Adopted Levels

 $Q(\beta^{-})=20.34\times10^{3}$ 17; S(n)=0.44×10³ 20; 2012Wa38

See general theoretical analysis of the ¹⁶Be binding energy in 1981Se06, 1985Po10, 1987Sa15, 2006Ko02, 2008Um02, 2009Yu07, 2012It04).

¹⁶Be Levels

Cross Reference (XREF) Flags

- ⁹Be(¹⁷B,¹⁶Be) ⁹Be(⁴⁰Ar,¹⁶Be) A
- В

E(level)	J^{π}	Г	XREF	Comments
0	0+	0.8 MeV 2	A	$\%$ n \approx 100 E(level): The ground state is unbound to 2n decay by 1.35 MeV <i>10</i> . Decay is dominated by dineutron emission.

 Γ : From Γ =0.8 MeV +1-2.

⁹Be(¹⁷B,¹⁶Be) 2012Sp01

- 2012SP01: The authors populated the ground state of ¹⁶Be by fragmenting ¹⁷B nuclei, and then studied ¹⁶Be decay by measuring complete ¹⁴Be+2n kinematics. The aim was to determine the ¹⁶Be mass and evaluate n-n correlations in search of dineutron decay.
- The ¹⁶Be nuclei were formed in two steps: first an E(²²Ne)=120 MeV/nucleon beam was fragmented in a 2938 mg/cm² Be target
- to produce ¹⁷B beam that were purified in the A1900 at the MSU/NSCL, second the ¹⁷B beam at 53 MeV/nucleon impinged on a 470 mg/cm² ⁹Be target where the ¹⁶Be nuclei were formed by fragmentation.
- The ¹⁶Be nuclei decayed in flight and the residual ¹⁴Be+2n were momentum analyzed in the 43° Sweeper dipole magnet and the MONA array. Kinematic energy reconstruction indicated the unbound ¹⁶Be ground state is at E_{rel}(¹⁴Be+2n)=1.35 MeV *10*. Further analysis of the ¹⁴Be+n and n+n energy and angular correlations are consistent with dineutron emission from ¹⁶Be, and are inconsistent with either sequential decay through ¹⁵Be or simultaneous 3-body breakup into the ¹⁴Be+n+n continuum. See also (2013Th04).

¹⁶Be Levels

E(level)	J^{π}	Г	Comments
0	0+	0.8 MeV 2	$\%$ n \approx 100 E(level): The ground state is unbound to 2n decay by 1.35 MeV <i>10</i> . Decay is dominated by dineutron emission. Γ : From Γ =0.8 MeV +1-2.

⁹Be(⁴⁰Ar,¹⁶Be) 2003Ba47

2003Ba47: The authors analyzed the ⁴⁰Ar+⁹Be fragmentation products in search of evidence for particle bound states in ¹⁶Be.

- A beam of 140 MeV/nucleon ⁴⁰Ar ions, from the NSCL coupled cyclotron facility, impinged on a 1.5 g/cm² ^{nat}Be target. The resulting fragmentation products were momentum analyzed using the A1900 fragment separator. The products were detected using a position sensitive PPAC, a 500 μ m thick Si Δ E detector and a stopping thickness plastic E scintillator that were located at the final focal plane of the device. The time difference between a thin plastic scintillator located at the intermediate image of the separator and the thick stopping detector were compared to determine the the time-of-flight (ToF) between the two image planes. The particle identification at the focal plane was determined using both Δ E-E and Δ E-ToF techniques.
- No events corresponding to ¹⁶Be were observed. By comparison, ^{6,8}He, ^{9,11}Li, ^{12,14}Be, ^{17,19}B and ²⁰C nuclides were observed at the focal plane. The measured intensity of ¹⁹B was expected to be an order of magnitude lower than that of ¹⁶Be. As a result, the authors conclude ¹⁶Be is unbound. See also (2004Th15).

REFERENCES FOR A=16

- 1981SE06 M.Seya, M.Kohno, S.Nagata - Prog.Theor.Phys.(Kyoto) 65, 204 (1981).
- 1985PO10 N.A.F.M.Poppelier, L.D.Wood, P.W.M.Glaudemans - Phys.Lett. 157B, 120 (1985).
- H.Sagawa, H.Toki J.Phys.(London) G13, 453 (1987). 1987SA15
- T.Baumann, N.Frank, B.A.Luther et al. Phys.Rev. C 67, 061303 (2003). 2003BA47
- 2004TH15 M.Thoennessen - Acta Phys.Hung.N.S. 21, 379 (2004).
- V.B.Kopeliovich, A.M.Shunderuk, G.K.Matushko Phys.Atomic Nuclei 69, 120 (2006). A.Umeya, G.Kaneko, T.Haneda et al. Phys.Rev. C 77, 044301 (2008). C.-X.Yuan, C.Qi, F.-R.Xu Chin.Phys.C 33, Supplement 1, 55 (2009). 2006KO02
- 2008UM02
- 2009YU07
- M.Ito Prog.Theor.Phys.(Kyoto), Suppl. 196, 289 (2012). 2012IT04
- A.Spyrou, Z.Kohley, T.Baumann et al. Phys.Rev.Lett. 108, 102501 (2012). 2012SP01
- 2012WA38 M.Wang, G.Audi, A.H.Wapstra et al. - Chin.Phys.C 36, 1603 (2012).
- 2013TH04 M.Thoennessen, Z.Kohley, A.Spyrou et al. - Acta Phys.Pol. B44, 543 (2013).