Table 6.8 from (2002TI10): 4He(d, d)4He – Theoretical work

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1988BE58</td>
<td>Polarization phenomena in 4He(d, d) at intermediate energies</td>
</tr>
<tr>
<td>1988KA25</td>
<td>Convergence features in the pseudostate theory of the $d + \alpha$ system</td>
</tr>
<tr>
<td>1988WE20</td>
<td>Manifestations of the D-state in light nuclei</td>
</tr>
<tr>
<td>1989ET05</td>
<td>Description of diffraction scattering on nuclei</td>
</tr>
<tr>
<td>1989FI1E</td>
<td>Microscopic theory of collective resonances of light nuclei</td>
</tr>
<tr>
<td>1989KR08</td>
<td>Padé approximation technique for processing scattering data</td>
</tr>
<tr>
<td>1990BL13</td>
<td>Analysis of higher partial waves in 4He(d, d) in 3-body framework</td>
</tr>
<tr>
<td>1990DA1H</td>
<td>Two body phase space in d-d breakup at 40 MeV</td>
</tr>
<tr>
<td>1990GU23</td>
<td>D-wave effect in d-d elastic scattering at intermediate energies</td>
</tr>
<tr>
<td>1990HO1R</td>
<td>Microscopic study of clustering phenomena</td>
</tr>
<tr>
<td>1990HU09</td>
<td>A geometric model for nucleus-nucleus scattering at high energies</td>
</tr>
<tr>
<td>1990KU06</td>
<td>Reconstruction of interaction potential from scattering data</td>
</tr>
<tr>
<td>1990KU16</td>
<td>Padé-approximation techniques for processing scattering data</td>
</tr>
<tr>
<td>1990LI11</td>
<td>Further study of α elastic scattering on light nuclei</td>
</tr>
<tr>
<td>1991BL04</td>
<td>Manifestation of Pauli-forbidden states in 4He(d, d) at low energies</td>
</tr>
<tr>
<td>1991KR02</td>
<td>Energy-dependent phase-shift analysis of 4He(d, d) at low energies</td>
</tr>
<tr>
<td>1991KU09</td>
<td>d-α scattering in a three-body model</td>
</tr>
<tr>
<td>1991KU27</td>
<td>Recovering $\alpha + d$ potential from Faddeev and measured phase shifts</td>
</tr>
<tr>
<td>1992ES04</td>
<td>α-d resonances and the low-lying states of 6Li</td>
</tr>
<tr>
<td>1992FU10</td>
<td>Reaction mechanisms in $A = 6$ with the multiconfiguration RGM</td>
</tr>
<tr>
<td>1992KU16</td>
<td>Supersymmetric potentials and the Pauli Principle in 4He(d, d)</td>
</tr>
<tr>
<td>1992KU1G</td>
<td>Deuteron size effects in d-α scattering</td>
</tr>
<tr>
<td>1993BL09</td>
<td>Determination of 6Li $\rightarrow \alpha + d$ vertex constant for d-α phase-shifts</td>
</tr>
<tr>
<td>1993FI06</td>
<td>Study of continuous spectrum of 6Li in RGM</td>
</tr>
<tr>
<td>1994CS01</td>
<td>Microscopic description of beta-delayed deuteron emission in 6He</td>
</tr>
<tr>
<td>1995DU12</td>
<td>Cluster model description of photonuclear processes in 6Li</td>
</tr>
<tr>
<td>1997DU15</td>
<td>Electromagnetic effects in light nuclei and the cluster potential</td>
</tr>
<tr>
<td>1997KU14</td>
<td>Reconstruction of analytic S matrix from experimental d-α data</td>
</tr>
<tr>
<td>1998DU03</td>
<td>Potential cluster model description of the d-α interaction</td>
</tr>
<tr>
<td>1999CO11</td>
<td>An S-matrix inversion technique applied to α-d scattering</td>
</tr>
</tbody>
</table>