Ep	$\Gamma_{\rm lab}$	Particles out	$\Gamma_{\rm p}^{\rm b}$	$\Gamma_{\alpha}^{\ b}$	J^{π}	$E_{\mathbf{x}}$
$(MeV \pm keV)$	(keV)		(keV)	(keV)		(MeV)
0.095 ± 3	≤ 3	α_0	$\omega\gamma = (1.6\pm0.5)\times10^{-7}\mathrm{eV}$			8.084
0.152 ± 1	≤ 0.5	$lpha_0$	$0.17 \pm 0.$	02 eV		8.138
0.216 ± 1	≤ 1	$lpha_0$	(2.3 ± 0.6)	$6) \times 10^{-3} \text{ eV}$		8.199
0.334 ± 1	≤ 1	$lpha_0$	$0.057\pm0.010~{\rm eV}$			8.310
0.6326 ± 0.4 ^c	2.1 ± 0.1	\mathbf{p}_0, α_0	0.065 ± 0.006	2.0 ± 0.2	$\frac{3}{2}^{-}$	8.5933
≈ 0.695	≈ 340	\mathbf{p}_0, α_0	5 d	95 d	$\frac{1}{2}^+$	8.65
0.846 ± 1.5 g	47 ± 1	\mathbf{p}_0, α_0	26 ± 1.5	21 ± 1	$\frac{1}{2}^+; T = \frac{3}{2}$	8.795
0.9870 ± 0.7	3.8 ± 0.2	\mathbf{p}_0, α_0	0.080 ± 0.007	3.7 ± 0.3	$\frac{3}{2}^{-}$	8.929
(1.135)	140					(9.069)
1.1685 ± 0.5	0.60 ± 0.03	\mathbf{p}_0, α_0	0.005 ± 0.0006	0.595 ± 0.08	$\frac{7}{2}^{+}$	9.1007
1.2390 ± 1	6.1 ± 0.3	\mathbf{p}_0 , (α_0)	0.40 ± 0.03	5.7 ± 0.4	$\frac{1}{2}^+$	9.167
1.4025 ± 1	5.2 ± 0.2	\mathbf{p}_0, α_0	0.23 ± 0.02	5.0 ± 0.4	$\frac{1}{2}^+$	9.322
1.620 ± 6	30	\mathbf{p}_0, α_0			$\left(\frac{5}{2}\right)$	9.528
1.668 ± 6	27	\mathbf{p}_0, α_0			$\frac{3}{2}$	9.574
1.766 ± 3	3.6	\mathbf{p}_0, α_0	2.1	1.5	$\frac{3}{2}^{+}$	9.666
1.928 ± 3	0.16	\mathbf{p}_0, α_0	0.09	0.07	$(\frac{5}{2}, \frac{7}{2})^{-}$	9.820
2.001 ± 4	31	\mathbf{p}_0, α_0	12	19	$\frac{1}{2}^+$	9.889
2.2630 ± 0.7	5.0 ± 1.0	$\alpha_0, \alpha_1, \alpha_2$	≈ 5	$0.004 \ ^{\rm c}$	$\frac{3}{2}^{-}$	10.137
2.289 ± 3	33	\mathbf{p}_0, α_0	2.3	(1.0)	$\frac{1}{2}^+$	10.162
2.363 ± 3	4.5	\mathbf{p}_0, α_0	2.8	1.7	$\frac{1}{2}^+$	10.232
2.387 ± 3	24	\mathbf{p}_0, α_0	11	13	$\frac{3}{2}^{+}$	10.254
2.443 ± 4	9.7	\mathbf{p}_0, α_0	5.2	4.5	$\frac{3}{2}^{+}$	10.308

Table 19.17 from (1987AJ02): Energy levels of $^{19}{\rm F}$ from $^{18}{\rm O}({\rm p,\,p})^{18}{\rm O}$ and $^{18}{\rm O}({\rm p,\,\alpha})^{15}{\rm N}$ $^{\rm a}$

 \rightarrow

Ep	$\Gamma_{\rm lab}$	Particles out	$\Gamma_{\rm p}{}^{\rm b}$	$\Gamma_{\alpha}{}^{\rm b}$	J^{π}	$E_{\mathbf{x}}$
$(MeV \pm keV)$	(keV)		(keV)	(keV)		(MeV)
2.644 ± 3	4.6	$p_0, p_1, \alpha_0, \alpha_{1+2}$	2.4	(1.0)	$\frac{3}{2}^{+}$	10.498
2.705 ± 3	8 ± 2	\mathbf{p}_1, α_0			$\frac{3}{2}^{(+)}; (T = \frac{3}{2})$	10.556
2.732 ± 4	23 ± 3	\mathbf{p}_1, α_0			$(\frac{5}{2}^+)$	10.581
2.768 ± 3	4.0	$p_0, p_1, \alpha_0, \alpha_{1+2}$	0.7	(1.0)	$\frac{5}{2}^+; T = \frac{3}{2}^{a}$	10.615
2.925 ± 3	5.7	$p_0, p_1, \alpha_0, \alpha_{1+2}$	4.5	1.2	$\frac{1}{2}^{-}$	10.764
3.029 ± 4	19.5	$p_0, p_1, \alpha_0, \alpha_{1+2}$	13.0		$\frac{5}{2}^{+}$	10.862
(3.06)		$lpha_0$				(10.89)
3.148 ± 4	(14)	$p_0, p_1, \alpha_0, \alpha_{1+2}$	(4.5)	(4.5)	$(\frac{3}{2}, \frac{5}{2})^+$	10.975
3.266 ± 9	35	$p_0, p_1, \alpha_0, \alpha_{1+2}$			$\frac{1}{2}^+$	11.087
3.386 ± 9	20	$p_0, p_1, \alpha_0, \alpha_{1+2}$			$\left(\frac{1}{2}^{-}\right)$	11.200
3.479 ± 8	23 ± 5	$p_0, p_1, \alpha_0, \alpha_{1+2}$	4.3 ± 1		$\frac{5}{2}^{+}$	11.288
3.547 ± 25	286 ± 33	p_0	241 ± 2		$\frac{1}{2}^+$	11.35
3.643 ± 9	40 ± 7	$p_0, (\alpha_{1+2})$	17 ± 3		$\frac{1}{2}^{-}$	11.444
3.694 ± 9	29 ± 6	$p_0, p_1, \alpha_0, (\alpha_{1+2})$	12 ± 2		$\frac{3}{2}^{-}$	11.492
3.744 ± 8	23 ± 5	p_0, p_1, α_0	3.7 ± 1		$\frac{5}{2}^{+}$	11.539
3.811 ± 12	66 ± 7	p_0	30 ± 12		$\frac{3}{2}^{-}$	11.603
3.869 ± 8	28 ± 7	$p_0, p_1, (\alpha_{1+2})$	12 ± 2		$\frac{3}{2}^+; (T = \frac{3}{2})$	11.658
4.290 ± 30	75 ± 25	$\mathbf{p}_0, \alpha_0, \alpha_{1+2}$	10 ± 3		$\frac{1}{2}^{-}$	12.06
4.390 ± 15	110 ± 15	$p_0, p_1, (\alpha_0, \alpha_{1+2})$	60 ± 10		$\frac{3}{2}^{-}; T = \frac{3}{2}$	12.151
$4.465 \pm 12^{\text{ e}}$	78 ± 1	$p_0, p_1, \alpha_0, \alpha_{1+2}$	48 ± 6		$\frac{3}{2}^{+}$	12.222
$4.782\pm7~^{\rm e}$	16 ± 4	p_0, p_1	2.4 ± 1		$\frac{1}{2}^{-}$	12.522
4.840 ± 10	50 ± 10	p_0, p_1, α_{1+2}	6.4 ± 2		$\frac{5}{2}^{+}$	12.577

Table 19.17 from (1987AJ02): Energy levels of 19 F from 18 O(p, p) 18 O and 18 O(p, α) 15 N a (continued)

Ep	$\Gamma_{\rm lab}$	Particles out	$\Gamma_{\rm p}{}^{\rm b}$	Γ_{α} b	J^{π}	$E_{\mathbf{x}}$
$(MeV \pm keV)$	(keV)		(keV)	(keV)		(MeV)
4.848 ± 25	300 ± 50	p_0	80 ± 25		$\frac{1}{2}^{-}; T = \frac{3}{2}$	12.58
5.074 ± 30	100 ± 40	$\mathbf{p}_0, \mathbf{p}_1, (\alpha_0)$	13 ± 5		$\frac{5}{2}^+; T = \frac{3}{2}$	12.80
5.135 ± 30	290 ± 40	p_0, p_1	114 ± 17		$\frac{3}{2}^+; T = \frac{3}{2}$	12.86
5.225 ± 25	75 ± 25	p_0, p_1, α_{1+2}	3 ± 1.5		$\frac{5}{2}^{+}$	12.94
5.27 ± 50	130 ± 40	p_0	20 ± 8		$\frac{1}{2}^{-}$	12.98
5.38 ± 75	300 ± 75	p_0	75 ± 25		$\frac{3}{2}^{-}$	13.09
5.622 ± 8 $^{\rm e}$	30 ± 6	$p_0, p_1, \alpha_0, \alpha_{1+2}$	10 ± 3		$\frac{7}{2}^{-}$	13.317
5.670 ± 25	40 ± 20	p_0	2 ± 2		$\frac{3}{2}^{-}$	13.36
6.060 ± 11	55 ± 10	$p_0, p_1, (\alpha_{1+2})$	13 ± 3		$\frac{7}{2}^{-}; T = \frac{3}{2}$	13.732
6.390 ± 20 $^{\rm f}$	148 ± 30	p_0	12 ± 3		$\frac{5}{2}^{+}$	14.04
6.428 ± 30	88 ± 30	p_0	8 ± 3		$\frac{3}{2}^{-}$	14.08
6.687 ± 20	80 ± 30	p_0	9 ± 3		$\frac{3}{2}^{-}$	14.33
7.080 ± 20	130 ± 40	p_0	21 ± 5		$\frac{3}{2}^{-}$	14.70
7.10 ± 70	270 ± 70	$lpha_0$			$\frac{1}{2}^{-}$	14.72
7.125 ± 50	380 ± 70	\mathbf{p}_0, α_0	100 ± 25		$\frac{1}{2}^+$	14.74
7.167 ± 40	210 ± 50	p_0	21 ± 6		$\frac{5}{2}^{+}$	14.78
7.337 ± 40	208 ± 30	p_0	20 ± 4		$\frac{7}{2}^{-}$	14.94
7.775 ± 20	70 ± 10	\mathbf{p}_0	6 ± 2		$\frac{1}{2}^{-}$	15.36
7.820 ± 30	84 ± 25	\mathbf{p}_0	7 ± 2		$\frac{5}{2}^{+}$	15.40
8.282 ± 40	102 ± 25	\mathbf{p}_0	8 ± 3		$\frac{3}{2}^{-}$	15.83
8.670 ± 40	180 ± 30	\mathbf{p}_0	16 ± 4		$\frac{3}{2}^{+}$	16.20
8.695 ± 30	234 ± 40	p_0	13 ± 4		$\frac{7}{2}^{-}$	16.23

Table 19.17 from (1987AJ02): Energy levels of 19 F from 18 O(p, p) 18 O and 18 O(p, α) 15 N a (continued)

Ep	$\Gamma_{\rm lab}$	Particles out	$\Gamma_{\rm p}{}^{\rm b}$	Γ_{α} b	J^{π}	$E_{\rm x}$
$(MeV \pm keV)$	(keV)		(keV)	(keV)		(MeV)
8.747 ± 30	176 ± 30	p_0	13 ± 4		$\frac{3}{2}^{-}$	16.28
9.563 ± 40	348 ± 70	\mathbf{p}_0	39 ± 8		$\frac{3}{2}^{-}$	17.05
9.679 ± 40	340 ± 70	\mathbf{p}_0	30 ± 8		$\frac{7}{2}^{-}$	17.16
9.986 ± 30	34 ± 20	p_0	3 ± 2		$\frac{3}{2}^{-}$	17.45
10.200 ± 60	100 ± 60	p_0	5 ± 3		$\frac{7}{2}^{-}$	17.65
10.496 ± 40	268 ± 60	p_0	23 ± 5		$\frac{3}{2}^{-}$	17.93
10.596 ± 60	384 ± 60	\mathbf{p}_0	32 ± 7		$\frac{7}{2}^{-}$	18.03
11.698 ± 60	584 ± 150	p_0	22 ± 7		$\frac{3}{2}^{-}$	19.07
12.499 ± 150	388 ± 60	p_0	13 ± 6		$\frac{5}{2}^{-}$	19.83
12.547 ± 40	498 ± 60	p_0	39 ± 8		$\frac{3}{2}^{-}$	19.87
13.542 ± 50	434 ± 60	p_0	32 ± 5		$\frac{1}{2}^{-}$	20.81
13.662 ± 50	334 ± 50	\mathbf{p}_0	12 ± 4		$\frac{3}{2}^{-}$	20.93
13.791 ± 40	472 ± 30	\mathbf{p}_0	25 ± 5		$\frac{7}{2}^{-}$	21.05

Table 19.17 from (1987AJ02): Energy levels of ¹⁹F from ¹⁸O(p, p)¹⁸O and ¹⁸O(p, α)¹⁵N ^a (continued)

^a See also Tables 19.14 in (1972AJ02) and 19.17 in (1978AJ03) for the earlier work and references.

^b See also Table 19.15.

^c $\omega \gamma = 420 \pm 80 \text{ eV}$ (1979LO01).

^d Widths not in accord with Γ measured by (1979LO01) who calculate also $\omega \gamma \approx 1.2 \times 10^5$ eV.

^e See (1982DI11). A resonance at $E_p = 4.58$ MeV in the p channel is also reported. It is suggested that the states corresponding to $E_x = 12.33$, 12.52 and 13.32 MeV have $T = \frac{3}{2}$ and $J^{\pi} = (\frac{3}{2}^+), \frac{5}{2}^{(+)}$ and $\frac{3}{2}^-$, respectively.

^f The parameters of this resonance and most of the ones below are from a phase-shift analysis by (1979MU05) of the elastic scattering for $E_{\rm p} = 6.1$ to 16.6 MeV. Other structures have also been observed but parameters for those have not been obtained.

^g See also (1986CO1F; prelim.).