZ 23.35 $ WORLD DIVISION #5

154 PZ 23.36 $ BOTTOM OF TOP OF DRVC MODIFIED W/ GAP

155 SY 88.0 20 $ WORLD DIVISION #6

MODE N

IMP:N 1 38R 0

M1 67165.01c 1 $ HOLMIUM 165

M2 1001.50c 0.5238 6012.50c 0.4762 $ POLYVINYL TOLUENENE

M3 13027.50c 1 $ ALUMINUM

M4 26000.55c 0.69 24000.50c 0.16 $ STAINLESS STEEL

28000.50c 0.10 25055.51c 0.02 $

42000.51c 0.02 14000.51c 0.01 $
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M5 29000.50c 1 $ COPPER

M6 79197.10C 1 $ GOLD

C

TR1* 0.000 -20.130 0.00 3.29 86.71 90.00 93.29 3.29 90.00 90.00 90.00 0.00

TR2* 0.000 -20.130 0.00 3.29 93.29 90.00 86.71 3.29 90.00 90.00 90.00 0.00

TR3* 0.000 -20.130 0.00 0.00 90.00 90.00 90.00 3.29 93.29 90.00 86.71 3.29

TR4* 0.000 -20.130 0.00 0.00 90.00 90.00 90.00 3.29 86.71 90.00 93.29 3.29

C

SDEF ERG=D1 POS=0 -12.69 0 CEL=1 RAD=D2 EXT=D3 AXS=0 1 0

DIR D5 VEC 0 1 0

SI1 5 8

SP1 0 1

SI2 0.3175

SP2 -21 0

SI3 1.235

SP3 -21 0

SP5 -31 24.562

F11:N 54

FT11 INC

FU11 0 100

FC11 NEUTRONS INTO FRONT TALLY SURFACE

F21:N 30

CF21 30

FT21 INC

FU21 0 100

FC21 NEUTRONS THRU FRONT TALLY SURFACE AND INTO TOP OF HOLMIUM

F31:N 29

CF31 30

FT31 INC

FU31 0 100

FC31 NEUTRONS THRU FRONT TALLY SURFACE AND INTO BOTTOM OF HOLMIUM

F41:N 56

CF41 30

FT41 INC

FU41 0 100

FC41 NEUTRONS THRU HOLMIUM AND INTO REAR TALLY SURFACE

F51:N 56

CF51 30

FT51 INC

FU51 0 100

FC51 NEUTRONS THRU HOLMIUM OR FRONT TALLY SURFACE AND INTO REAR TALLY SURFACE

F61:N 22

CF61 30

FT61 INC

FU61 0 100

FC61 NEUTRONS THRU FRONT TALLY SURFACE AND INTO FRONT OF DETECTOR

F71:N 21

CF71 30

FT71 INC

FU71 0 100

FC71 NEUTRONS THRU FRONT TALLY SURFACE AND INTO REAR OF DETECTOR

F81:N 22

CF81 2

FT81 INC

FU81 0 100
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FC81 NEUTRONS THRU HOLMIUM AND INTO FRONT OF DETECTOR

F91:N 21

CF91 2

FT91 INC

FU91 0 100

FC91 NEUTRONS THRU HOLMIUM AND INTO REAR OF DETECTOR

F101:N 22

CF101 31

FT101 INC

FU101 0 100

FC101 NEUTRONS THRU REAR TALLY SURFACE AND INTO FRONT OF DETECTOR

F111:N 21

CF111 31

FT111 INC

FU111 0 100

FC111 NEUTRONS THRU REAR TALLY SURFACE AND INTO REAR OF DETECTOR

F121:N 22

CF121 30 2

FT121 INC

FU121 0 100

FC121 NEUTRONS THRU FRONT TALLY SURFACE OR HO AND INTO FRONT OF DETECTOR

F131:N 21

CF131 30 2

FT131 INC

FU131 0 100

FC131 NEUTRONS THRU FRONT TALLY SURFACE OR HO AND INTO REAR OF DETECTOR

F141:N 22

CF141 31 2

FT141 INC

FU141 0 100

FC141 NEUTRONS THRU HO OR REAR TALLY SURFACE AND INTO FRONT OF DETECTOR

F151:N 21

CF151 31 2

FT151 INC

FU151 0 100

FC151 NEUTRONS THRU HO OR REAR TALLY SURFACE AND INTO REAR OF DETECTOR

F161:N 22

CF161 30 31

FT161 INC

FU161 0 100

FC161 NEUTRONS THRU FRONT OR REAR TALLY SURFACE AND INTO FRONT OF DETECTOR

F171:N 21

CF171 30 31

FT171 INC

FU171 0 100

FC171 NEUTRONS THRU FRONT OR REAR TALLY SURFACE AND INTO REAR OF DETECTOR

F181:N 22

CF181 30 31 2

FT181 INC

FU181 0 100

FC181 NEUTRONS THRU HO OR FRONT OR REAR TALLY AND INTO FRONT OF DETECTOR

F191:N 21

CF191 30 31 2

FT191 INC

FU191 0 100
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FC191 NEUTRONS THRU HO OR FRONT OR REAR TALLY AND INTO REAR OF DETECTOR

PHYS:N 25

CUT:N J 1.5 3J

C

NPS 100000

PRINT 126

DBCN 1376393645937



Appendix C

Electronic Schematics

Schematics for equipment designed and built for this experiment are archived in this

Appendix. Figures C.1 and C.2 are the schematics for the photomultiplier tube bases for

both the 0◦ and monitor detectors. The voltage distributions for both sets of detectors are

given in Tables C.1 and C.2. Figure C.3 is the schematic for the spin-state controller used

to flip the neutron spin every 100 ms in the eight-step sequence + − − + − + + − .

Figures C.4 and C.5 are schematics for the vetoing circuit. Figure C.6 is the schematic for

the 50 MHz pulser used to test the stability of the vetoing circuit. And lastly, Figures C.7

and C.8 are the schematics for the beam current integrator.
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Figure C.1: Schematic for 0◦ detector photomultiplier tube voltage divider circuit.
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Figure C.2: Schematic for the monitor detector photomultiplier tube voltage divider circuit.
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Figure C.3: Schematic of the polarized ion source spin-state controller. This module gen-
erates the eight-step spin sequence + − − + − + + − used to toggle the spin-state of
the beam.
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Figure C.4: Schematic of the polarized target veto module (part 1). This module generates
the clock signal used to drive the spin-state controller, generates a strobe pulse to signal
reading of the scalars during the spin-flip, and generates a veto signal to inhibit the scalars
during the spin-flip.
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Figure C.5: Schematic of the polarized target veto module (part 2). This module generates
the clock signal used to drive the spin-state controller, generates a strobe pulse to signal
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during the spin-flip.



APPENDIX C. ELECTRONIC SCHEMATICS 116

D
a
t
e
:

 
 
 
 
 
J
u
n
e
 
1
5
,
 
1
9
9
5
S
h
e
e
t

 
 
 
 
1

o
f

 
 
 
 
1

S
i
z
e
D
o
c
u
m
e
n
t
 
N
u
m
b
e
r

R
E
V

B
v
e
t
c
l
k
.
s
c
h

A

T
i
t
l
e

P
o
l
a
r
i
z
e
d
 
T
a
r
g
e
t
 
5
0
 
M
H
z
 
O
s
c
i
l
l
a
t
o
r

D
r
w
n
 
B
y
 
S
E
E

T
r
i
a
n
g
l
e
 
U
n
i
v
e
r
s
t
y
 
N
u
c
l
e
a
r
 
L
a
b
o
r
t
o
r
y

D
u
k
e
 
U
n
i
v
e
r
s
i
t
y
 
P
h
y
s
i
c
s
 
D
e
p
a
r
t
m
e
n
t

V
C
C

X
0
-
4
3
 
O
S
C

5
0
.
0
 
M
H
Z

1
4

8

V
C
C

3
.
3
u
f

3
.
3
u
f

V
I
N

 
 
1

G N D

3

V
O
U
T

 
2

L
M
7
8
0
5

+
1
2
 
v
 
f
r
o
m
 
N
I
M

7

1
k

1
k

5
0

2
N
3
9
0
4

1
k

1
k

5
0

2
N
3
9
0
4

B
4

2
2
0

2
N
3
9
0
4

L
e
m
o

I 0

5

I 1

7

I 2

1 0

I 3

1 1

I C

6

O 0

4

O 0

2

O 1

3

O 1

1

O 2

1 2

O 2

1 5

O 3

1 3

O 3

1 4

G
N
D

 
1
6

M
C
1
0
1
2
4

2
2
0

2
N
3
9
0
4

L
e
m
o

L
e
m
o

1
k

1
k

5
0

2
N
3
9
0
4

2
2
0

2
N
3
9
0
4

L
e
m
o

1
k

1
k

5
0

2
N
3
9
0
4

2
2
0

2
N
3
9
0
4

-
1
2
 
v
 
f
r
o
m
 
N
I
M

+
+

3
.
3
u
f

3
.
3
u
f

V
I
N

 
 
3

G N D

1

V
O
U
T

 
2

L
M
7
9
0
5

Figure C.6: Schematic of the 50 MHz pulser used for vetoing and stability tests.
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Figure C.7: Schematic of the beam current integrator circuit (part 1).
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Figure C.8: Schematic of the beam current integrator circuit (part 2).
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Dynode Pin Top Top Bottom Bottom
Number Number Left Right Right Left

K 20 -2517 -2517 -2518 -2517
F 19 -2373 -2373 -2373 -2372
1 2 -2034 -2031 -2033 -2039
2 17 -1982 -1889 -1891 -1896
3 3 -1693 -1690 -1692 -1697
4 16,15 -1576 -1574 -1575 -1579
5 5 -1460 -1457 -1459 -1463
6 14 -1344 -1342 -1343 -1346
7 6 -1228 -1226 -1227 -1231
8 13 -1120 -1117 -1118 -1121
9 7 -1000 -999 -999 -1003
10 12 -822 -821 -823 -825
11 8 -646 -645 -646 -648
12 11 -292 -293 -293 -294
P 10 0 0 0 0

Table C.1: The voltage distributions of each of the 0◦ detector phototube bases for a fixed
input voltage.

Dynode Pin Top Top Bottom Bottom
Number Number Left Right Right Left

K 13 -2014 -2015 -2013 -2014
1 14 -1462 -1465 -1464 -1465
2 12 -1323 -1326 -1324 -1327
3 2 -1115 -1117 -1116 -1119
4 11 -977 -978 -978 -981
5 3 -839 -840 -840 -843
6 10 -704 -704 -705 -708
7 4 -562 -563 -563 -566
8 9 -422 -423 -423 -425
9 5 -280 -281 -281 -282
10 8 -140 -140 -140 -140
P 7 0 0 0 0

Table C.2: The voltage distributions of each of the monitor detector phototube bases for a
fixed input voltage.



Appendix D

Beam Heating Effects

The 6 MeV polarized neutron beam used in this experiment is produced using a

3 MeV polarized deuteron beam and the 2H(~d, ~n)3He reaction. The deuteron beam is

incident upon a cryogenically cooled deuterium gas cell and is stopped upon exit of the cell

with a gold foil. The 2 µA of beam can deposit up to 6 W of heat into the cell. This heat

can cause large variations in the temperature of the cell, and thus large fluctuations in the

density of the gas within the cell.

The deposited heat is removed from the cell by a copper coldfinger extending into a

liquid nitrogen bath. Once the beam is placed on the cell, thermal equilibrium is reached in

about one hour, with a temperature rise of 80 K occurring. These temperature variations

occur on the same time scale as a rotation sequence of the target and thus can contribute

time-dependent terms to the normalized asymmetry. In the time-reversal measurement,

effects arising from temperature variations are suppressed by controlling the temperature

of the gas cell and normalizing the neutron flux. However, in the initial stages of this

experiment, temperature stabilization of the gas cell was not performed and the resulting

drifts in both the yields and asymmetries are discussed in this appendix.

The neutron yields can be normalized to either the number of counts from the beam

current integration or the number of counts in the monitor detector array. The monitor

normalization is superior because it suppresses most of the fluctuations in the neutron flux,
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whereas the beam current normalization only suppresses fluctuations in the intensity of

the deuterium beam. Thus, the beam current normalization fails to remove any effects

related to either changes in the gas cell or in the tensor polarization of the beam. When

investigating effects that arise from the gas cell, however, beam current normalization will

maximize these effects and thus will be used in the initial discussion of beam heating effects.

When the deuteron beam is placed on the gas cell, the temperature in the gas cell

rises, resulting in a decrease in the density of the gas within the cell. The product of

density and thickness ρt decreases and thus the neutron flux decreases given a constant

beam current. The decrease in flux will appear as an exponential decay in the yield for

both spin-states with a time constant equal to the thermal time constant for the cooling

system of the cell. Such an effect in the yield has been observed and the yield for the two

spin-states is shown in Figure D.1 for two detectors. The vertical axis represents the beam

current normalized yield and the horizontal axis represents the run number or angular

sequence. Each run corresponds to approximately four minutes worth of data taken in

the angular sequence −180◦, . . . ,−22.5◦, 0◦, 22.5◦, . . . ,+180◦, . . . ,−180◦. Beam was placed

onto the cold (∼ 86 K) gas cell at run number 7479. The beam heating caused the neutron

yield to exponentially decrease until thermal equilibrium (∼ 168 K) was reached around

run number 7530. The time constant for this decay is roughly 30 minutes.

An asymmetry is formed between the two yields and is shown in Figure D.2 for

both a left and right detector with respect to the beam direction. The time drifts in

the asymmetry are due to the failure of the eight-step sequence in removing polarization

dependent terms in the yield (discussed further in Appendix E). These terms arise from

the unequal tensor polarizations in the deuteron beam and result in a constant offset in the

asymmetry. Both the vector and tensor analyzing powers contribute to the offset in the

asymmetry in the individual detectors. But when combined to form an average asymmetry,

the offsets from the vector analyzing power cancel, leaving only the tensor analyzing power

to contribute.

Evidence for beam effects in the asymmetry from the exponential changes in the
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Figure D.1: Effects of beam heating in the beam current normalized yield. The two graphs
represent the yield for the two neutron spin-states (arbitrary units) as a function of run
number or angular sequence.
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Figure D.2: Effects of beam heating in the beam current normalized asymmetry. The upper
graph depicts the asymmetry in a left detector with respect to the beam direction and the
lower graph depicts the asymmetry in a right detector.
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yield appears as drifts in the asymmetries in the individual detectors. The effects could

arise from either vector or tensor analyzing power terms, but by comparing the detector

asymmetries for the individual left and right detectors, the effect can clearly be contributed

to arising from tensor analyzing power terms as will be discussed below.

Using the asymmetries shown in Figure D.2, the constant offset in the left detector

is of opposite sign to the offset in the right detector, whereas the effects from beam heating

contribute with the same sign. The nature of this sign difference can be explained using a

model in which the neutron flux consists of a constant term with an exponential decay in

time superimposed, taking the form

I ∝ 1 + αe−ωt. (D.1)

A fit to the actual yields confirms a time dependence of this form, and this dependence

is then combined with the flux from the neutron production reaction at a small angle φ

yielding

I±(φ) = I±0

(
1± 3

2
P±z Ay(φ) +

1
4
P±zzAzz(φ)

) (
1 + αe−ωt

)
, (D.2)

where Ay(φ) and Azz(φ) are the vector and tensor analyzing powers for the reaction and

Pz and Pzz are the vector and tensor polarizations of the deuteron beam. Noting that

the tensor analyzing power is symmetric about 0◦ (Azz(φ) = Azz(−φ)) while the vector

analyzing power is antisymmetric (Ay(φ) = −Ay(−φ)), the asymmetry for either the left

(L) or right (R) detector is given by1

EL/R = ±3
4

(
P +

z + P−z
)
|Ay(φ)|

(
1 + αe−ωt

)
+

1
8

(
P +

zz − P−zz

)
Azz(φ)

(
1 + αe−ωt

)
. (D.3)

The component of the asymmetry due to vector analyzing power effects reverses sign be-

tween the left and right detectors while the component arising from tensor analyzing power

effects will remain the same sign. Thus since the beam heating effects in the asymmetry do

not change sign for the left and right detectors, they must arise from tensor analyzing power

effects not removed by the eight-step neutron spin sequence. The failure of the eight-step

sequence in removing this term is discussed further in Appendix E.
1Note that for simplicity, equal incident beam currents for the two spin-states are assumed (ie. I+

0 = I−0 ).
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Normalization to the monitor detector counts greatly reduces beam heating effects.

This reduction can be quantified by comparing the asymmetries using the two normaliza-

tions. Figure D.3 shows both the monitor normalized yield and the monitor normalized

asymmetry for the data shown in Figures D.1 and D.2. The drifts in the beam current

normalized data are suppressed but are still present in the monitor normalized data. A

polynomial fit to the asymmetry can be performed on both the beam current normalized

and monitor normalized asymmetries to extract the linear and quadratic time dependences.

A ratio formed either between the linear or quadratic terms for the two fits will give the

suppression factor for time dependent drifts from normalization to the monitor. A fit to the

asymmetry in each detector was performed and the ratio of fitting coefficients gave a factor

of 12 suppression in each case. The monitor normalization thus suppresses both linear and

quadratic time dependent effects by an order of magnitude.

During the time-reversal measurement, the temperature of the gas cell is controlled

to within 0.5 K during collection of the data. Controlling the temperature thus reduces

these fluctuations two orders of magnitude (∼ 0.5/80 = 160). A fit to the beam current

normalized asymmetry yields a linear drift of ∼ 5× 10−3 over a sixteen run sequence. This

implies a linear contribution in the time reversal data of at most . 3 × 10−6 when both

the temperature of the gas cell is controlled and the data is normalized to the counts in the

monitor detector array. The linear term is further removed by the rotation sequence of the

target (Appendix E), leaving the lowest order contribution to the asymmetry arising from

the quadratic time dependence. The quadratic term in the above fit is ∼ 5×10−4, implying

the lowest order contribution to the the time reversal asymmetry from beam heating effects

is . 3× 10−7, well below the limits set by the present measurement.
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Figure D.3: Effects of beam heating in the monitor normalized yield and asymmetry. The
upper graph corresponds to the transmission yield for one of the two spin-states. The
lower graph corresponds to the asymmetry formed between the yields for the two neutron
spin-states.



Appendix E

Spin Sequence and Target Rotation

The eight-step neutron spin-state sequence + − − + − + + − is utilized to remove

both linear and quadratic drifts in the detector asymmetry. The rotation sequence of the

target further removes linear drifts arising in the normalized asymmetry. This appendix

serves to formalize the eight-step sequence and set limits on contributions from polarization

dependent and polarization independent non-statistical fluctuations. The mathematical

formalism for the target rotation sequence and the removal of particular components in the

asymmetry are also discussed.

E.1 Eight-Step Neutron Spin Sequence

The eight-step neutron spin sequence +−−+−+ +− has been used for a number

of years to minimize both linear and quadratic drifts in an asymmetry formed between the

two spin-states [Kos90, Rob93]. In past discussions, the transmission for the two spin-states

was assumed to be independent of the two polarization states. This however, is not true

for the present experiment and thus requires a formal treatment that includes polarization

dependent effects.

The previous derivations assumed that the normalized yields for the two polariza-

tion states are equal. Following the notation of Koster [Kos90], the normalized detector
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asymmetry is formed by taking the difference in transmission yields between neutrons with

spin-up (+) and spin-down (−). Denoting the normalized yield as a function of time as

Ñ±(t), the time spent in each spin-state as ∆, and assuming Ñ+(t) = Ñ−(t) = Ñ(t), the

detector asymmetry, Ei, for a single eight-step sequence is given by

Ei =
F0,1 − F1,2 − F2,3 + F3,4 − F4,5 + F5,6 + F6,7 − F7,8

F0,8
, (E.1)

where

Fa,b =
∫ ti+b∆

ti+a∆
Ñ(t) dt. (E.2)

The yield Ñ(t) is slowly varying over the 800 ms interval of the spin-flip sequence (ti →

ti + 8∆) and can be expressed in a power series expansion in time:

Ñ(t) =
∞∑

m=0

am tm. (E.3)

Inserting this expansion into the integral expression above gives,

Fa,b =
∫ ti+b∆

ti+a∆
Ñ(t) dt =

∞∑
m=0

am

m + 1

[
(ti + b∆)m+1 − (ti + a∆)m+1

]
. (E.4)

The Taylor Series expansion

f(ti + a∆) =
∞∑

n=0

(a∆)n

n!
dn

dti
n f(ti) (E.5)

can be used with

f(ti) =
∞∑

m=0

am

m + 1
tm+1
i (E.6)

to rewrite the integral expression as∫ ti+b∆

ti+a∆
Ñ(t) dt = f(ti + b∆)− f(ti + a∆)

=
∞∑

n=0

(bn − an)
∆n

n!
dn

dti
n f(ti). (E.7)

After inserting this expression into the detector asymmetry (Equation E.1), the asymmetry

for an individual eight-step sequence is given by

Ei =

∞∑
n=0

φn
∆n

n!
dn

dti
n f(ti)

∞∑
n=0

(8n − 0n)
∆n

n!
dn

dti
n f(ti)

, (E.8)
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where

φn = [(1n − 0n)− (2n − 1n)− (3n − 2n) + (4n − 3n)

− (5n − 4n) + (6n − 5n) + (7n − 6n)− (8n − 7n)] . (E.9)

The lowest order non-zero term in this expansion is n = 4. Noting that Ñ(ti) ≡ d
dt i f(ti),

the detector asymmetry Ei to lowest order in delta is

Ei =
−∆3 d3

dt i3
Ñ(ti)

Ñ(ti) + 4∆ d
dt i

Ñ(ti) + 32
3 ∆2 d2

dt i2
Ñ(ti) + 64

3 ∆3 d3

dt i3
Ñ(ti)

(E.10)

or

Ei ≈ −
∆3

Ñ(ti)
d3

dt i
3 Ñ(ti). (E.11)

This expression has previously been derived by both Koster [Kos90] and Roberson et al.

[Rob93].

Contributions from this term to the measured asymmetry can be estimated using

∆ = 100 ms, Ñ(ti) ∼ 106, and d3

dt i3
Ñ(ti) ∼ 1. Terms appearing in the asymmetry from

the third order time derivative of the yield are thus less than ∼ 10−9, well below the limits

of the present measurement. In practice, the normalized yield can be fit using a least

squares polynomial fitting routine supplied by the statistical package jmp [JMP94]. A fit

to the normalized yield gives a value of 1
Ñ(ti)

d3

dt i3
Ñ(ti) ∼ 10−12. Thus contributions to the

measured asymmetry from spin independent parameters are negligible.

The above derivation is based on the assumption that Ñ+(t) = Ñ−(t), which holds

true for spin independent parameters such as phototube bias changes and beam current

fluctuations. Spin dependent terms, however, bring about new complications and ultimately

lead to components in the asymmetry larger than third order in time as discussed above.

The deuteron beam intensity is polarization dependent because the two polariza-

tion states are created using independent RF cavities within the polarized ion source (Sec-

tion 3.2.1). The beam has both vector and tensor polarizations, and the magnitude of these

polarizations differ for each state. Since the 0◦ neutron flux is proportional to both the
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incident deuteron flux and its tensor polarization, the effects of independent neutron fluxes

on the normalized asymmetry for the two polarization states must be considered.

The detector asymmetry for two independent neutron fluxes is modeled using a

similar notation as above, except the neutron flux now contains a polarization dependent

term:

Ñ±(t) = Ñ(t)(1 + δ±(t)). (E.12)

A similar expression for the asymmetry Ei is given by

Ei = E1
i + E2

i , (E.13)

where

E1
i =

F0,1 − F1,3 + F3,4 − F4,5 + F5,7 − F7,8

F0,8 + G+
0,1 + G−1,3 + G+

3,4 + G−4,5 + G+
5,7 + G−7,8

(E.14)

and

E2
i =

G+
0,1 −G−1,3 + G+

3,4 −G−4,5 + G+
5,7 −G−7,8

F0,8 + G+
0,1 + G−1,3 + G+

3,4 + G−4,5 + G+
5,7 + G−7,8

, (E.15)

with

Fa,b =
∫ ti+b∆

ti+a∆
Ñ(t) dt and G±a,b =

∫ ti+b∆

ti+a∆
δ±(t)Ñ(t) dt. (E.16)

Performing a similar derivation as in the spin independent case above, power series

expansions given by Equation E.3 and

δ±(t)Ñ(t) =
∞∑

m=0

a±mtm (E.17)

are used to express the detector asymmetry for an individual eight-step spin sequence:

Ei =

∞∑
n=0

∆n

n!
dn−1

dt i
n−1 (φn + βn(ti)) Ñ(ti)

∞∑
n=0

∆n

n!
dn−1

dt i
n−1 [(8n − 0n) + αn(ti)] Ñ(ti)

(E.18)

where φn is given by Equation E.9,

αn(ti) =
[
(7n − 5n + 4n − 3n + 1n − 0n) δ+(ti)

+ (8n − 7n + 5n − 4n + 3n − 1n) δ−(ti)
]
, (E.19)
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and

βn(ti) =
[
(7n − 5n + 4n − 3n + 1n − 0n) δ+(ti)

− (8n − 7n + 5n − 4n + 3n − 1n) δ−(ti)
]
. (E.20)

The asymmetry to second order in time (O(∆2)) for an individual eight-step sequence is

Ei =
ε− Ñ(ti) + 4∆ d

dt i
ε− Ñ(ti) + 32

3 ∆2 d2

dt i2
ε− Ñ(ti)

(2 + ε+)Ñ(ti) + 4∆ d
dt i

(2 + ε+)Ñ(ti) + 32
3 ∆2 d2

dt i2
(2 + ε+)Ñ(ti)

(E.21)

or

Ei ≈
1
2
ε− + 2

∆
Ñ(ti)

d
dt i

ε− Ñ(ti) +
16
3

∆2

Ñ(ti)
d2

dt i
2 ε− Ñ(ti), (E.22)

where

ε± = δ+(ti)± δ−(ti). (E.23)

Note the difference between this expression and the one given in Equation E.11. This

expression contains a constant, linear, and quadratic term in time. The linear and quadratic

terms can contribute to a sin 2θ component in the asymmetry since the angular rotation

sequence is correlated with time.

Ideally, the flux normalization using the monitor detector array will remove these

spin dependent terms, leaving the lowest order contribution arising from the third order

time dependence given by Equation E.11. In practice however, these terms are suppressed

but not eliminated, resulting in both a non-zero constant offset and time dependent terms

in the asymmetry. The constant term does not present a problem, since it is orthogonal to

the sin 2θ term of interest, but the time dependent terms can present a problem and must

be investigated further.

The constant term in Equation E.22 arises from the unequal tensor polarizations of

the incident deuteron beam, causing a difference in the neutron flux for the two polarization

states. The monitor normalization should remove these effects, but because it subtends a

different solid angle than the 0◦ detectors, it measures a different tensor analyzing power

for the reaction and thus fails to completely remove the constant offset. As discussed in
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Appendix D, the monitor normalization does however reduce the asymmetry by more than

an order of magnitude and thus similarly reduces the time dependent effects. The large

constant offset does not directly present a problem, but linear and quadratic time drifts in

this offset can. Contributions from these drifts in time are considered below.

The term linear in time in Equation E.22 consists of two contributing parts:

Ei ∼ 2∆
d

dt i
ε− + 2∆

ε−

Ñ(ti)
d

dt i
Ñ(ti). (E.24)

The first term involves the linear time dependence of ε−. We estimate an upper limit on

this term using the time-dependent asymmetries shown in Figure D.3. The time rate of

change of ε− is estimated to be ε− ∼ 10−7. The factor of ∆ suppresses this further by

another order of magnitude, lowering it ∼ 10−8. The second term involves the time rate of

change of the flux and can be measured independently using the normalized neutron yields.

A fit to these yields gives a value of 1
Ñ(ti)

d
dt i

Ñ(ti) ∼ 10−6, which combined with the order

of magnitude suppression from the ∆ is well below the limits of the present measurement.

A linear fit to the normalized asymmetry Ei in principle measures the sum of these two

terms, but can not be used in the data analysis because the linear term is not orthogonal to

the trigonometric functions. For estimation purposes alone however, a linear least squares

fit was performed on the asymmetry, yielding a value of d
dt i
Ei ∼ 10−7. This linear term is

actually removed by the rotation sequence of the target which will be discussed further in

the next section. The second order term in ∆ will thus be the lowest order term to enter

directly into the asymmetry.

The quadratic term in Equation E.22 contains three contributing parts:

Ei ∼
16
3

∆2 d2

dt i
2 ε− +

8
3

∆2

Ñ(ti)
d

dt i
ε−

d
dt i

Ñ(ti) +
16
3

∆2

Ñ(ti)
d2

dt i
2 Ñ(ti). (E.25)

The first part contains the quadratic time dependence of the constant offset of the asym-

metry. This term is estimated to be at least comparable to the linear term (∼ 10−7) and

further suppressed by two orders of magnitude by the ∆2 dependence, setting an upper

bound of . 10−9. The second part contains the product of the linear rate of change of both

the flux and spin dependent terms. Using the estimates above, this term is . 10−13 and
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well below the limits of the present measurement. The third part contains the quadratic

dependence of the yield and can be measured using a least squares polynomial fit to the

monitor normalized yield. A fit to this yield gives 1
Ñ(ti)

d2

dt i2
Ñ(ti) ∼ 10−9. A polynomial

fit to the asymmetry Ei (like the linear fit discussed above) is used to estimate this term,

yielding a value of d2

dt i2
Ei ∼ 10−11. The contributions from the quadratic time dependence

of the asymmetry are well below the limits set by the present measurement.

E.2 Target Rotation Sequence

Based on the discussion in the previous section, only the linear time dependent

terms in the normalized asymmetry Ei are large enough to introduce significant components

into the trigonometric functions in the fitting procedure discussed in Chapter 5. The target

rotation sequence was thus chosen to remove the effect of linear drifts in the sine components

of the fit. This procedure is discussed below.

The target is rotated in the angular sequence −180◦ → +180◦ → −180◦ in 22.5◦

steps. This pattern of rotation alternates clockwise and counterclockwise rotational direc-

tions, and thereby removes the linear terms in time that can contribute to the sine compo-

nents of the normalized asymmetry. The rotation sequence of the target can be thought of

as a four-step sequence analogous to the eight-step sequence discussed above. For an odd

trigonometric function about 0◦ (such as the sines), a rotation from −180◦ → 0◦ is identical

in form to a rotation from 0◦ → −180◦ and similarly a rotation from 0◦ → +180◦ is identical

in form to a rotation from +180◦ → 0◦. Denoting + as a rotation from −180◦ → 0◦ and

− as a rotation from 0◦ → +180◦, the rotation pattern has the form + − − + . For an

even function such as the cosines, the rotation pattern is + + − − . In the sine pattern,

the sequence reverses under a change of rotation direction, whereas the cosine pattern does

not. This reversal has the effect of removing any linear drifts from the sine components and

leaving the cosine components unchanged.

The elimination of the linear components in the sines can expressed mathematically
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by investigating the angular fit to the asymmetry using the function

y(x) = a0 +
7∑

k=1

ak sin(kθ(x)) +
8∑

k=1

bk cos(kθ(x)). (E.26)

For simplicity, the fitting parameters ak and bk are calculated using a single value of the

asymmetry at each angle for a rotation in one direction (−180◦ → +157.5◦). The function is

fit to the sixteen angular positions using the standard least squares technique [Tho84]. The

parameter x represents an integer between 0 and 15 corresponding to the angular position

θ in radians and is given by

θ(x) = π
(x

8
− 1

)
x = 0, 1, . . . , 15. (E.27)

Coefficients of

a0 =
1
16

15∑
x=0

y(x) (E.28)

ak =
1
8

15∑
x=0

y(x)(−1)k sin
(

kπx

8

)
k > 0

bk =
1
8

15∑
x=0

y(x)(−1)k cos
(

kπx

8

)
k < 8

b8 =
1
16

15∑
x=0

y(x)(−1)x

were determined for the fit. The coefficient a0 represents the constant offset in the asymme-

try discussed in the previous section. The remaining ak coefficients denote the magnitude

of the sine components in the asymmetry and the bk coefficients denote the magnitude of

the cosine components.

A similar fit can be performed using the opposite rotational direction for the angle

θ. Provided that y(x) is an odd function of θ (ie. y(x) ∝ x), the reversal of the angular

sequence (θ → −θ) reverses the sign of the ak (k > 0) coefficients while leaving the bk

coefficients and a0 unchanged:

a0 → a0, ak → −ak, and bk → bk. (E.29)
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When the two sequences are added together, the a0 and bk coefficients add coherently and

the ak coefficients cancel. Terms linear in time are thus removed from the sine coefficients,

but remain in the cosines.

In the time reversal measurement, 256 asymmetry measurements were performed

at each angle. The fit uses a χ2 minimization technique to obtain optimum values for the

fitting coefficients. This technique is a generalization of the least squares technique used

above with the identical cancellation of linear drifts occurring. To verify this generalization,

random sets of gaussian distributed data were generated and fit using the same techniques

discussed in Chapter 5.

The random sets of data are generated in the same manner as the time reversal data

were taken. Each “run” contains 256 randomly generated asymmetries with a constant offset

of −5× 10−4, comparable to the measured offset in the FC experiment. The same number

of runs are generated as in the time-reversal measurement and then fit to Equation E.26

above.

Three random sets of data are generated. The first set consists of gaussian dis-

tributed random noise. The remaining two sets consist of random noise combined with a

linear time drift. The first of these contains a 0.1% linear drift in which the asymmetry

changed linearly from −5 × 10−4 at the start of the rotation sequence to −5.005 × 10−4

at the end of the sixteen run sequence. The second set contains a 1% drift starting at

−5× 10−4 and ending at −5.05× 10−4.

The three sets of data were fit to the function given by Equation E.26 and these

fits are summarized in Table E.1. The random noise fit shows no non-statistical effects.

No effects show up in the sine components. The fit to the 0.1% linear drift data set shows

evidence of non-statistical effects in the cosine components of the fit and the 1.0% data set

shows definite evidence of this effect. Linear drifts in time must therefore be . 10−6 to

keep from appearing in the cosine components of the fit.

The rotation sequence of the target therefore removes any linear time correlated

drifts in the sine components of the asymmetry.
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Random Noise

Fitting Coefficient T-ratio Fitting Coefficient T-ratio
Constant −498.94 ± .11 × 10−5 474.3 cos θ −.05± .15 × 10−5 .3

sin θ .00± .15 × 10−5 .0 cos 2θ .07± .15 × 10−5 .4
sin 2θ .07± .15 × 10−5 .5 cos 3θ .20± .15 × 10−5 1.4
sin 3θ −.08± .15 × 10−5 .5 cos 4θ .07± .15 × 10−5 .5
sin 4θ .12± .15 × 10−5 .8 cos 5θ −.19± .15 × 10−5 1.3
sin 5θ .14± .15 × 10−5 1.0 cos 6θ .07± .15 × 10−5 .4
sin 6θ .34± .15 × 10−5 2.3 cos 7θ .35± .15 × 10−5 2.3
sin 7θ .12± .15 × 10−5 .8 cos 8θ .10± .15 × 10−5 1.0

Random Noise + 0.1% Linear Drift

Constant −473.68 ± .11 × 10−5 450.3 cos θ .32± .15 × 10−5 2.2
sin θ .10± .15 × 10−5 .6 cos 2θ −.23± .15 × 10−5 1.5
sin 2θ −.24± .15 × 10−5 1.6 cos 3θ .01± .15 × 10−5 .1
sin 3θ .23± .15 × 10−5 1.6 cos 4θ −.48± .15 × 10−5 3.3
sin 4θ −.14± .15 × 10−5 1.0 cos 5θ .45± .15 × 10−5 3.1
sin 5θ −.09± .15 × 10−5 .6 cos 6θ −.31± .15 × 10−5 2.1
sin 6θ −.19± .15 × 10−5 1.3 cos 7θ .18± .15 × 10−5 1.2
sin 7θ .03± .15 × 10−5 .2 cos 8θ −.22± .11 × 10−5 2.1

Random Noise + 1.0% Linear Drift

Constant −251.04 ± .11 × 10−5 238.6 cos θ 3.15 ± .15 × 10−5 21.1
sin θ −.02± .15 × 10−5 .1 cos 2θ −3.17± .15 × 10−5 21.3
sin 2θ .04± .15 × 10−5 .3 cos 3θ 3.21 ± .15 × 10−5 21.6
sin 3θ −.19± .15 × 10−5 1.3 cos 4θ −3.02± .15 × 10−5 20.3
sin 4θ .19± .15 × 10−5 1.3 cos 5θ 2.99 ± .15 × 10−5 20.1
sin 5θ .03± .15 × 10−5 .2 cos 6θ −3.30± .15 × 10−5 22.2
sin 6θ .28± .15 × 10−5 1.9 cos 7θ 2.95 ± .15 × 10−5 19.9
sin 7θ .32± .15 × 10−5 2.2 cos 8θ −1.36± .11 × 10−5 13.0

Table E.1: The effects of a linear time drift in a randomly generated set of data. The
T-ratio is the ratio of the extracted value to its standard deviation.
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Knudson, G. E. Mitchell, S. Penttilä, H. Postma, N. R. Roberson, S. J. Seestrom,

J. J. Szymanski, J. J. Yeh, S. H. Yoo, V. W. Yuan, and X. Zhu. Experimental

Limit on Parity Violation in Nonresonant Neutron-Neutron Scattering. Physical

Review, C48(1993) 1116–1119.

[Bri71] D. M. Brink and G. R. Satchler. Angular Momentum. Oxford University Press,

second edition, 1971.

[Bun93] V. E. Bunakov, H. L. Harney, and A. Richter. Bayesian Statistics and Experiments

on Stochastic Variables. Nuclear Physics, A560(1993) 71–84.

[Cho89] D. Cho, K. Sangster, and E. A. Hinds. Tenfold Improvement of Limits on T

Violation in Thallium Floride. Physical Review Letters, 63(1989) 2559–2562.

[Chr64] J. H. Christenson, J. W. Cronin, V. L. Finch, and R. Turlay. Evidence for the 2π

Decay of the K0
2 Meson. Physical Review Letters, 13(1964) 138–140.

[Cle95a] T. B. Clegg, W. M. Hooke, E. R. Crosson, A. W. Lovette, H. L. Middleton, H. J.

Pfutzner, and K. A. Sweeton. ECR and Cesium Ionizer Systems for the Trian-

gle Universities Nuclear Laboratory Atomic Beam Polarized Ion Source. Nuclear

Instruments and Methods, A357(1995) 212–219.

[Cle95b] T. B. Clegg, H. J. Karwowski, S. K. Lemieux, R. W. Sayer, E. R. Crosson,

W. M. Hooke, C. R. Howell, H. W. Lewis, A. W. Lovette, H. J. Pfutzner, K. A.

Sweeton, and W. S. Wilburn. A New Atomic Beam Polarized Ion Source for the

Triangle Universities Nuclear Laboratory: Overview, Operating Experience, and

Performance. Nuclear Instruments and Methods, A357(1995) 200–211.



BIBLIOGRAPHY 140

[Dav88] E. D. Davis. Compound Nucleus Enhancements of Time-Reversal Non-Invariance.

In J. N. Ginocchoi and S. P. Rosen, editors, Fundamental Symmetries and Nuclear

Structure, pages 52–67. World Scientific, 1988.

[Des80] B. Desplanques, J. F. Donaoghue, and B. R. Holstein. Unified Treatment of the

Parity Violating Nuclear Force. Annals of Physics, 124(1980) 449–495.

[Din95] D. C. Dinge, T. B. Clegg, E. R. Crosson, and H. W. Lewis. RF Transition

Systems for the Triangle Universities Nuclear Laboratory Atomic Beam Polarized

Ion Source. Nuclar Instruments and Methods, A357(1995) 195–199.

[Eng94] J. Engel, C. R. Gould, and V. Hnizdo. Microscopic T-Violating Optical Potential:

Implications for Neutron-Transmission Experiments. Physical Review Letters,

73(1994) 3508–3511.

[Eng95] J. Engel, P. H. Frampton, and R. P. Springer. Effective Lagrangians and Parity-

Conserving Time-Reversal Violation at Low Energies. available at Los Alamos

nuclear theory preprint archive, 1995.

[Fas73] U. Fasoli, G. Galeazzi, D. Toniolo, and G. Zago. Fast-Neutron Transmission

Through a Polarized Holmium Target. Letters Nuovo Cimento, 6(1973) 485–490.

[Fis67] T. R. Fisher, R. S. Safrata, E. G. Shelley, J. McCarthy, S. M. Austin, and R. C.

Barrett. Interaction of Fast Neutrons with Oriented 165Ho. Physical Review,

157(1967) 1149–1156.

[Fre87] J. B. French, A. Pandey, and J. Smith. Compound-Nuclear Tests of Time Reversal

Invariance in the Nucleon-Nucleon Interaction. In N. R. Roberson, C. R. Gould,

and J. D. Bowman, editors, Tests of Time Reversal Invariance in Neutron Physics,

pages 80–99, 687 Hartwell Street, Teaneck NJ 07666, USA, 1987. World Scientific

Publishing Co., Inc.



BIBLIOGRAPHY 141

[Gou90] C. R. Gould, D. G. Haase, N. R. Roberson, H. Postma, and J. D. Bowman.

Parity and Time Reversal Violation in Resonance Neutron Total Cross Sections

with Polarized Targets. International Journal of Modern Physics, A5(1990) 2181–

2194.

[Gus83] P. P. Guss, K. Murphy, R. C. Byrd, C. E. Floyd, S. A. Wender, R. L. Walter,

T. B. Clegg, and W. Wylie. The Analyzing Power for the 2H(d,n)3Heg.s. Reaction

from 5.5 to 11.5 MeV. Nuclear Physics, A395(1983) 1–14.

[Ham94] Hamamatsu Corporation, 360 Foothill Road, P. O. Box 6910, Bridgewater, NJ

08807-0910. Photomultiplier Tubes, 1994.
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[Hax94] W. C. Haxton, A. Höring, and M. J. Musolf. Constraints on T-odd and P-

even Hadronic Interactions from Nucleon, Nuclear, and Atomic Electric Dipole

Moments. Physical Review, D50(1994) 3422–3432.

[Hen89] E. M. Henley. Status of Time Reversal Invariance. In Pierre Depommier, editor,

Weak and Electromagnetic Interactions in Nuclei, pages 181–192, B. P. 33, 91192

Gif-sur-Yvette Cedex-France, 1989. Editions Frontières.

[Her92] P. Herczeg. Theoretical Aspects of Searches for New Interactions Using Oriented

Nuclei. Hyperfine Interactions, 75(1992) 127–151.

[Hni87] V. Hnizdo and K. W. Kemper. Spin-Spin Dependence of Total Cross Sections

as an Effect of Static Nuclear Deformation. Physical Review Letters, 59(1987)

1892–1894.

[Hni94a] V. Hnizdo. Observables for Polarized Neutrons Transmitted Through Polarized

Targets. Physical Review, C50(1994) 2639–2642.



BIBLIOGRAPHY 142

[Hni94b] V. Hnizdo and C. R. Gould. Optical-Model Description of Time-Reversal Viola-

tion in Neutron-Nucleus Scattering. Physical Review, C49(1994) R612–R615.

[Huf95] P. R. Huffman, C. M. Frankle, C. R. Gould, D. G. Haase, J. A. Harvey, N. R.

Roberson, and L. W. Weston. Neutron Resonances in 165Ho, and the Five-Fold

Correlation Test of Time Reversal. submitted to Physical Review C, 1995.

[Hus77] A. H. Hussein, J. M. Cameron, S. T. Lam, G. C. Nelson, and J. Soukup. Scattering

of 10.4 MeV Polarized Neutrons from Bismuth and Lead Between 2◦ and 65◦.

Physical Review, C15(1977) 233–237.

[Jac93] J. P. Jacobs, W. M. Klipstein, S. K. Lamoreaux, B. R. Heckel, and E. N. Fortson.

Testing Time-Reversal Symmetry Using 199Hg. Physical Review Letters, 71(1993)

3782–3785.

[JFB93] Editor J. F. Briesmeister. MCNP-A General Monte Carlo N-Particle Transport

Code. Radiation Shielding Information Center Computer Code Collection: Oak

Ridge National Laboratory, ccc-200/mcnp 4a edition, 1993.

[JMP94] SAS Institute Inc., SAS Campus Drive, Cary, NC 27513. jmp: Statistical Software

for the Macintosh, 3.1 edition, 1994.

[Kab88] P. K. Kabir. Transformation of Neutron Polarization in Polarized Media and

Tests of T Invariance. Physical Review, D37(1988) 1856–1859.

[Kei94] C. D. Keith. Total Cross Section Measurements for the Scattering of Polarized

Neutrons from Polarized 3He. Ph.D. thesis, North Carolina State University, 1994.

[Kel69] M. A. Kelley, B. L. Berman, R. L. Bramblett, and S. C. Fultz. Effect of Nuclear

Polarization on the Giant Dipole Resonance in 165Ho. Physical Review, 179(1969)

1194–1211.

[Koe66] W. C. Koehler, J. W. Cable, M. K. Wilkinson, and E. O. Wollan. Magnetic



BIBLIOGRAPHY 143

Structures of Holmium. I. The Virgin State. Physical Review, 151(1966) 414–

424.

[Kos90] J. E. Koster. A Test of Time Reversal Invariance with Polarized Neutrons and an

Aligned 165Holmium Target. Ph.D. thesis, North Carolina State University, 1990.

[Kos91] J. E. Koster, E. D. Davis, C. R. Gould, D. G. Haase, N. R. Roberson, L. W.

Seagondollar, W. S. Wilburn, and X. Zhu. Direct Reaction Test of T Violation

in 2 MeV Neutron Scattering from Aligned 165Ho. Physics Letters, B267(1991)

23–26.

[Kos92a] J. E. Koster, E. D. Davis, C. R. Gould, D. G. Haase, N. R. Roberson, and L. W.

Seagondollar. Test of Time Reversal Invariance in 2-MeV Neutron Scattering

from Aligned 165Ho. Hyperfine Interactions, 75(1992) 165–172.

[Kos92b] J. E. Koster, C. R. Gould, D. G. Haase, and N. R. Roberson. A Rotating Aligned

Holmium Target for Neutron Transmission Measurements. Nuclear Instruments

and Methods, A313(1992) 464–470.

[Kos94] J. E. Koster, C. R. Gould, D. G. Haase, and N. R. Roberson. Spatial Orientation

of Nuclei: Mass Deformation in 165-Holmium. Physical Review, C49(1994) 710–

717.

[Kra86] K. S. Krane. Nuclear Orientation Formalism. In N. J. Stone and H. Postma,

editors, Low-Temperature Orientation, chapter 2, pages 31–112. North Holland

Physics Publishing, 1000 AC Amsterdam, The Netherlands, 1986.

[Kra88] K. S. Krane. Introductory Nuclear Physics. John Wiley & Sons, Inc., 1988.

[Kru69] M. Krusius, A. C. Anderson, and B. Holmström. Calorimetric Investigation of

Hyperfine Interactions in Metallic Ho and Tb. Physical Review, 177(1969) 910–

916.

[Kun80] P. D. Kunz. chuck. University of Coloraro report, 1980.



BIBLIOGRAPHY 144

[Lau79] K. M. Lau and W. Zimmermann, Jr. Screw-Fastened Joints for Thermal Contact

at Low Temperatures. Review of Scientific Instrumemts, 50(1979) 254–255.

[Lis75] P. W. Lisowski, R. L. Walter, C. E. Busch, and T. B. Clegg. Polarization Transfer

in the 2H(~d, ~n)3He Reaction at θ = 0◦. Nuclear Physics, A242(1975) 298–308.
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