Energy Levels of Light Nuclei
 $A=16$

D.R. Tilley ${ }^{\mathrm{a}, \mathrm{b}}$, H.R. Weller ${ }^{\mathrm{a}, \mathrm{c}}$ and C.M. Cheves ${ }^{\mathrm{a}, \mathrm{c}}$
${ }^{\text {a }}$ Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308, USA
${ }^{\text {b }}$ Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
${ }^{\text {c }}$ Department of Physics, Duke University, Durham, NC 27708-0305, USA

Abstract

An evaluation of $A=16-17$ was published in Nuclear Physics A564 (1993), p. 1. This version of $A=16$ differs from the published version in that we have corrected some errors discovered after the article went to press. The introduction and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the NNDC/TUNL format.

(References closed December 31, 1992)

This work is supported by the US Department of Energy, Office of High Energy and Nuclear Physics, under: Contract No. DEFG05-88-ER40441 (North Carolina State University); Contract No. DEFG05-91-ER40619 (Duke University).

Table of Contents for $A=16$

Below is a list of links for items found within the PDF document. The introductory Table 2 is available on this website via the link.
A. Nuclides: ${ }^{16} \mathrm{He},{ }^{16} \mathrm{Li},{ }^{16} \mathrm{Be},{ }^{16} \mathrm{~B},{ }^{16} \mathrm{C},{ }^{16} \mathrm{~N},{ }^{16} \mathrm{O},{ }^{16} \mathrm{~F},{ }^{16} \mathrm{Ne},{ }^{16} \mathrm{Na},{ }^{16} \mathrm{Mg},{ }^{16} \mathrm{Al},{ }^{16} \mathrm{Si}$

B. General Tables:

Table 16.1: General table for ${ }^{16} \mathrm{C}$
Table 16.4: General table for ${ }^{16} \mathrm{~N}$
Table 16.12: General table for ${ }^{16} \mathrm{O}$
Table 16.29: General table for ${ }^{16} \mathrm{~F}$ and ${ }^{16} \mathrm{Ne}$

C. Tables of Recommended Level Energies:

Table 16.2: Energy levels of ${ }^{16} \mathrm{C}$
Table 16.5: Energy levels of ${ }^{16} \mathrm{~N}$
Table 16.13: Energy levels of ${ }^{16} \mathrm{O}$
Table 16.30: Energy levels of ${ }^{16} \mathrm{~F}$
Table 16.32: Energy levels of ${ }^{16} \mathrm{Ne}$
D. References
E. Figures: ${ }^{16} \mathrm{C},{ }^{16} \mathrm{~N},{ }^{16} \mathrm{O},{ }^{16} \mathrm{~F}$, Isobar diagram
F. Erratum to the Publication: PS or PDF

$$
A=16 \text { theoretical }
$$

Because of the very large body of theoretical work that has been carried out for the $A=16$, and the importance of the spherical shell model in this work, a general discussion of the shell model description of $A=16$ nuclei is provided here. ${ }^{1}$

The spherical shell-model provides a complete basis for the description of nuclear states. It is convenient to use harmonic oscillator single-particle wave functions since the coordinate transformations necessary to separate spurious center of mass states, to relate shell-model to cluster-model wave functions and so on can be made exactly. Configurations are classified by the number of oscillator quanta that they carry beyond the minimum allowed by the Pauli Principle as $0 \hbar \omega, 1 \hbar \omega$, $2 \hbar \omega \ldots$ excitations. Non-spurious states of $A=16$ in general involve admixtures of $n p n h$ configurations but the lowest excitations of each isospin can, with the exception of the $K^{\pi}=0^{-}$band with the ${ }^{16} \mathrm{O} 9.58 \mathrm{MeV} 1^{-}$state as bandhead, be thought of as dominantly $p^{-n}(s d)^{n}$ excitations. In fact, the lowest eigenstates of an $n \hbar \omega$ calculation can usually be written economically in terms of product states of low-lying p^{-n} and $(s d)^{n}$ eigenstates. In the simplest version of this weak-coupling model, one identifies the p^{-n} and $(s d)^{n}$ eigenstates with the physical states of the relevant nuclei and takes the diagonal expectation value of $H_{p}+H_{s d}$ from the known masses. The contribution from the cross-shell, or particle-hole, interaction can often be quite reliably estimated by using $p h$ matrix elements extracted from the nominal $1 p 1 h$ states of ${ }^{16} \mathrm{O}$ or ${ }^{16} \mathrm{~N}$.

The $2 p 2 h$ states with $T=0$ and $T=1$ cannot, in general, be described in terms of the simple weak-coupling model, although there are examples to which such a description can be applied. Shell-model calculations which use empirical interactions fitted to data on $1 \hbar \omega$ excitations in the mass region do, however, produce $2 p 2 h T=1$ states in one-to-one correspondence with the lowest positive-parity states of ${ }^{16} \mathrm{~N}$ (see Table 16.5). They also produce $T=02 p 2 h$ states starting at around 12 MeV in ${ }^{16} \mathrm{O}$. In this case, the $2 p 2 h$ states are interleaved with $4 p 4 h$ states which begin at lower energies. The lowest $2 p 2 h T=0$ states can be related in energy to the $14.82 \mathrm{MeV} 6^{+}$state which is strongly populated by the addition of a stretched $d_{5 / 2}^{2}$ pair in the ${ }^{14} \mathrm{~N}(\alpha, \mathrm{~d}){ }^{16} \mathrm{O}$ reaction. The lowest six $2 p 2 h T=2$ states can be very well described in this way.

Weak-coupling ideas can be extended to the lowest $3 p 3 h$ and $4 p 4 h$ states. Since the 3 and 4 particle (or hole) configurations are strongly configuration mixed in the $j j$-coupling scheme, the $p h$ interaction is usually represented in the simple monopole form $E_{p h}=a+b t_{p} \cdot t_{h}$ plus a small attractive Coulomb contribution. The $p h$ interaction then gives a repulsive contribution of $9 a$ and $16 a$ to $3 p 3 h$ and $4 p 4 h$ configurations and separates the $T=0$ and $T=13 p 3 h$ states by $b \mathrm{MeV}$. The empirical values of a and b are $a \approx 0.4 \mathrm{MeV}$ and $b \approx 5 \mathrm{MeV}$, which put the $4 p 4 h 0^{+}$state and the $3 p 3 h 1^{-}$states close to experimental candidates at $6.05,12.44$ and 17.28 MeV respectively, each of which is the lowest member of a band.

The weak-coupling states can be used as a basis for shell-model calculations, but the elimination of spurious center-of-mass motion is approximate even within an oscillator framework; orbits outside the $p(s d)$ space are needed and can be important components of states of physical interest. If complete $n \hbar \omega$ spaces are used, the choice of basis can be one of computational convenience. A more physical LS-coupled basis is obtained by classifying the states according to the Wigner

[^0]supermultiplet scheme (SU4 $\supset S U 2 \times S U 2$ symmetry $[\tilde{f}]$ in spin-isospin space) and the SU3 symmetry $(\lambda \mu)$ of the harmonic oscillator. States with the highest spatial symmetry $[f]$ maximize the number of spatially symmetric interacting pairs to take advantage of the fact that the NN interaction is most strongly attractive in the relative $0 s$ state and weak or repulsive in relative p states. These symmetries are broken mainly by the one-body spin-orbit interaction. In $n p$ and $n h$ calculations the lowest states are dominated by the $[f](\lambda \mu)$ configurations $[n](2 n 0)$ and $\left[4^{2} 4-n\right](0 n)$ respectively (these symmetries are very good if the one-body spin-orbit interaction is turned off). In $n p n h$ calculations, the lowest states are dominated by the highest spatial symmetry allowed for given isospin T and ($2 n n$) SU3 symmetry. These states are identical to harmonic oscillator cluster-model states with $2 n$ quanta on the relative motion coordinate between the $n h$ core and the $n p$ cluster. States with a large parentage to the ground state of the core should be seen strongly in the appropriate transfer reaction.

In the above, a basic $n \hbar \omega$ (mainly $n p n h$) shell-model structure has been matched, through characteristic level properties and band structures, with experimental candidates. The mixing between shell-model configurations of different $n \hbar \omega$ is of several distinct types.

First, there is direct mixing between low-lying states with different npnh structure; the $p^{2} \rightarrow$ $(s d)^{2}$ mixing matrix elements (SU3 tensor character mainly (42)) are not large (up to a few MeV) although the mixing can be large in cases of near degeneracy.

A second type of mixing is more easily understood by reference to cluster models in which an oscillator basis is used to expand the relative motion wave function. To get a realistic representation of the relative motion wave function for a loosely-bound state or an unbound resonance requires many oscillators up to high $n \hbar \omega$ excitation. A related problem, which also involves the radial structure of the nucleus, occurs for the expansion of deformed states (of which cluster states are an example) in a spherical oscillator (shell-model) basis; e.g., deformed Hartree-Fock orbits may require an expansion in terms of many oscillator shells. It is difficult to accomodate this type of radial mixing in conventional shell-model calculations, but sympletic $\operatorname{Sp}(6, \mathrm{R})$ shell-models, in which the $S U 3$ algebra is extended to include $1 p 1 h 2 \hbar \omega$ monopole and quadrupole excitations, do include such mixing up to high $n \hbar \omega$.

A third type of mixing involves the coupling of npnh excitations to high-lying $(n+2) \hbar \omega$ configurations via the strong $(\lambda \mu)=(20)$ component of the $p^{2} \rightarrow(s d)^{2}$ interaction. In the full $(0+2+4) \hbar \omega$ calculations, the large ($30-45 \%$) $2 p 2 h$ admixtures in the ground state are mainly of the (20) type, which are intimately related to the ground-state correlations of RPA theory, and lead to the enhancement (quenching) of $\Delta T=0, \Delta S=0$ (otherwise) exitations at low momentum transfer.

For most detailed structure questions, a shell-model calculation is required to include the relevant degrees of freedom. For example, (1990HA35) address two important problems with complete $(0+2+4) \hbar \omega$ and $(1+3) \hbar \omega$ model spaces. One is the rank-zero ${ }^{16} \mathrm{~N}\left(0^{-}\right) \rightarrow{ }^{16} \mathrm{O}(g s) \beta$ decay and the inverse μ capture which receive large two-body meson-exchange current contributions. The other is the distribution of M1 and Gamow-Teller strength based on the ${ }^{16} \mathrm{O}$ ground state; this is a complicated problem which involves $2 p 2 h \ldots$ admixtures in the ground state which break SU4 symmetry.

Many interesting structure problems remain. A detailed understanding of the shapes and magnitudes of inelastic form factors is lacking, particularly the shapes at momentum transfers beyond $2 \mathrm{fm}^{-1}$. Even in the relatively simple case of M4 excitations, much studied via (e, e^{\prime}), (p, p^{\prime}) and $\left(\pi, \pi^{\prime}\right)$ reactions, a rather low value of the oscillator parameter b is required to describe the form factor. Also, the configuration mixing which splits the $4^{-} ; T=0$ strength into two major components and causes isospin mixing has not been satisfactorily described by a shell-model calculation. Similar interesting problems occur for isospin-mixed negative-parity states near 13 MeV excitation energy. It is worth noting that, to avoid some serious consistency problems, the large shell-model calculations have omitted orbits outside the $p(s d)$ space except in as much to cleanly separate spurious center-of-mass states. A consistent treatment of $1 p 1 h$ and $2 p 2 h$ correlations in multi- $\hbar \omega$ shell-model spaces remains a challenging question.
${ }^{16} \mathbf{H e}$
(not illustrated)

This nucleus has not been observed. See (1982AV1A, 1983ANZQ, 1986AJ04).
${ }^{16} \mathbf{L i}$
(not illustrated)

This nucleus has not been observed. Shell model studies (1988POZS) are used to predict J^{π} and the magnetic dipole moment.

${ }^{16} \mathbf{B e}$
 (not illustrated)

This nucleus has not been observed. Its atomic mass is calculated to be 59.22 MeV . It is then unstable with respect to breakup into ${ }^{14} \mathrm{Be}+2 \mathrm{n}$ by 2.98 MeV . See (1974TH01, 1986AJ04, 1987SA15). The first three excited states with $J^{\pi}=2^{+}, 4^{+}, 4^{+}$are calculated to be at $1.90,5.08$, and 6.51 MeV using a $(0+1) \hbar \omega$ space shell model (1985PO10).

${ }^{16}$ B
 (not illustrated)

This nucleus has not been observed in the 4.8 GeV proton bombardment of a uranium target. It is particle unstable. Its mass excess is predicted to be 37.97 MeV ; it would then be unstable with respect to decay into ${ }^{15} \mathrm{~B}+\mathrm{n}$ by 0.93 MeV . See (1985WA02, 1986AJ04). The ground state is predicted to have $J^{\pi}=0^{-}$and the first three excited states are predicted to lie at $0.95,1.10$, and $1.55 \mathrm{MeV}\left[J^{\pi}=2^{-}, 3^{-}, 4^{-}\right]$in a $(0+1) \hbar \omega$ space shell model calculation. See (1983ANZQ, 1985PO10, 1986AJ04). Predicted masses and excitation energies for higher isospin multiplets for $9 \leq A \leq 60$ are included in the compilation (1986AN07). An experiment (1985LA03) involving in-flight identification of fragments from $44 \mathrm{MeV} / \mathrm{u}{ }^{40} \mathrm{Ar}$ found no trace of ${ }^{18} \mathrm{~B}$ or ${ }^{16} \mathrm{~B}$ and provides strong evidence that ${ }^{16} \mathrm{~B}$ is particle-unstable.

${ }^{16} \mathrm{C}$
 (Figs. 1 and 5)

GENERAL: See Table 16.1.

$$
\text { 1. }{ }^{16} \mathrm{C}\left(\beta^{-}\right)^{16} \mathrm{~N} \quad Q_{\mathrm{m}}=8.012
$$

The half life of ${ }^{16} \mathrm{C}$ is $0.747 \pm 0.008 \mathrm{sec}$. It decays to ${ }^{16} \mathrm{~N}^{*}(0.12,3.35,4.32)\left[\mathrm{J}^{\pi}=0^{-}\right.$, $1^{+}, 1^{+}$]: see Table 16.3 and (1993CH06). See also (1986AJ04) and see (1986KI05, 1988WA1E, 1992WA1L) for theoretical discussions of extended shell-model calculations of $0^{+} \rightarrow 0^{-}$transitions and determination of the mesonic enhancements $\varepsilon_{\text {mec }}$ of the time-like component of the axial current. See also (1992TO04) and see ${ }^{16} \mathrm{~N}$, reaction 1 .
2. ${ }^{14} \mathrm{C}(\mathrm{t}, \mathrm{p}){ }^{16} \mathrm{C} \quad Q_{\mathrm{m}}=-3.013$

States of ${ }^{16} \mathrm{C}$ observed in this reaction are displayed in Table 16.2. See also Table 16.3 of (1982AJ01).
3. ${ }^{16} \mathrm{O}\left(\mathrm{K}^{-}, \pi^{+}\right){ }_{\Sigma}^{16} \mathrm{C}$
(1985BE31) used negative kaons of $450 \mathrm{MeV} / \mathrm{c}$ to produce Σ hypernuclear states, which they interpreted as Σ^{-}particles in the $\mathrm{p}_{3 / 2}$ and $\mathrm{p}_{1 / 2}$ orbits of the ${ }_{\Sigma}^{16} \mathrm{C}$ hypernucleus. Their energy splitting was used to constrain the Σ^{-}spin-orbit coupling.
(1986HA26) performed a systematic shell-model analysis of Σ-hypernuclear states, in which they deduced a $\Sigma \mathrm{N}$-spin-orbit interaction about twice as strong as the one for the nucleon. (1986MA1J) reached a similar conclusion after extracting the one-particle spin-orbit splitting $\varepsilon_{\Sigma}=\varepsilon^{\Sigma} \mathrm{p}_{1 / 2}-$ $\varepsilon^{\Sigma} \mathrm{p}_{3 / 2}$. (1987WU05) used the continuum shell-model to study competition between resonant and quasi-free Σ-hypernuclear production. The observed structures in the excitation spectra are essentially accounted for by the quasi-free mechanism alone. (1989DO1I) perform a series of shell model calculations of energy spectra of p-shell Σ hypernuclei, starting with several different parametrizations of the $\Sigma \mathrm{N}$ effective interaction. Production cross sections are estimated using DWBA. They suggest experiments to resolve open questions regarding the $\Sigma \mathrm{N}$ and Σ-nucleus interactions. (1989HA32) uses the recoil continuum shell model to calculate in-flight Σ hypernuclei production of this reaction (and others). They needed to modify the $\Sigma \mathrm{N}$ central interaction to fit data.

Coupled channels (CC) calculations for Σ-hypernuclear spectra give an energy integrated cross section which is about 1.7 times the experimental value (1987HA40). (1988HA44) report CC calculations emphasizing the proper treatment of the Σ continuum states. They find that a weak Σ central potential and a comparable $\Sigma \Lambda$ conversion potential are required to describe experiment.

Fig. 1: Energy levels of ${ }^{16}$ C. For notation see Fig. 2.

Table 16.1: ${ }^{16} \mathrm{C}$ - General

Reference Description

Complex Reactions

1986BI1A Heavy ion secondary beams - Results from GANIL
1987GU04 Exotic emission of ${ }^{14} \mathrm{C}$ \& other heavy clusters in the fragmentation of ${ }^{222-224} \mathrm{Ra} \&{ }^{232} \mathrm{U}$
1987RI03 Isotopic distributions of fragments in intermediate energy heavy ion reactions
1987SA25 The LISE spectrometer at GANIL (secondary radioactive beam production)
1987SN01 Partitioning of a 2-component particle system \& isotope distribution in fragmentation
1987VI02 Anisotropies in transfer-induced fission of ${ }^{16} \mathrm{O}+{ }^{232} \mathrm{Th}$
1988RU01 Dynamic treatment of ternary fission - calculates light charged particle formation
1989SA10 Total cross sections of reactions induced by neutron-rich light nuclei (exp. results)

Hypernuclei

1987FA1A Review of International Conference on a European Hadron Facility
1988MA09 Hypernucleus production by K^{-}capture at rest on ${ }^{16} \mathrm{O}$ targets
1989BA92 Strangeness production by heavy ions

Other Topics

1986AN07 Predicted masses \& excitation energies in higher isospin multiplets for $9 \leq A \leq 60$
1987BL18 Calc. ground state energy of light nuclei (\& excited states for $\mathrm{N}=\mathrm{Z}$) using H-F method
1989PO1K Exotic light nuclei and nuclei in the lead region
1989RA16 Predictions of $B\left(E 2 ; 0_{1}^{+}-2_{1}^{+}\right)$values for even-even nuclei

Ground State Properties

1987BL18 Calculated ground state energies using Gogny's effective interaction and HF method 1987SA15 Hartree-Fock calculations of light neutron-rich nuclei using Skyrme interactions 1988POZS Shell model study of light exotic nuclei - compares calculated ground state prop. to data 1989RA16 Predictions of B(E2; $0_{1}^{+}-2_{1}^{+}$) values for even-even nuclei
1989SA10 Total cross sections of reactions induced by neutron-rich light nuclei

Table 16.2: Energy Levels of ${ }^{16} \mathrm{C}$

$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})$	$J^{\pi} ; T$	$\tau_{1 / 2}(\mathrm{sec})$ or $\Gamma(\mathrm{keV})$	Decay	Reactions
0	$0^{+} ; 2$	$\tau_{1 / 2}=0.747 \pm 0.008$	β^{-}	1,2
1.766 ± 10	2^{+}		γ	2
3.027 ± 12	$\left(0^{+}\right)$		(γ)	2
3.986 ± 7	2		γ	2
4.088 ± 7	$3^{(+)}$		γ	2
4.142 ± 7	4^{+}		γ	2
6.109 ± 15	$\left(2^{+}, 3^{-}, 4^{+}\right)$	$\Gamma \leq 25$		2

Table 16.3: The β^{-}decay of ${ }^{16} \mathrm{C}$

Decay to ${ }^{16} \mathrm{~N}^{*}(\mathrm{MeV})$	J^{π}	Branch (\%)	$\log f t$
0.120	0^{-}	$0.68_{-0.11}^{+0.09}$	$6.70_{-0.05}^{+0.07}$
0.298	3^{-}	$<0.5^{\mathrm{b}}$	>6.83
0.397	1^{-}	$<0.1^{\mathrm{a}}$	>7.46
3.35	1^{+}	$84.4 \pm 1.7^{\mathrm{b}}$	3.551 ± 0.012
4.32	1^{+}	$15.6 \pm 1.7^{\mathrm{b}}$	3.83 ± 0.05

[^1]
${ }^{16} \mathbf{N}$

(Figs. 2 and 5)
GENERAL: See Table 16.4.
For a comparison of analog states in ${ }^{16} \mathrm{~N}$ and ${ }^{16} \mathrm{O}$, see (1983KE06, 1983SN03).

$$
\text { 1. }{ }^{16} \mathrm{~N}\left(\beta^{-}\right)^{16} \mathrm{O} \quad Q_{\mathrm{m}}=10.419
$$

The half-life of ${ }^{16} \mathrm{~N}$ is $7.13 \pm 0.02 \mathrm{sec}$: see Table 16.3 in (1971AJ02). From the unique firstforbidden character of the β decay [see Table 16.25 and (1984WA07)], ${ }^{16} \mathrm{~N}$ must have $J^{\pi}=2^{-}$: see ${ }^{16}$ O, reaction 39. See also (1985HE08, 1988BA15).

The β-decay of ${ }^{16} \mathrm{~N}^{*}(0.12)\left[J^{\pi}=0^{-}\right]$has been measured (1983GA18, 1985HA22); adopted value: $\lambda_{\beta}=0.489 \pm 0.020 \sec ^{-1}(1985 \mathrm{HE} 08)$. The relationship of this rate to that for ${ }^{16} \mathrm{O}\left(\mu^{-}, \nu\right)^{16} \mathrm{~N}\left(0^{-}\right)$ [see reaction 18] and the fact that the large values of these rates support the prediction (1978GU05, 1978GU07, 1978KU1A) of a large ($\approx 60 \%$) enhancement over the impulse approximation (e.g., $\varepsilon_{\text {mec }}=1.60$) has been the subject of a great deal of theoretical study, see, e.g. (1981TO16, 1986KI05, 1986TO1A, 1988WA1E, 1990HA35). The work of (1990HA35, 1992WA1L) is a culmination of present knowledge on the determination and interpretation of $\varepsilon_{\text {mec }}$. See also (1992TO04). A branching ratio $R\left(0^{-} \rightarrow 1^{-}\right) /\left(0^{-} \rightarrow 0^{+}\right)=0.09 \pm 0.02$ has been reported (1988CH30), implying $\log f t=4.25 \pm 0.10$ for the $0^{-} \rightarrow 1^{-}$transition to the ${ }^{16} \mathrm{O} 7.12-\mathrm{MeV}$ level.
2. ${ }^{7} \operatorname{Li}\left({ }^{11} \mathrm{~B}, \mathrm{pn}\right)^{16} \mathrm{~N} \quad Q_{\mathrm{m}}=2.533$

Gamma rays with $E_{\gamma}=120.42 \pm 0.12,298.22 \pm 0.08$ and $276.85 \pm 0.10 \mathrm{keV}$ from the ground state decays of ${ }^{16} \mathrm{~N}^{*}(0.12,0.30)$ and the decay of the state at $397.27 \pm 0.10 \mathrm{keV}$ to the first excited state have been studied. τ_{m} for ${ }^{16} \mathrm{~N}^{*}(0.30,0.40)$ are, respectively, 133 ± 4 and $6.60 \pm 0.48 \mathrm{psec}$. See (1986AJ04). Cross section measurements for ${ }^{7} \mathrm{Li}+{ }^{11} \mathrm{~B}$ at $E(\mathrm{c} . \mathrm{m})=.1.45-6.10 \mathrm{MeV}$ have been reported (1990DA03).
3. (a) ${ }^{9} \operatorname{Be}\left({ }^{7} \mathrm{Li}, \mathrm{n}\right){ }^{15} \mathrm{~N}$
$Q_{\mathrm{m}}=18.082$
$E_{\mathrm{b}}=20.572$
(b) ${ }^{9} \mathrm{Be}\left({ }^{7} \mathrm{Li}, 2 \mathrm{n}\right){ }^{14} \mathrm{~N}$
$Q_{\mathrm{m}}=7.249$
(c) ${ }^{9} \mathrm{Be}\left({ }^{7} \mathrm{Li}, \mathrm{t}\right){ }^{13} \mathrm{C}$
$Q_{\mathrm{m}}=8.179$
(d) ${ }^{9} \mathrm{Be}\left({ }^{7} \mathrm{Li}, \alpha\right){ }^{12} \mathrm{~B}$
$Q_{\mathrm{m}}=10.461$
(e) ${ }^{9} \mathrm{Be}\left({ }^{7} \mathrm{Li},{ }^{8} \mathrm{Li}\right){ }^{8} \mathrm{Be}$
$Q_{\mathrm{m}}=0.368$

At incident ${ }^{7} \mathrm{Li}$ energies of 40 MeV , neutron yields at 0° for reactions (a) and (b) are 50 to 70 times smaller than for 40 MeV deuteron-induced reactions on ${ }^{9} \mathrm{Be}$ (1987SC11). For reactions (c, d, e) see (1982AJ01).

Table 16.4: ${ }^{16} \mathrm{~N}$ - General
Reference Description

Model Calculations

1984VA06 Shell-model treatment of $(0+1) \hbar \omega$ states in $A=4-16$ nuclei
1987VA26 An effective interaction derived from spectra and static moments for $A=4-16$
1988VA03 Static moments from a phenomenological interaction
1988MI1J Shell model transition densities for electron and pion scattering
1992WA22Effective interactions for the 0p1s0d nuclear shell-model space

Complex Reactions

1986BI1A Heavy ion secondary beams of radioactive nuclei
1986GA1P Spin response function obtained in heavy ion charge-exchange reactions
1986HA1BMicroscopic model of nucleus-nucleus collisions
1986PO06 Calc. half-lives \& kinetic energies for spontaneous emission of heavy ions from nuclei
1987AN1AAchromatic spectrometer LISE at GANIL: produc. \& ident. of nuclei far from $Z=N$
1987BA1T Spin-isospin excitations in nuclei with relativistic heavy ions
1987BA38 Systematics of the ${ }^{14} \mathrm{~N}+{ }^{159} \mathrm{~Tb}$ reaction between 6 and $33 \mathrm{MeV} / \mathrm{u}$
1987BU07 Projectile-like fragments from ${ }^{20} \mathrm{Ne}+{ }^{197} \mathrm{Au}$ - counting simultaneously emitted neutrons
1987EL14 Isovector excitations in nuclei with composite projectiles: $\left({ }^{3} \mathrm{He}, \mathrm{t}\right),\left(\mathrm{d},{ }^{2} \mathrm{He}\right) \&$ heavy ions
1987RI03 Isotopic distributions of fragments from ${ }^{40} \mathrm{Ar}+{ }^{68} \mathrm{Zn}$ at $\mathrm{E}=27.6 \mathrm{MeV} / \mathrm{u}$
1987VI02 Anisotropies in transfer-induced fission of ${ }^{16} \mathrm{O}+{ }^{232} \mathrm{Th}$
1988SA19 Sytematics of isotope production rates: unification of different methods of analysis
1989BA92 Strangeness production by heavy ions
1989SA10 Total cross sections of reactions induced by neutron-rich light nuclei
1989TE02 Dissipative mechanisms in the $120 \mathrm{MeV}{ }^{19} \mathrm{~F}+{ }^{64} \mathrm{Ni}$ reaction
1989YO02 Quasi-elastic \& deep inelastic transfer in ${ }^{16} \mathrm{O}+{ }^{197} \mathrm{Au}$ for $E<10 \mathrm{MeV} / \mathrm{u}$

Hypernuclei

1988RO11 Distorted wave impulse approximation study of hypernuclear photoproduction
1989BA92 Strangeness production by heavy ions
1989BE02 Kaon photoproduction from nuclei in a relativistic nuclear model
1989BE11 Electromagnetic production of Σ hypernuclei
1989 TA04 Absorptive effects in $\mathrm{K}+\Lambda$ photoproduction on nucleons and nuclei
1989TA17 Compound-hypernucl. interpretation on ${ }_{\Lambda}^{4} \mathrm{H}$ formation probab. in stopped- K^{-}absorption 1989 TA32 Schmidt diagrams and configuration mixing effects on hypernuclear magnetic moments

Table 16.4: ${ }^{16} \mathrm{~N}$ - General (continued)
Reference Description

Reactions involving Pions, Muons \& Neutrinos

1985GR1A Induced weak currents in nuclei
1989CH31 Photoproduction of pions off nucleons and nuclei

Ground State Properties

1986AN07 Predicted masses \& excitation energies in higher isospin multiplets for $9 \leq A \leq 60$ 1989RA17 Table of nuclear moments (${ }^{1} \mathrm{H}-{ }^{254} \mathrm{Es}$)
4. ${ }^{9} \mathrm{Be}\left({ }^{9} \mathrm{Be}, \mathrm{np}\right){ }^{16} \mathrm{~N}$

$$
Q_{\mathrm{m}}=1.652
$$

Cross sections were measured for characteristic ${ }^{16} \mathrm{~N}$ gamma rays for incident ${ }^{9} \mathrm{Be}$ energies $E_{\text {c.m. }}=1.4-3.4 \mathrm{MeV}$. The n, p and all other two-particle emission channels are enhanced by a factor of 2-3 relative to predictions of DWBA calculations (1988LA25).
5. ${ }^{10} \mathrm{~B}\left({ }^{7} \mathrm{Li}, \mathrm{p}\right){ }^{16} \mathrm{~N}$
$Q_{\mathrm{m}}=13.986$

See Table 16.6 and (1982AJ01).

Fig. 2: Energy levels of ${ }^{16} \mathrm{~N}$. In these diagrams, energy values are plotted vertically in MeV , based on the ground state as zero. Uncertain levels or transitions are indicated by dashed lines; levels which are known to be particularly broad are cross-hatched. Values of total angular momentum J, parity, and isobaric spin T which appear to be reasonably well established are indicated on the levels; less certain assignments are enclosed in parentheses. For reactions in which ${ }^{16} \mathrm{~N}$ is the compound nucleus, some typical thin-target excitation functions are shown schematically, with the yield plotted horizontally and the bombarding energy vertically. Bombarding energies are indicated in laboratory coordinates and plotted to scale in cm coordinates. Excited states of the residual nuclei involved in these reactions have generally not been shown; where transitions to such excited states are known to occur, a brace is sometimes used to suggest reference to another diagram. For reactions in which the present nucleus occurs as a residual product, excitation functions have not been shown; a vertical arrow with a number indicating some bombarding energy, usually the highest, at which the reaction has been studied, is used instead. Further information on the levels illustrated, including a listing of the reactions in which each has been observed, is contained in the master table, entitled "Energy levels of ${ }^{16} \mathrm{~N}$ ".

Table 16.5: Energy Levels of ${ }^{16} \mathrm{~N}$

$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})$	$J^{\pi} ; T$	τ or $\Gamma_{\text {c.m. }}(\mathrm{keV})$	Decay	Reactions
0	$2^{-} ; 1$	$\tau_{1 / 2}=7.13 \pm 0.02 \mathrm{sec}$	β^{-}	$\begin{aligned} & 1,2,4,5,7,9,11,12, \\ & 16,19,20,21,22,23, \\ & 24,25,27,28 \end{aligned}$
0.12042 ± 0.12	0^{-}	$\tau_{\mathrm{m}}=7.58 \pm 0.09 \mu \mathrm{sec}$	γ, β^{-}	$\begin{aligned} & 1,2,4,5,7,9,11,16, \\ & 17,18,19,20,21,22, \\ & 23,24,25,27,28 \end{aligned}$
0.29822 ± 0.08	3^{-}	$\left\{\begin{array}{r}131.7 \pm 1.9 \mathrm{psec} \\ \|\mathrm{g}\|=0.532 \pm 0.0200\end{array}\right.$	γ	$\begin{aligned} & 2,4,5,7,9,10,11,16 \\ & 19,20,21,22,23,24 \\ & 25,27,28 \end{aligned}$
0.39727 ± 0.10	1^{-}	$\left\{\begin{array}{c}\tau_{\mathrm{m}}=5.63 \pm 0.05 \mathrm{psec} \\ \mathrm{g}=-1.83 \pm 0.130\end{array}\right.$	γ	$\begin{aligned} & 2,4,5,7,9,11,16,18, \\ & 19,20,21,22,27,28 \end{aligned}$
3.3528 ± 2.6	$\left(1^{+}\right)^{\text {c }}$	$\Gamma=15 \pm 5$	n	$\begin{aligned} & 5,7,9,11,13,14,15 \\ & 16,17,22,25,27 \end{aligned}$
3.5227 ± 2.6	2^{+}	3	n	$\begin{aligned} & 5,7,9,11,13,16,22, \\ & 25,27 \end{aligned}$
3.9627 ± 2.6	3^{+}	≤ 2	n	$\begin{aligned} & 5,7,9,10,11,13,16 \\ & 22,25,27 \end{aligned}$
4.3204 ± 2.7	1^{+}	20 ± 5	n	$\begin{aligned} & 5,9,11,13,14,15,16 \\ & 17 \end{aligned}$
4.3914 ± 2.7	1^{-}	82 ± 20	n	5, 7, 9, 11, 13, 16
4.76 ± 50	1^{-}	250 ± 50	n	11, 13, 16
4.7828 ± 2.7	2^{+}	59 ± 8	n	5, 7, 9, 11, 13, 16
5.0537 ± 2.7	2^{-}	19 ± 6	n	5, 9, 11, 13, 16
5.129 ± 7	$\geq 2^{\text {a }}$	$\leq 7 \pm 4$	n	$5,7,9,11,13,16,25$
5.150 ± 7	(3) ${ }^{-} ; 1^{\mathrm{a}, \mathrm{d}}$	$\leq 7 \pm 4$	n	$5,7,9,11,13,16,25$
5.2301 ± 2.6	3^{+}	≤ 4	n	5, 9, 11, 13, 16, 27
5.25 ± 70	2^{-}	320 ± 80	n	11,16
5.318 ± 3	$\left(0^{-}, 1^{+}\right)$	(260)	n	5, 13
5.5216 ± 2.5	3^{+}	$\leq 7 \pm 4$	n	$\begin{aligned} & 5,7,9,11,13,16,22, \\ & 24,27 \end{aligned}$
5.7317 ± 2.5	$\left(5^{+}\right)^{\text {e }}$	$\leq 7 \pm 4$	n	$\begin{aligned} & 5,7,9,10,11,13,15 \\ & 16,22,24,27 \end{aligned}$
6.003 ± 3	1^{-}	270 ± 30	n	5, 11, 13, 27

Table 16.5: Energy Levels of ${ }^{16} \mathrm{~N}$ (continued)

$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})$	$J^{\pi} ; T$	τ or $\Gamma_{\text {c.m. }}(\mathrm{keV})$	Decay	Reactions
6.1707 ± 2.4	$4^{-} ; 1$	$\leq 7 \pm 4$	n	$\begin{aligned} & 5,7,9,11,16,20,22, \\ & 24,27 \end{aligned}$
6.3739 ± 2.8	$\left(3^{-} ; 1\right)$	30 ± 6	n	5, 7, 11, 13, 16, 22, 27
6.426 ± 7		300 ± 30		11, 16
6.5054 ± 2.8	1^{+}	34 ± 6	(n)	$5,11,13,16,24,27$
6.6085 ± 2.8	(4)	$\leq 7 \pm 4$		5, 7, 11, 16, 27
6.845 ± 4		$\leq 7 \pm 4$		7, 9, 11, 16, 27
(6.84)	≥ 2	>140	13	
7.02 ± 20	1^{+}	22 ± 5	n	11, 13, 16, 27
7.134 ± 7		$\leq 7 \pm 4$		9, 11, 16, 27
7.250 ± 7	≥ 2	17 ± 5	n	7, 11, 13, 16, 27
7.572 ± 4	$\geq 3{ }^{\text {b }}$	$\leq 7 \pm 4$	n	$7,9,10,11,13,16,27$
7.637 ± 4	$(3,4,5)^{+b}$	$\leq 7 \pm 4$		$7,9,10,11,16,27$
7.674 ± 4	(b)	$\leq 7 \pm 4$	n	$7,9,11,13,16,24,27$
7.877 ± 9	≥ 4	100 ± 15	n	$7,11,13,16,20,27$
8.048 ± 9		85 ± 15	n	11, 13, 27
8.199 ± 5	$(3,2)^{+}$	28 ± 8		9, 11, 27
8.282 ± 8		24 ± 8		11, 27
8.365 ± 8	≥ 1	18 ± 8	n	7, 11, 13, 27
8.49 ± 30	≥ 1	≤ 50	n	13,27
8.72	≥ 1	40	n	13
8.819 ± 15		≤ 50	n	7,13,27
9.035 ± 15		≤ 50		27
9.16 ± 30	≥ 2	100	n	13,27
9.34 ± 30		≤ 50	n	13,27
9.459 ± 15	≥ 2	100	n	7, 13, 24, 27
9.760 ± 10	$T=1$	15 ± 8		7, 9, 27
9.813 ± 10	$T=1$			9
9.928 ± 7	$0^{+} ; T=2$	<12		9, 26
10.055 ± 15	≥ 3	30	n	7,13,27
10.37 ± 40	≥ 2	165	n	7,13

Table 16.5: Energy Levels of ${ }^{16} \mathrm{~N}$ (continued)

$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})$	$J^{\pi} ; T$	τ or $\Gamma_{\text {c.m. }}(\mathrm{keV})$	Decay	Reactions
10.71	≥ 2	120	n	13
11.16 ± 40				7
11.49	≥ 3		n	13
11.61	≥ 3	220	n, d	8,13
11.701 ± 7	$2^{+} ; 2$	<12		9
11.75 ± 40		<50		7
(11.92)		390	n, d	8
(12.09)			n	13
12.39 ± 60		290	$\mathrm{n}, \mathrm{p}, \mathrm{d}$	7, 8
12.57 ± 60		180	$\mathrm{n}, \mathrm{p}, \mathrm{d}$	7, 8
12.88		155	$\mathrm{n}, \mathrm{p}, \mathrm{d}$	8,13
(12.97)		175	n, d	
13.11 ± 60			n , (d)	7, 8, 13
13.83			n	13
14.1	$\left(7^{+} ; 2\right)^{\mathrm{f}}$			
14.36 ± 50	$(3)^{+}$	180	d	7, 8

${ }^{\text {a }}$ See also Table 16.6.
${ }^{\text {b }}$ See also Table 16.7.
${ }^{\text {c }}$ May be a doublet. See (1985BLZY) and see Table 16.15.
${ }^{\text {d }}$ Probably the analog of ${ }^{16} \mathrm{O}^{*}(18.029)$, D.J. Millener, private communication.
${ }^{e}$ May be a $2^{-}, 5^{+}$doublet - the analogs of ${ }^{16} \mathrm{O}$ states at $E_{\mathrm{x}}=18.454$ and $18.640 \mathrm{MeV}, J^{\pi}=\left(2^{-}\right)$and 5^{+}, respectively (D.J. Millener, private communication).
${ }^{f}$ (1987AZZZ) and D.J. Millener, private communication.
6. ${ }^{12} \mathrm{C}\left({ }^{16} \mathrm{O},{ }^{16} \mathrm{~N}\right){ }^{12} \mathrm{~N}$
$Q_{\mathrm{m}}=-27.757$
${ }^{16} \mathrm{~N}$ spectra were measured for incident ${ }^{16} \mathrm{O}$ energies of $900 \mathrm{MeV} /$ nucleon. Transitions to the low-lying GDR, the quasi-elastic, and the Δ-regions were observed (1987EL14).

$$
\text { 7. }{ }^{13} \mathrm{C}(\alpha, \mathrm{p})^{16} \mathrm{~N} \quad Q_{\mathrm{m}}=-7.422
$$

Table 16.6: States of ${ }^{16} \mathrm{~N}$ from ${ }^{10} \mathrm{~B}\left({ }^{7} \mathrm{Li}, \mathrm{p}\right)^{\text {a }}$

$E_{\mathrm{x}}{ }^{\text {b }}(\mathrm{MeV})$	$J^{\text {c }}$	$E_{\mathrm{x}}{ }^{\text {b }}(\mathrm{MeV})$	$J^{\text {c }}$
0		5.142	e
0.124		5.230	f
0.296		5.318	0,1
0.400		5.525	4, $3^{\text {g }}$
3.352	c	5.734	h
3.524	c	6.002	$1{ }^{\text {f }}$
3.964	c	6.172	i
4.321	c	6.374	c
4.392	c	6.504	c
4.785	c	6.608	$4^{\text {j }}$
5.054	$1,2^{\text {d }}$		

${ }^{\text {a }}$ For references see (1986AJ04).
${ }^{\mathrm{b}} \pm 3 \mathrm{keV}$.
${ }^{\text {c }}$ Based on the assumption that the angle-integrated cross section is proportional
to $2 J+1$. States labelled ${ }^{\mathrm{c}}$ have J consistent with known values.
${ }^{\mathrm{d}}$ If a doublet, $J=1$ and 0 .
${ }^{e}$ Doublet (1986AJ04).
${ }^{\text {f }}$ Narrow state.
${ }^{\mathrm{g}}$ If a doublet, and if one state is 3^{+}, the second member would have $J=0$.
${ }^{\text {h }}$ If a doublet of which one member is 5^{+}, the other would have $J=2(1,3)$.
${ }^{i}$ May be a doublet (1986AJ04).
${ }^{\mathrm{j}} J=4$, if a single state.

Differential cross sections measured (1986AN30) at $E_{\alpha}=118 \mathrm{MeV}$ were analyzed using DWBA calculations with microscopic form factors to obtain J^{π} and to locate multiparticle-multihole strength in ${ }^{16} \mathrm{~N}$: see Table 16.7. Measurements at $E_{\alpha}=34.9 \mathrm{MeV}$ are summarized in Table 16.5 of (1986AJ04). See also (1988MIZY, 1988BRZY).
8. (a) ${ }^{14} \mathrm{C}(\mathrm{d}, \gamma){ }^{16} \mathrm{~N}$
$Q_{\mathrm{m}}=10.474$
$E_{\mathrm{b}}=10.474$
(b) ${ }^{14} \mathrm{C}(\mathrm{d}, \mathrm{n})^{15} \mathrm{~N}$
$Q_{\mathrm{m}}=7.984$
(c) ${ }^{14} \mathrm{C}(\mathrm{d}, \mathrm{p})^{15} \mathrm{C}$
$Q_{\mathrm{m}}=-1.006$
(d) ${ }^{14} \mathrm{C}(\mathrm{d}, \mathrm{d}){ }^{14} \mathrm{C}$

Table 16.7: States of ${ }^{16} \mathrm{~N}$ from ${ }^{13} \mathrm{C}(\alpha, p)^{\text {a }}$

$E_{\mathrm{x}}(\mathrm{MeV})$	$\Gamma(\mathrm{keV})$	J^{π}	$E_{\mathrm{x}}(\mathrm{MeV})$	$\Gamma(\mathrm{keV})$	J^{π}
0.00		2^{-}	8.83	45 ± 30	
0.12		0^{-}	$9.08{ }^{\text {b }}$	195 ± 30	
0.30		3^{-}	$9.35{ }^{\text {b }}$	90 ± 30	
0.40		1^{-}	$9.49{ }^{\text {c }}$	70 ± 30	
3.36			$9.70{ }^{\text {d }}$	≤ 30	
3.52			$9.81{ }^{\text {d }}$	90 ± 30	
3.96	≤ 20		10.07	35 ± 20	
4.40	110 ± 30		10.40		
$4.77{ }^{\text {b }}$	170 ± 30		10.80		
$5.05{ }^{\text {b }}$			$11.21{ }^{\text {d }}$	≤ 30	$\left(6^{-}\right)$
$5.14{ }^{\text {b, d }}$			11.66	170 ± 40	
$5.23{ }^{\text {b }}$			$11.81{ }^{\text {d }}$	≤ 20	$\left(7^{-}\right)$
$5.73{ }^{\text {d }}$	<20	doublet $4^{-}, 5^{+}$	$12.27{ }^{\text {b }}$	≈ 100	
6.17	<20	4^{-}	$12.46{ }^{\text {b, d }}$	90 ± 30	
6.44	260 ± 50		12.61	100 ± 30	
$6.60{ }^{\text {c }}$	<20		12.95	170 ± 30	
$6.82{ }^{\text {b }}$	<20		13.35	60 ± 30	
$7.57{ }^{\text {b }}$	<20		$13.65{ }^{\text {c }}$	45 ± 30	
$7.64{ }^{\text {b }}$	<20		$14.41{ }^{\text {a }}$	≈ 100	
$7.68{ }^{\text {b }}$	<20	unresolved $4^{-}, 5^{-}$ $4^{-}, 5^{-}$			

${ }^{\text {a }}$ (1986AN30) $E_{\mathrm{d}}=118 \mathrm{MeV}$; DWBA analysis.
${ }^{\mathrm{b}}$ Data available at less than four angles.
${ }^{c}$ Angular distributions over limited angular range.
${ }^{\text {d }}$ State is observed strongly in ${ }^{13} \mathrm{C}\left({ }^{6} \mathrm{Li},{ }^{3} \mathrm{He}\right){ }^{16} \mathrm{~N}$ (1977MA1B).

Table 16.8: States of ${ }^{16} \mathrm{~N}$ from ${ }^{14} \mathrm{C}\left({ }^{3} \mathrm{He}, \mathrm{p}\right)^{\text {a }}$

$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})$	$\Gamma(\mathrm{keV})$	$J^{\pi} ; T$	$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})$	$\Gamma(\mathrm{keV})$	$J^{\pi} ; T$
0.121 ± 6		0^{-}	5.724 ± 5		5^{+}
0.298 ± 6		3^{-}	6.168 ± 5		
0.396 ± 7			6.843 ± 5		
3.348 ± 7		1^{+}	7.113 ± 5		
3.517 ± 7		$2^{+},(3)^{+}$	7.570 ± 5		
3.958 ± 7		$(2)^{+}, 3^{+}$	7.636 ± 5		
4.313 ± 9		1^{+}	7.673 ± 5		
4.386 ± 9			8.205 ± 5		
4.768 ± 11			9.760 ± 10	15 ± 8	$T=1$
5.052 ± 9			9.813 ± 10		$T=1$
5.137 ± 9			9.928 ± 7	<12	$0^{+} ; 2$
5.234 ± 9		$(1,2,3)^{+}$	11.701 ± 7	<12	$1^{-}, 2^{+} ; 2$
5.512 ± 5		$(1,2,3)^{+}$			

${ }^{\text {a }}$ For references see Table 16.5 in (1977AJ02).

For reaction (a) see (1971AJ02). Resonances observed in reactions (b, c, d) are displayed in Table 16.5 of (1982AJ01). Total cross sections for reaction (b) have been measured for $0.2 \leq$ $E_{\text {c.m. }} \leq 2.1 \mathrm{MeV}$ (1992BR05).
9. ${ }^{14} \mathrm{C}\left({ }^{3} \mathrm{He}, \mathrm{p}\right){ }^{16} \mathrm{~N} \quad Q_{\mathrm{m}}=4.980$

Proton groups have been observed to ${ }^{16} \mathrm{~N}$ states with $E_{\mathrm{x}}<12 \mathrm{MeV}$ and angular distributions [with $E\left({ }^{3} \mathrm{He}\right) \leq 15 \mathrm{MeV}$] lead to the J^{π} assignments shown in Table 16.8.
10. ${ }^{14} \mathrm{C}(\alpha, \mathrm{d}){ }^{16} \mathrm{~N}$
$Q_{\mathrm{m}}=-13.373$

At $E_{\alpha}=46 \mathrm{MeV}$ the angular distributions of the groups to ${ }^{16} \mathrm{~N}^{*}(0.30,3.96,5.73,7.60)$ have been determined: the most strongly populated state is the $\left(5^{+}\right)$state ${ }^{16} \mathrm{~N}^{*}(5.73)$. See (1971AJ02).
11. ${ }^{14} \mathrm{~N}(\mathrm{t}, \mathrm{p}){ }^{16} \mathrm{~N}$
$Q_{\mathrm{m}}=4.842$

Table 16.9: States in ${ }^{16} \mathrm{~N}$ from ${ }^{14} \mathrm{~N}(\mathrm{t}, \mathrm{p})^{\text {a }}$

$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})$	$\Gamma(\mathrm{keV})$	L	J^{π}
0		3	$2^{-\mathrm{f}}$
0.120 ± 10		1	$0^{-\mathrm{f}}$
0.300 ± 10		3	$3^{-\mathrm{f}}$
$0.399 \pm 10^{\text {b }}$		1	$1^{-\mathrm{f}}$
3.359 ± 10	15 ± 5	0	1^{+f}
3.519 ± 10	$\leq 7 \pm 4$	d	
3.957 ± 10	$\leq 7 \pm 4$	2	3^{+f}
4.318 ± 10	20 ± 5	0	1^{+f}
4.391 ± 10	82 ± 20	1	1^{-f}
$4.725 \pm 10^{\text {c }}$	290 ± 30	1	1^{-}
4.774 ± 10	59 ± 8	2	$2^{-\mathrm{f}}$
5.053 ± 10	19 ± 6	$(1+3)$	2^{-}
5.130 ± 10	$\leq 7 \pm 4$	d	
5.150 ± 10	$\leq 7 \pm 4$		
5.226 ± 10	$\leq 7 \pm 4$	2	$(1,2,3)^{+}$
$5.305 \pm 10^{\text {c }}$	260 ± 30	d	
5.520 ± 10	$\leq 7 \pm 4$	$(0,1)+2+4^{\text {e }}$	
5.730 ± 10	$\leq 7 \pm 4$	$(1,3)+4^{\text {e }}$	
6.009 ± 10	270 ± 30	1	1^{-}
6.167 ± 10	$\leq 7 \pm 4$	(3)	$\left(4^{-}\right)$
6.371 ± 10	30 ± 6	(3)	$\left(3^{-}\right)$
6.422 ± 10	300 ± 30	$0+(2,4)^{\text {e }}$	
6.512 ± 10	34 ± 6	$0+(2,3)$	1^{+}
6.613 ± 10	$\leq 7 \pm 4$	$(2+4)$ or 3	
6.854 ± 10	$\leq 7 \pm 4$	3 or $(2+4)$	
7.006 ± 10	22 ± 5	$0(+2)$	1^{+}
7.133 ± 10	$\leq 7 \pm 4$	$(3,2)$	
7.250 ± 10	17 ± 5	$(2+4)$ or 3	
7.573 ± 10	$\leq 7 \pm 4$	3 or $(2+4)$	3, 4^{-}
7.640 ± 10	$\leq 7 \pm 4$	4	$(3,4,5)^{+}$
7.675 ± 10	$\leq 7 \pm 4$	$(1+4)$	

Table 16.9: States in ${ }^{16} \mathrm{~N}$ from ${ }^{14} \mathrm{~N}(\mathrm{t}, \mathrm{p}){ }^{\text {a }}$ (continued)

$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})$	$\Gamma(\mathrm{keV})$	L	J^{π}
7.876 ± 10	100 ± 15	$1+4^{\mathrm{e}}$	
8.043 ± 10	85 ± 15	$(2+4)$ or 3	
8.183 ± 10	28 ± 8	$2(+4)$	$(3,2)^{+}$
8.280 ± 10	24 ± 8	(1)	$\left((0,1,2)^{-}\right)$
8.361 ± 10	18 ± 8	$(1+4)^{\mathrm{e}}$	

[^2]Observed proton groups are displayed in Table 16.9. See also (1986AJ04).
12. ${ }^{15} \mathrm{~N}(\mathrm{n}, \gamma){ }^{16} \mathrm{~N}$
$Q_{\mathrm{m}}=2.490$

The thermal cross section is $24 \pm 8 \mu \mathrm{~b}$: see (1981MUZQ).
13. ${ }^{15} \mathrm{~N}(\mathrm{n}, \mathrm{n}){ }^{15} \mathrm{~N}$
$E_{\mathrm{b}}=2.490$

The scattering amplitude (bound) $a=6.44 \pm 0.03 \mathrm{fm}, \sigma_{\text {free }}=4.59 \pm 0.05 \mathrm{~b}, \sigma_{\text {inc }}^{\text {spin }}$ (bound nucleus) $<1 \mathrm{mb}$ (1979KO26). The total cross section has been measured for $E_{\mathrm{n}}=0.4$ to 32 MeV : see (1977AJ02, 1981MUZQ). Observed resonances are displayed in Table 16.10. See also (1986AJ04, 1988MCZT, 1989FU1J).
14. ${ }^{15} \mathrm{~N}(\mathrm{n}, \mathrm{p}){ }^{15} \mathrm{C}$

$$
Q_{\mathrm{m}}=-8.99
$$

The activation cross section was measured for neutron energies between 14.6 and 15.0 MeV (1986RO1C).

Table 16.10: Resonances in ${ }^{15} \mathrm{~N}(\mathrm{n}, \mathrm{n})^{15} \mathrm{~N}^{\mathrm{a}, \mathrm{b}}$

$E_{\mathrm{n}}(\mathrm{MeV} \pm \mathrm{keV})$	$\Gamma_{\text {lab }}(\mathrm{keV})$	$E_{\mathrm{x}}(\mathrm{MeV})$	J^{π}
0.921	14	3.354	1^{+c}
1.095	3	3.517	1
1.563	≤ 2	3.955	1
1.944	29	4.312	1^{+d}
2.038	56	4.400	$1^{-\mathrm{d}}$
$2.30 \pm 70{ }^{\text {e }}$	$410 \pm 100^{\text {e }}$	4.65	$1^{-\mathrm{d}}$
2.399	107	4.738	2^{+d}
2.732	35	5.050	1^{-}
2.830	12	5.142	$3^{(-)}$
$2.84 \pm 70^{\mathrm{f}}$	$70 \pm 100^{\text {f }}$	5.15	$2^{-\mathrm{d}}$
2.915	4	5.222	≥ 2
2.93	260	5.24	1^{+}
3.225		5.512	
3.454	24	5.727	1^{+}
3.69	297	5.95	1^{-}
3.987	88	6.226	$\left(1^{+}\right)$
4.126	78	6.356	$\left(3^{-}\right)$
4.252	113	6.474	$\left(2^{+}\right)$
4.64	> 150	6.84	≥ 2
4.80	37	6.99	≥ 1
5.055	25	7.227	≥ 2
5.43	30	7.58	≥ 3
5.56		7.70	
5.73	165	7.86	≥ 4
5.90		8.02	
6.28		8.37	≥ 1
6.42		8.51	≥ 1
6.65	45	8.72	≥ 1
6.76		8.82	
7.10	110	9.14	≥ 2
7.31		9.34	

Table 16.10: Resonances in ${ }^{15} \mathrm{~N}(\mathrm{n}, \mathrm{n})^{15} \mathrm{~N}^{\mathrm{a}, \mathrm{b}}$ (continued)

$E_{\mathrm{n}}(\mathrm{MeV} \pm \mathrm{keV})$	$\Gamma_{\text {lab }}(\mathrm{keV})$	$E_{\mathrm{x}}(\mathrm{MeV})$	J^{π}
7.44	105	9.46	≥ 2
7.71	150	9.71	≥ 2
8.07	30	10.05	≥ 3
8.30	175	10.27	≥ 2
8.77	130	10.71	≥ 2
9.61		11.49	≥ 3
9.77		11.64	≥ 3
10.25		12.09	
10.64		12.46	
11.09		12.88	
11.41		13.12	
12.10		13.83	

${ }^{\text {a }}$ For references see Table 16.7 in (1977AJ02).
${ }^{\mathrm{b}}$ Below $E_{\mathrm{n}}=4.5 \mathrm{MeV}$, the multilevel R-matrix formalism was used to determine $E_{\lambda}, \Gamma_{\lambda}$ and whenever possible J^{π} by a χ^{2} fitting and minimization technique. Above this energy the $2 J+1$ dependence was used; the parity cannot be determined because no marked interference effects are observed between resonance and potential scattering. Above 5.65 MeV all J-values are lower limits because the inelastic channel is open. [A channel radius $a=4.69 \mathrm{fm}$ was used.]
${ }^{\text {c }}$ Parity determined from angular distribution.
${ }^{\text {d }} J^{\pi}$ also obtained by phase-shift analysis.
e The phase-shift analysis indicates that the resonance is at $E_{\mathrm{n}}=2.42 \pm 0.08 \mathrm{MeV}$ with $\Gamma=250 \pm 50 \mathrm{keV}$. This is one of two $\left(\mathrm{d}_{3 / 2} \mathrm{p}_{1 / 2}^{-1}\right)$ single-particle resonances.
${ }^{\mathrm{f}}$ The phase-shift analysis finds $E_{\lambda}=2.94 \pm 0.1 \mathrm{MeV}, \Gamma=320 \pm 80 \mathrm{keV}$. This is the other $\left(\mathrm{d}_{3 / 2} \mathrm{p}_{1 / 2}^{-1}\right)$ single-particle resonance.
15. ${ }^{15} \mathrm{~N}\left(\mathrm{p}, \pi^{+}\right){ }^{16} \mathrm{~N}$

$$
Q_{\mathrm{m}}=-137.8595
$$

This reaction was studied with 200 MeV protons for $E_{\mathrm{x}} \leq 30 \mathrm{MeV}$ (1987AZZZ). A strong transition to a state with $J^{\pi}=5^{+}$was observed at $E_{\mathrm{x}}=5.7 \mathrm{MeV}$. Strong states were also observed at $E_{\mathrm{x}}=14.2$ and 16.1 MeV with cross sections falling sharply with angle.
16. ${ }^{15} \mathrm{~N}(\mathrm{~d}, \mathrm{p}){ }^{16} \mathrm{~N}$
$Q_{\mathrm{m}}=0.266$

Levels derived from observed proton groups and γ-rays are shown in Table 16.11. Gamma transitions are shown in the inset of fig. 2. The very strong evidence for $J^{\pi}=2^{-}, 0^{-}, 3^{-}$and 1^{-}, respectively for ${ }^{16} \mathrm{~N}^{*}(0,0.12,0.30,0.40)$ is reviewed in (1971AJ02). These states provide a probe of the residual interaction relating the 1 p and 2 s 1 d shells. See (1984BI03) for a comparison of experiment and theory for M1 observables. See also (1986AJ04, 1986ME1A, 1988VI1A).
17. ${ }^{16} \mathrm{C}\left(\beta^{-}\right){ }^{16} \mathrm{~N} \quad Q_{\mathrm{m}}=8.012$

See ${ }^{16} C$.

Partial μ^{-}-capture rates have been observed to ${ }^{16} \mathrm{~N}^{*}(0.12,0.40)\left[J^{\pi}=0^{-}, 1^{-}\right]$(1979GU06). The rate for capture by the $J^{\pi}=0^{-}$state ["best" value: $\lambda_{\mu}=1560 \pm 94 \mathrm{sec}^{-1}$ (1985HE08)] and the "reverse" reaction ${ }^{16} \mathrm{~N}^{*}\left(0^{-}\right) \xrightarrow{\beta}{ }^{16} \mathrm{O}\left(0^{+}\right)$[see Reaction 1] were the first reactions which verify the prediction (1978GU05, 1978GU07, 1978KU1A) of a large meson-exchange contribution to the weak, rank-zero axial charge. See ${ }^{16}$ N, Reaction 1 and (1981TO16, 1986NO04, 1990HA35, 1992WA1L). See also the measurement reported in (1990BL1H) and the calculation of (1990CH13).
19. ${ }^{16} \mathrm{O}\left(\gamma, \pi^{+}\right){ }^{16} \mathrm{~N} \quad Q_{\mathrm{m}}=-149.986$

Pion spectra have been obtained with virtual photons in the energy range $E_{\gamma}=200-350 \mathrm{MeV}$ (1987JE02). Cross sections corresponding to the population of the four lowest states of ${ }^{16} \mathrm{~N}$ (unresolved) were measured. Angular distributions were measured (1987YA02, 1987YA1D) at a photon energy of 320 MeV and the results compared to DWIA calculations. Measurements at $E_{\mathrm{e}}=200 \mathrm{MeV}$ and $E_{\pi^{+}}=30 \mathrm{MeV}$ are cited in (1986AJ04).
20. ${ }^{16} \mathrm{O}(\mathrm{n}, \mathrm{p}){ }^{16} \mathrm{~N}$

$$
Q_{\mathrm{m}}=-9.637
$$

At $E_{\mathrm{n}}=59.6 \mathrm{MeV}$ differential cross sections for the protons to the first four states of ${ }^{16} \mathrm{~N}$ (unresolved) and to ${ }^{16} \mathrm{~N}^{*}(6.2,7.8)$ have been analyzed by DWBA. Comparisons are made with results from the ${ }^{16} \mathrm{O}(\gamma, \mathrm{n})$ and ${ }^{16} \mathrm{~N}\left(\mathrm{p}, \gamma_{0}\right)$ reactions in the GDR region of ${ }^{16} \mathrm{O}$ (1982NE04, 1984BR03). See also (1983SCZR, 1988NO1B, 1989BOYV). Other (n, p)-like charge exchange reactions are reviewed in (1989GA26), and data on $\left({ }^{16} \mathrm{O},{ }^{16} \mathrm{~N}\right)$ is presented in (1988HE1I).

Table 16.11: Levels of ${ }^{16} \mathrm{~N}$ from ${ }^{15} \mathrm{~N}(\mathrm{~d}, \mathrm{p})$ and ${ }^{18} \mathrm{O}(\mathrm{d}, \alpha){ }^{\text {a }}$

$E_{\mathrm{x}}{ }^{\text {b }}(\mathrm{MeV} \pm \mathrm{keV})$	$l_{\text {n }}{ }^{\text {b }}$	$E_{\mathrm{x}}{ }^{\text {c }}(\mathrm{MeV} \pm \mathrm{keV})$	J^{π} a
0		0	2^{-}
$0.1201 \pm 0.5^{\text {d }}$		0.119 ± 15	0^{-}
$0.2962 \pm 1.0{ }^{\text {e }}$		0.301 ± 15	3^{-}
$0.3973 \pm 1.0{ }^{\text {e }}$		0.400 ± 15	1^{-}
3.365 ± 10		3.358 ± 15	1^{-}
3.523 ± 10	2 or $1+3$	3.524 ± 15	2^{+}
3.964 ± 10	3	3.964 ± 15	3^{+h}
4.325 ± 10	1	4.324 ± 15	1^{+}
4.40	0	4.383 ± 15	$(0,1)^{-}$
4.715 ± 10	1		$(1,2,3)^{+}$
4.780 ± 10		4.787 ± 15	
(4.90 ± 10)			
5.032 ± 10	2	5.065 ± 15	2^{-}
5.128 ± 10	≥ 2		≥ 2
		5.139 ± 15	
5.150 ± 10	2		$(2,3)^{-}$
5.231 ± 10	3	5.240 ± 15	3^{+}
5.310 ± 10			
5.523 ± 10	3	5.528 ± 15	3^{+}
5.739 ± 10	2	5.740 ± 15	$(1,2)^{\text {i }}$
		6.01 ± 15	
6.170 ± 10	≥ 3	6.168 ± 15	$4^{-\mathrm{h}}$
(6.28 ± 10)	1		$(0,1,2)^{+}$
6.376 ± 10	2	6.37 ± 15	$(1,2,3)^{-}$
6.431 ± 10			
6.514 ± 10	1	6.512 ± 15	$(0,1,2)^{+}$
6.609 ± 10		6.620 ± 15	
(6.79 ± 10)			
6.847 ± 10		6.852 ± 15	
7.034 ± 10		7.01 ± 15	
7.135 ± 10		7.141 ± 15	

Table 16.11: Levels of ${ }^{16} \mathrm{~N}$ from ${ }^{15} \mathrm{~N}(\mathrm{~d}, \mathrm{p})$ and ${ }^{18} \mathrm{O}(\mathrm{d}, \alpha){ }^{\text {a (continued) }}$

$E_{\mathrm{x}}{ }^{\mathrm{b}}(\mathrm{MeV} \pm \mathrm{keV})$	$l_{\mathrm{n}}{ }^{\text {b }}$	$E_{\mathrm{x}}{ }^{\text {c }}(\mathrm{MeV} \pm \mathrm{keV})$	J^{π} a
7.250 ± 10		7.247 ± 15	
7.577 ± 10		7.596 ± 15	
7.638 ± 10		7.64 ± 15	
7.676 ± 10		7.683 ± 15	
7.840 ± 10		7.88 ± 15	
		8.06 ± 15	
		8.18 ± 15	
		8.286 ± 15	
		8.374 ± 15	
		$8.49 \pm 30^{\mathrm{f}}$	
		$8.819 \pm 15^{\mathrm{g}}$	
		9.035 ± 15	
		(9.16 $\pm 30)$	
		(9.34 $\pm 30)$	
		9.459 ± 15	
		(9.66 ± 40)	
		$9.794 \pm 15^{\mathrm{g}}$	
		9.90 ± 30	
		$10.055 \pm 15^{\mathrm{g}}$	
		(10.17 ± 30)	
		(10.26 ± 30)	

${ }^{\text {a }}$ For the earlier references and additional information see Table 16.9 in (1982AJ01).
b ${ }^{15} \mathrm{~N}(\mathrm{~d}, \mathrm{p}){ }^{16} \mathrm{~N}$.
${ }^{c}{ }^{18} \mathrm{O}(\mathrm{d}, \alpha){ }^{16} \mathrm{~N}$.
${ }^{\mathrm{d}} \tau_{\mathrm{m}}=7.58 \pm 0.09 \mu \mathrm{sec}$.
${ }^{\mathrm{e}} \tau_{\mathrm{m}}=131.7 \pm 1.9$ and 5.63 ± 0.05 psec, respectively, for ${ }^{16} \mathrm{~N}^{*}(0.30,0.40) ;|g|=0.532 \pm 0.020$ for ${ }^{16} \mathrm{~N}^{*}(0.30)$ (1984BI03).
${ }^{\mathrm{f}} \Gamma$ for this level and the ones listed below $\leq 40-50 \mathrm{keV}$.
${ }^{\mathrm{g}}$ These levels appear to be correlated with thresholds for neutron emission to excited states of ${ }^{15} \mathrm{~N}$.
${ }^{\mathrm{h}}$ (1982MA25): $E_{\mathrm{d}}=52 \mathrm{MeV}$.
${ }^{\text {i }}$ A closely spaced doublet appears to be present. At least one of the states has unnatural parity.
21. ${ }^{16} \mathrm{O}\left(\mathrm{t},{ }^{3} \mathrm{He}\right){ }^{16} \mathrm{~N}$
$Q_{\mathrm{m}}=-10.400$

At $E_{\mathrm{t}}=23.5 \mathrm{MeV}{ }^{16} \mathrm{~N}^{*}(0,0.30)\left[J^{\pi}=2^{-}, 3^{-}\right]$are strongly populated relative to ${ }^{16} \mathrm{~N}^{*}(0.12$, $0.40)\left[J^{\pi}=0^{-}, 1^{-}\right]$: see (1982AJ01). See also (1988CL04).
22. ${ }^{16} \mathrm{O}\left({ }^{7} \mathrm{Li},{ }^{7} \mathrm{Be}\right){ }^{16} \mathrm{~N} \quad Q_{\mathrm{m}}=-11.280$

Measurements at $E\left({ }^{7} \mathrm{Li}\right)=50 \mathrm{MeV}$ to ${ }^{16} \mathrm{~N}^{*}(0,0.12,0.30,0.40,3.35,3.52,3.96,5.52,5.73$, 6.17) are reviewed in (1986AJ04). A microscopic DWBA Coupled-Channels analysis of data at $E\left({ }^{7} \mathrm{Li}\right)=50 \mathrm{MeV}$ is reported in (1986CL03). See also the review of charge-exchange reactions with ${ }^{7} \mathrm{Li}$ ions in (1989GA26).
23. ${ }^{17} \mathrm{O}(\gamma, \mathrm{p}){ }^{16} \mathrm{~N}$
$Q_{\mathrm{m}}=-13.780$

Bremsstrahlung-weighted integrated cross sections have been measured (1989OR07). About 90% of the photoproton emission populates the ground state $\left(2^{-}\right)$and the $0.298 \mathrm{MeV}\left(3^{-}\right)$levels. The $0.120 \mathrm{MeV}\left(0^{-}\right)$and $0.397 \mathrm{MeV}\left(1^{-}\right)$levels are also populated. See also (1986OR1A). Measurements with quasimonoenergetic photons at $E_{\gamma}=13.50-43.15 \mathrm{MeV}$ were carried out by (1992ZU01) to study the GDR in ${ }^{17} \mathrm{O}$.
24. ${ }^{17} \mathrm{O}\left(\mathrm{d},{ }^{3} \mathrm{He}\right){ }^{16} \mathrm{~N} \quad Q_{\mathrm{m}}=-8.286$

See Table 16.10 in (1982AJ01).
25. ${ }^{18} \mathrm{O}\left(\pi^{+}, 2 \mathrm{p}\right){ }^{16} \mathrm{~N} \quad Q_{\mathrm{m}}=118.526$

Coincidence measurements for $E_{\pi}=116 \mathrm{MeV}, \theta_{\mathrm{p}_{1}}=50^{\circ}, \theta_{\mathrm{p}_{2}}$ variable have been reported by (1986SC28, 1986SCZX). Transitions to the unresolved cluster of 4 states below 0.4 MeV excitation were observed to account for $6.1 \pm 0.6 \%$ of the estimated two-nucleon absorption cross section below 20 MeV excitation. The results were compared with a model of pion absorption on quasi-deuteron pairs.
26. ${ }^{18} \mathrm{O}\left(\mathrm{p},{ }^{3} \mathrm{He}\right){ }^{16} \mathrm{~N}$
$Q_{\mathrm{m}}=-14.106$

At $E_{\mathrm{p}}=43 \mathrm{MeV}$, the angular distribution of the ${ }^{3} \mathrm{He}$ nuclei corresponding to a state at $E_{\mathrm{x}}=$ 9.9 MeV fixes $L=0$ and therefore $J^{\pi}=0^{+}$for ${ }^{16} \mathrm{~N}^{*}(9.9)$: it is presumably the $T=2$ analog of the ground state of ${ }^{16}$ C. See (1982AJ01, 1986AJ04). See also (1985BLZY).
27. ${ }^{18} \mathrm{O}(\mathrm{d}, \alpha){ }^{16} \mathrm{~N}$

$$
Q_{\mathrm{m}}=4.248
$$

Alpha particle groups observed in this reaction are displayed in Table 16.11. For polarization studies see (1982AJ01) and ${ }^{20} \mathrm{~F}$ in (1983AJ01, 1987AJ02). τ_{m} for ${ }^{16} \mathrm{~N}^{*}(0.40)=6.5 \pm 0.5 \mathrm{psec}$ and $|g|=1.83 \pm 0.13$: see (1982AJ01).
28. ${ }^{19} \mathrm{~F}(\mathrm{n}, \alpha){ }^{16} \mathrm{~N}$

$$
Q_{\mathrm{m}}=-1.522
$$

See (1982AJ01) and ${ }^{20} \mathrm{~F}$ in (1983AJ01).

${ }^{16} \mathrm{O}$

(Figs. 3 and 5)

GENERAL: See Table 16.12.

$$
\left\langle r^{2}\right\rangle^{1 / 2}=2.710 \pm 0.015 \mathrm{fm}(1978 \mathrm{KI} 01)
$$

$$
\text { Abundance }=(99.762 \pm 0.015) \%(1984 D E 53)
$$

$$
|\mathrm{g}|=0.556 \pm 0.004 \text { (1984AS03) }
$$

1. ${ }^{9} \mathrm{Be}\left({ }^{9} \mathrm{Be}, 2 \mathrm{n}\right){ }^{16} \mathrm{O}$
$Q_{\mathrm{m}}=11.289$

Total reaction cross sections and characteristic γ-ray cross sections for ${ }^{9} \mathrm{Be}+{ }^{9} \mathrm{Be}$ were measured for $E_{\text {c.m. }}=1.4-3.4 \mathrm{MeV}$ (1988LA25). Gamma rays were observed from levels at $6.13\left(3^{-}\right)$, $6.917\left(2^{+}\right)$, and $7.1117\left(1^{-}\right) \mathrm{MeV}$ populated by the ${ }^{9} \mathrm{Be}\left({ }^{9} \mathrm{Be}, 2 \mathrm{n}\right)^{16} \mathrm{O}$ reaction. Cross sections calculated with optical models agreed with elastic scattering data, but the total reaction cross section was underpredicted by a factor of 2 to 3 .
2. ${ }^{9} \mathrm{Be}\left({ }^{11} \mathrm{~B},{ }^{16} \mathrm{O}\right){ }^{4} \mathrm{H} \quad Q_{\mathrm{m}}=33.834$

Energy spectra of the ${ }^{16} \mathrm{O}$ nuclei were measured (1986BE35) for incident ${ }^{11} \mathrm{~B}$ energies of 88 MeV to obtain information on the ${ }^{4} \mathrm{He}$ system.
3. ${ }^{9} \mathrm{Be}\left({ }^{14} \mathrm{C},{ }^{7} \mathrm{He}\right){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=-7.006$

This reaction was studied by (1988BEYJ).
4. (a) ${ }^{10} \mathrm{~B}\left({ }^{6} \mathrm{Li}, \gamma\right){ }^{16} \mathrm{O}$
$Q_{\mathrm{m}}=30.8734$
(b) $\left.{ }^{10} \mathrm{~B}\left({ }^{6} \mathrm{Li} p\right)\right)^{15} \mathrm{~N}$
$Q_{\mathrm{m}}=18.7459$
$E_{\mathrm{b}}=30.8734$
(c) ${ }^{10} \mathrm{~B}\left({ }^{6} \mathrm{Li}, \mathrm{d}\right){ }^{14} \mathrm{~N}$
$Q_{\mathrm{m}}=10.1371$
(d) ${ }^{10} \mathrm{~B}\left({ }^{6} \mathrm{Li}, \mathrm{t}\right){ }^{13} \mathrm{~N}$
$Q_{\mathrm{m}}=5.8410$
(e) ${ }^{10} \mathrm{~B}\left({ }^{6} \mathrm{Li},{ }^{3} \mathrm{He}\right){ }^{13} \mathrm{C}$
$Q_{\mathrm{m}}=8.0800$
(f) ${ }^{10} \mathrm{~B}\left({ }^{6} \mathrm{Li}, \alpha\right)^{12} \mathrm{C}$
$Q_{\mathrm{m}}=23.7115$
(g) ${ }^{10} \mathrm{~B}\left({ }^{6} \mathrm{Li},{ }^{6} \mathrm{Li}\right){ }^{10} \mathrm{~B}$
$Q_{\mathrm{m}}=-5.975$

Figure 3: Energy levels of ${ }^{16} \mathrm{O}$. For notation see Fig. 2.

Table 16.12: ${ }^{16} \mathrm{O}$ - General

Reference Description

Shell Model

Review:

1987KI1C Microscopic studies of electric dipole resonances in 1p shell nuclei
Other Articles:
1986DE1E Gamow-Teller strength from spin-isospin saturated nuclei (A)
1986FU1B Relativistic shell model calculations
1986HA26 Shell model analysis of Σ-hypernuclear spectra for $A=12 \& 16$
1986KL06 Interplay between giant res. \& background - investigated with continuum shell model
1986LE1A Extended basis shell-model calculations for three-nucleon transfer (A)
1986YE1A Hartree-Fock calculations with extended Skyrme forces for ${ }^{16} \mathrm{O}$ and ${ }^{40} \mathrm{Ca}$
1987AV08 Neutron and proton hole states in double magic nuclei
1987MA30 Contrib. of particle-particle, hole-hole \& particle-hole ring diagrams to binding energies
1987SU12 Nuclear ground-state properties \& nuclear forces in unitary-model-operator approach
1987YA1B Effective shell-model matrix elements calculated for the sd-shell
1988BL02 Quantized TDHF for giant monopole vibrations in ${ }^{16} \mathrm{O},{ }^{40} \mathrm{Ca} \&{ }^{110} \mathrm{Zr}$
1988BL1I Relativistic Hartree-Fock calculations for nuclear matter \& closed-shell nuclei
1988BO10 Temperature-dependent shell effects in ${ }^{16} \mathrm{O} \&{ }^{40} \mathrm{Ca}$ with realistic effective Hamiltonian
1988BO40 Nuclear charge form factor in the topological soliton model
1988FI01 Effective interactions from sd-shell-model calculations
1988GU13 Correlated basis functions computation of spectra of light nuclei
1988HO10 Shell-model calculation with Hartree-Fock condition
1988MI1J Shell model transition densities for electron \& pion scattering
1988WO04 Expansion of the shell-model space for light nuclei
1989GU06 Hartree-Fock \& shell-model charge densities of ${ }^{16,18} \mathrm{O},{ }^{32,34} \mathrm{~S}$; \& ${ }^{40,48} \mathrm{Ca}$
1990HA35 Weak-interaction rates in ${ }^{16} \mathrm{O}$; nonspurious $4 \hbar \omega$ shell model calculation
1990WO09 p-shell nuclei in a $(0+2) \hbar \omega$ model space, Part 1: Method
1990 WO10 1990WO09 continued, Part 2: Results
1991BO02 Meson exchange effects on magnetic dipole moments of p-shell nuclei
1991GM02 Relativistic mean-field fit to microscopic results in nuclear matter
1991 GO12 Method of multiple interactions - realistic NN potential (A)
1991KA09 Non-orthogonality problem in continuum RPA studied by orthogonality condition
1991KN04 RPA calculations of nuclear response in the continuum using a finite-range interaction
1991MA33 Super-RPA ground-state correlations
1991MU04 Effects of correlations on calc. of binding energy \& radii of nuclei
1991 YA08 $\quad \alpha+{ }^{16} \mathrm{O}$ studied with complex effective interact. \& antisymmetrized many-body theory
1991ZH16 Retardation effect in finite nuclei in relativistic mean field theory
1992MI01 Comments on 1990WO09 \& 1990WO10; inconsistency problems
1992WA25 Large-basis shell-model treatment of $A=16$ nuclei

Table 16.12: ${ }^{16} \mathrm{O}$ - General (continued)
Reference Description

Collective, Deformed and Rotational Models
Review:
1987TA1C Microscopic cluster theory in nuclear physics
Other articles:
1986GO16 Deformed excited 0^{+}states of ${ }^{16} \mathrm{O} \&{ }^{40} \mathrm{Ca}$ studied with the Hartree-Fock method
1986LE16 Relativistic Hartree calculations for axially deformed nuclei
1987DE21 Microscopic description of the ${ }^{16} \mathrm{O}$ spectrum in a multiconfiguration cluster model
1987PR03 Self-consistent Hartree descrip. of deformed nuclei in a relativistic quantum field theory
1987RO06 Coupling of valence shell and particle-hole degrees of freedom in a partial RPA
1988ZH07 Many-particle-many-hole deformed state energies from HF with Skyrme interactions
1989BU15 Configurational quasidegeneracy and the liquid drop model
1991AB1C Perturbative calculation of periodic solutions
1991BA1M Symmetry \& surface energy coefficients with an effective interaction (A)
1991DE11 Generalization of Frenkel-Dirac variational principle for systs. outside thermal equilib.
1991KA12 Single-particle states with an excited core in ${ }^{13} \mathrm{~N} \&{ }^{16} \mathrm{O}$
1991KN04 RPA calculations of nuclear response in the continuum using a finite-range interaction
1991 KO18 Relativistic investigation of the spin-orbit field in superdeformed nuclei
1991SH31 Systematics of superdeformation for $8>A>248$
1991ZH05 Relativistic model incorporating vacuum polarization

Cluster and α-particle models
1986CO15 DWBA analysis for ($\left.{ }^{7} \mathrm{Li}, \mathrm{t}\right)$ reactions producing α-cluster states in ${ }^{16} \mathrm{O} \&{ }^{20} \mathrm{Ne}$
1986OR1C Faddeev-Yakubovsky calc. of 4α particle system with realistic alpha-alpha interactions
1986SU13 Unitary-model-operators \& calculation of energies of grnd. \& one-body states
1986SU16 (1986SU13 cont.) Three-body-cluster effects on properties of ${ }^{16} \mathrm{O}$
1987DE21 Microscopic description of the ${ }^{16} \mathrm{O}$ spectrum in a multiconfiguration cluster model
1987OS03 Four-body problem for four bound α particles in ${ }^{16} \mathrm{O}$
1987SU12 Nucl. ground-state properties \& nucl. forces in unitary-model-operator approach to ${ }^{16} \mathrm{O}$
1987ZE05 Microscopic evaluation of clustering in ${ }^{4} \mathrm{He},{ }^{12} \mathrm{C}$ and ${ }^{16} \mathrm{O}$
1988CS01 Core-plus-alpha-particle states of ${ }^{20} \mathrm{Ne}$ and ${ }^{16} \mathrm{O}$ in terms of vibron models
1988KA1Z Systematic construction method of multi-cluster Pauli-allowed states
1988TA1P Measurement of a fragmentation event of a relativistic O nucleus (A)
1989FU1N Three- α potential in 3α and 4α orthogonality condition models
1989 KU31 Effective numbers of d-, t -, ${ }^{3} \mathrm{He}$ - and α-clusters and their distributions (in Russian)
1989SU01 Isoscalar E0 \& E2 strength of ${ }^{16} \mathrm{O}$ in an $\alpha+{ }^{12} \mathrm{C}$ cluster \& symplectic mixed basis
1991BAZW $4-\alpha$ breakup of ${ }^{16} \mathrm{O}$; comparisons with prompt \& sequential mechanisms (A)

Table 16.12: ${ }^{16} \mathrm{O}$ - General (continued)
Reference Description

Cluster and α-particle models - continued
1991CS01 Cluster spectroscopic factor in the vibron model
1991KA12 Single-particle states with an excited core in the nuclei ${ }^{13} \mathrm{~N}$ and ${ }^{16} \mathrm{O}$
1991OR02 4α model calculation for the ${ }^{16} \mathrm{O}$ nucleus by the four-body integral equation

Special States
Reviews:
1985AD1A Parity violation in the nucleon-nucleon interaction
1986HA1E Breaking of isospin symmetry in compound-nucleus reactions
1986VO07 0^{+}states and E0 transitions in even-even nuclides
1987CA1E New spin excitation modes in nuclei
1989SP01 Reduced electric-octupole transition probabilities for even-even nuclides
Other Articles:
1986AN07 Predicted masses and excitation energies in higher isospin multiplets for $9 \leq A \leq 60$
1986AN08 Nucleon momentum \& density distributions in the generator co-ordinate method
1986AY01 Effect of higher states on the ground \& low-lying excited 0^{+}states of ${ }^{16} \mathrm{O} \&{ }^{40} \mathrm{Ca}$
1986BE1F Inelastic scattering to unnatural parity states in light nuclei using elementary probes
1986GO16 Deformed excited 0^{+}states of ${ }^{16} \mathrm{O} \&{ }^{40} \mathrm{Ca}$ studied with the Hartree-Fock method
1986EK1A Highly excited \& high-spin states in ${ }^{16} \mathrm{O}$ populated by $\left({ }^{12} \mathrm{C},{ }^{8} \mathrm{Be}_{\text {g.s. }}\right)$ reaction
1986KL06 Interplay between giant res. \& background - investigated with continuum shell model
1986OR1C Faddeev-Yakubovshy calculation of 4α particle system with realistic $\alpha-\alpha$ interactions
1986RO26 Self-organization in nuclei
1986TOZQ Axial charge transitions in relativistic nucl. models \& nonrelativ. meson exch. currents
1987AV08 Neutron \& proton hole states in doubly magic nuclei
1987BL18 Excited states of light $N=Z$ nuclei with a specific spin-isospin order
1987CO31 Simple parametrization for low energy octupole modes of s-d shell nuclei
1987DE21 Microscopic description of the ${ }^{16} \mathrm{O}$ spectrum in a multiconfiguration cluster model
1987KI1C Microscopic studies of electric dipole resonances in 1p shell nuclei
1987 PR03 Self-consistent Hartree descrip. of deformed nuclei in a relativistic quantum field theory
1987SK02 TDH solution of the Suzuki model of nuclear monopole oscillation
1988AM03 Study of the isoscalar dipole excitation $(7.12 \mathrm{MeV})$ in ${ }^{16} \mathrm{O}$
1988BL10 RPA for light nuclei based on fully relativistic Hartree-Fock calculations
1988BL1I Relativistic Hartree-Fock calculations for nuclear matter \& closed shell nuclei
1988DE22 Search for elusive neutral particles in the $0^{+} \rightarrow 0^{+}$transition at 6.05 MeV in ${ }^{16} \mathrm{O}$
1988GU13 Correlated basis functions calculation of spectra of light nuclei
1988KU18 Nuclear structure of ${ }^{16} \mathrm{O}$ in a mean-field boson approach

Table 16.12: ${ }^{16} \mathrm{O}$ - General (continued)
Reference Description

> Special States - continued

1988MI1J Shell model transition densities for electron \& pion scattering
1988MU20 Reduction of stretched-magnetic-transition strengths by core polarization
1988PR05 Nuclear linear response to electroweak interactions in a relativistic theory for ${ }^{16} \mathrm{O}$
1988RO09 Order out of chaos in atomic nuclei; microscopic calcs. of nucleon-induced rxns.
1989BI1A Search for the emission of a neutral particle in the decay of the first excited state in ${ }^{16} \mathrm{O}$
1989DE22 Addendum to 1988DE22
1989FO1D Cold fusion results still unexplained
1989SU01 Isoscalar E0 \& E2 strength of ${ }^{16} \mathrm{O}$ in an $\alpha+{ }^{12} \mathrm{C}$ cluster \& symplectic mixed basis
1991AB1C Perturbative calculation of periodic solutions of the time-dependent mean-field eqs.
1991DE11 Generalization of Frenkel-Dirac variational principle for systs. outside thermal equilib.
1991KA09 Non-orthogonality problem in continuum RPA studied by orthogonality condition

Electromagnetic Transitions

1984VA06 Shell model treatment of $(0+1) \hbar \omega$ states in $A=4-16$ nuclei
1986HI07 Neutron-proton correlation in energy systematics of E1 \& M2 states
1986TK01 Microscopic calculation of properties of the low-lying M1 resonances in ${ }^{16} \mathrm{O}$
1986VO07 0^{+}states and E0 transitions in even-even nuclides (reviews various models)
1987CA1E New spin excitation modes in nuclei
1987DE21 Microscopic description of the ${ }^{16} \mathrm{O}$ spectrum in a multiconfiguration cluster model
1987RA01 Transition probability from ground to first-excited 2^{+}state of even-even nuclides
1987TO1B Quenching of spin matrix elements in nuclei
1988AD08 Sum rules in extended RPA theories
1988MU20 Reduction of stretched-magnetic-transition strengths by core polarization
1989HAZY Two-photon decay of the $0^{+}(6.05 \mathrm{MeV})$ state in ${ }^{16} \mathrm{O}$ (A)
1989KA28 Microscopic model incorporating 2p-2h configs. in magic nucl.; calc. of M1 excitations
1989LI1G Sum rules \& giant resonances in nuclei
1989RA16 Predictions of B(E2; $\left.0_{1}^{+}-2_{1}^{+}\right)$values for even-even nuclei
1989SU01 Isoscalar E0 and E2 strength of ${ }^{16} \mathrm{O}$ in an $\alpha+{ }^{12} \mathrm{C}$ cluster and symplectic mixed basis
1991LE14 Theoretical evaluation of the Coulomb sum rule in nuclei
1991LI29 Sum rules for nuclear excitations with the Skyrme-Landau interaction

Giant Resonances

1986HI07 Neutron-proton correlation in energy systematics of E1 \& M2 states

Table 16.12: ${ }^{16} \mathrm{O}$ - General (continued)
Reference Description

> Giant Resonances - continued

1986KL06 Interplay between giant res. \& background - investigated with continuum shell model
1987BU06 Alpha decay of giant electric quadrupole resonances
1987KI1C Microscopic studies of electric dipole resonances in 1p shell nuclei
1987QU02 Giant dipole transitions in the nuclear WSp(6, R) Model
1987TH03 Exotic isoscalar dipole resonances in the Walecka model
1988BE24 Simple microscopic approach to the nuclear giant monopole \& quadrupole resonances
1988BL02 Quantized TDHF for giant monopole vibrations
1988CA07 Charge transition densities for excitation \& nucleon decay of the ${ }^{16}$ O GDR
1988CO1G Charge response in ${ }^{12} \mathrm{C} \&{ }^{40} \mathrm{Ca}$; also includes RPA calc. for ${ }^{16} \mathrm{O}$
1988DI07 Scaling- \& antiscal.-type oscillations in isoscalar \& isovector nucl. monopole vibrations
1988DR02 Quantized TDHF for isoscalar giant quadrupole resonances in spherical nuclei
1988HO10 Shell-model + Hartree-Fock condition calc. of excitation energies of giant resnces. in ${ }^{16} \mathrm{O}$
1988LI13 Surface \& temperature effects in isovector giant resonances
1988PA05 Time-depend. Hartree-Fock calc. of escape width of giant monopole resonance in ${ }^{16} \mathrm{O}$
1989LH02 Isoscalar giant resonances in a relativistic model of doubly-closed-shell nuclei
1989LI1G Sum rules \& giant resonances in nuclei
1991BO39 Compressibility of nuclei in relativistic mean field theory
1991 LI28 Self-consistent RPA calc. of giant multipole resncs. using Skyrme-Landau interaction

Astrophysics
Reviews:
1986WO1A The physics of supernova explosions
1990RO1C Radiative capture reactions in nuclear astrophysics
Other Articles:
1986BA50 Coulomb dissociation as a source of information on radiative capture processes
1986LA1C The chemical composition of 30 cool Carbon stars in the galactic disk
1986MA1E Effects of the new ${ }^{12} \mathrm{C}(\alpha, \gamma){ }^{16} \mathrm{O}$ rate on chemical evolution of the solar neighborhood
1986SM1A Chemical composition of red giants: He burning and the s-process in the MS \& S stars
1986TR1C Frequency of occurrence of O-Ne-Mg white dwarfs in classical nova systems
1987AD1A Direct meas. of the charge state of the anomalous O component of cosmic rays (A)
1987AL1B Carbon, nitrogen and oxygen abundances in Procyon, Sun and Arcturus
1987BE1H $\quad{ }^{12} \mathrm{C} /{ }^{13} \mathrm{C} \&{ }^{16} \mathrm{O} /{ }^{18} \mathrm{O}$ ratios in Venus' atmosphere from high-res. $10-\mathrm{mm}$ spectroscopy
1987CU1A Interstellar medium composition der. from anomalous cosmic ray component meas. (A)
1987DO1A ${ }^{12} \mathrm{C} /{ }^{13} \mathrm{C} \&{ }^{16} \mathrm{O} /{ }^{17} \mathrm{O}$ isotopic ratios in seven evolved stars (types MS, S \& SC)
1987DW1A Cosmic-ray elemental abundances from 1 to $10 \mathrm{GeV} / \mathrm{amu}$ for Boron through Nickel

Table 16.12: ${ }^{16} \mathrm{O}$ - General (continued)
Reference Description

Astrophysics - continued
1987FA1C ${ }^{16}$ O excess in hibonites discredits late supernova injection origin of isotopic anomalies
1987HA1C ${ }^{12} \mathrm{C} /{ }^{13} \mathrm{C}$ and ${ }^{16} \mathrm{O} /{ }^{18} \mathrm{O}$ ratios in the solar photosphere
1987HA1D Oxygen istopic abundances in 26 evolved Carbon stars
1987HA1E Search for ${ }^{14} \mathrm{C}^{16} \mathrm{O}$ in the atmospheres of evolved stars - none found
1987LA1C Line shapes and linear polarizations of certain γ-rays emitted from solar flares (A)
1987MC1A Oxygen isotopes in refractory stratospheric dust: proof of extraterrestrial origin
1987ME1B Solar coronal isotopic abundances derived from solar energetic particle meas. (A)
1987PL03 Scattering of α particles from ${ }^{12} \mathrm{C}$ and the ${ }^{12} \mathrm{C}(\alpha, \gamma){ }^{16} \mathrm{O}$ stellar reaction rate
1987PR1A Neutron capture nucleosynthesis during core Helium burning in massive stars
1987RA1D Nuclear processes and accelerated particles in solar flares
1987SA1D Linear polarization of ${ }^{12} \mathrm{C}^{*} \&{ }^{16} \mathrm{O}^{*} \gamma$-rays as particle direction indicators in solar flares
1988AN1D Evolution of Fe, r, and s-elements in our galaxy
1988CL1C Isotopic anomalies: Chemical memory of galactic evolution
1988CUZX Elemental composition of anomalous cosmic-ray component (A)
1988DU1B Spectrophotometry \& chemical composition of the O-poor bipolar nebula NGC 6164-5
1988DU1G Abundances of Carbon \& Nitrogen in I Zw 18 (an Oxygen-poor galaxy)
1988FO1E Nuclear line spectroscopy of solar flares; deduced elemental abundances
1988KA1G Steady state models of white dwarfs accreting Helium or Carbon/Oxygen-rich matter
1988RE1E Bimodal abundances in the energetic particles of solar and interplanetary origin
1989AB1J Oxygen abundances in unevolved metal-poor stars: interpretation \& consequences
1989BE2H Effect of enhanced α-elements in Helium-burning population II stars
1989CH1X Stability analysis of C-N-O nuclear reaction inside stars
1989CU1E Observed radial \& latitudinal gradients of anomalous cosmic ray Oxygen (A)
1989FU02 Reaction cross section for "solar flare neutrinos" with ${ }^{37} \mathrm{Cl}$ and ${ }^{16} \mathrm{O}$ targets
1989GU06 Hartree-Fock \& shell-model charge densities of ${ }^{16,18} \mathrm{O},{ }^{32,34} \mathrm{~S}$ and ${ }^{40,48} \mathrm{Ca}$
1989GU28 Thermonuclear breakup reactions of light nuclei. I. Processes \& effects
1989GU1J (cont. from 1989GU28) Part II. Gamma-ray line production \& other applications
1989GU1Q Abundances of light nuclei at the cosmic-ray source from fragmentation cross sections
1989JI1A Nucleosynthesis inside thick accretion disks around massive black holes
1989LI1I Anthropic significance of the existence of an excited state of ${ }^{12} \mathrm{C}$
1989ME1C Isotope abundances of solar coronal material derived from solar energetic particle meas.
1989SP1G Oxygen and Carbon abundances in a few F supergiants of the small Magellanic cloud
1989TA26 Microscopic calc. of rates of electron capture which induce collapse of $\mathrm{O}+\mathrm{Ne}+\mathrm{Mg}$ cores
1990AB1E Early nucleosynthesis of O and Fe
1991 AL02 $\mathrm{N}-\overline{\mathrm{N}}$ oscillation times estimated from Paris NN̄ potential
1991AN1E $\quad{ }^{26} \mathrm{Al}$ and ${ }^{16} \mathrm{O}$ in the early solar system: clues from meteoritic $\mathrm{Al}_{2} \mathrm{O}_{3}$
1991BE05 Direct projectile break-up \& its relation to the astrophysically relevant fusion reactions

Table 16.12: ${ }^{16} \mathrm{O}$ - General (continued)
Reference Description

> Astrophysics - continued

1991PA1C Extremum problem treatment of C, N \& O abundances in late-type star atmospheres (A)
1991RA1C Carbon burning and galactic enrichment in massive stars

Applications

1986MU1A Analysis of Oxygen on \& in Beryllium using 2 MeV Helium ions (A)
1986ZA1A Passage of Nitrogen and Oxygen ions through Carbon and celluloid films
1987BO16 Analytical possibilities of $3<E<12 \mathrm{MeV}$ Tritium beams \& appl. to analysis of O in InP
1987NA1D Sputtering of Carbon by Oxygen and Neon
1987ZU1A Oxygen isotope effect in high-temperature Oxide superconductors
1988AL1K Analysis of "Desert Rose" (geological sample) using RBS and PIXE techniques
1988BL1H Surface analysis of high Z oxides using $3.05 \mathrm{MeV}{ }^{4} \mathrm{He}-{ }^{16} \mathrm{O}$ backscattering resonance
1988GOZR Non-Rutherford elastic backscattering for light element cross section enhancement (A)
1988ILZZ Light element materials study by Rutherford backscattering spectroscopy (A)
1988RO1L Ion implantation in targets for nuclear physics studies (A)

Complex Reactions

Reviews:
1987MC1B Introduction to quark-gluon plasma and high energy heavy ion collisions (A)
1989GRZQ Cluster radioactivities
Other Articles:
1986AB06 Calculation of mass yields for proton-nucleus spallation reactions
1986AL25 Incomplete \& complete fusion in intermediate energy heavy ion reactions
1986AV1A Search for anomalons \& fragments with fractional charge in ${ }^{16}$ O fragmentation
1986BA1E Multistep fragmentation of heavy ions in peripheral collisions at relativistic energies
1986BO1B Observation of fission of relativistic ${ }^{24} \mathrm{Mg} \&{ }^{28} \mathrm{Si}$ into two fragments of \sim equal charge
1986HA1B Microscopic model of nucleus-nucleus collisions
1986KI1C Apparent anomalously short mean free paths observed in relativistic heavy-ion collis.
1986MA13 Experimental search for nonfusion yield in the heavy residues emitted from ${ }^{11} \mathrm{~B}+{ }^{12} \mathrm{C}$
1986ME06 Quasi-elastic, deep-inelastic, quasi-compound nucleus mechanisms from ${ }^{89} \mathrm{Y}+{ }^{19} \mathrm{~F}$
1986NA1B Correlation of linear momentum \& angular momentum transfer in ${ }^{154} \mathrm{Sm}+{ }^{16} \mathrm{O}$
1986PL02 Element distributions after binary fission of ${ }^{44} \mathrm{Ti}$
1986PO06 Calc. half-lives \& kinetic energies for spontaneous emission of heavy ions from nuclei
1986SA30 Nucleus-nucleus scattering and interaction radii of stable \& unstable nuclei

Table 16.12: ${ }^{16} \mathrm{O}$ - General (continued)
Reference Description

Complex Reactions - continued
1986SC29 Partition of excitation energy in peripheral heavy-ion reactions
1986SHZY Equilibration in orbiting reactions; ${ }^{12} \mathrm{C} \&{ }^{16} \mathrm{O}$ yields from ${ }^{14} \mathrm{~N}+{ }^{28} \mathrm{Si}$ (A)
1986SH1F Measurements of projectile-like fragments produced by ${ }^{27} \mathrm{Al}+{ }^{16} \mathrm{O}$
1986SH25 Equilibration in orbiting reactions; ${ }^{12} \mathrm{C} \&{ }^{16} \mathrm{O}$ yields from ${ }^{14} \mathrm{~N}+{ }^{28} \mathrm{Si}$
1986SO10 Particle-bound excited state yields produced in the reaction of $181 \mathrm{MeV}{ }^{19} \mathrm{~F}+{ }^{159} \mathrm{~Tb}$
1986ST13 Microscop. calc. of ener. \& transitional densities of giant monopole resonances in nucl.
1986VA18 Excitation-energy sharing in ${ }^{20} \mathrm{Ne}$ induced reactions
1986VA23 Peripheral reactions induced by ${ }^{20} \mathrm{Ne}$ at 11 and $15 \mathrm{MeV} /$ nucleon
1987AN1C Fast frags. of target in interactions of relativistic nuclei with nuclei of nucl. emulsion
1987BA02 Energy spectra of fragments calculated using statistical multifragmentation model
1987BA1T Spin-isospin excitations in nuclei with relativistic heavy ions
1987BA31 Isotope distribution in nuclear multifragmentation
1987BA38 Systematics of the ${ }^{14} \mathrm{~N}+{ }^{159} \mathrm{~Tb}$ reaction between 6 and $33 \mathrm{MeV} / \mathrm{u}$ Part I. Inclusive Data
1987BE58 Target fragmentation at ultrarelativistic energies using oxygen beams
1987BO1K Collectivity in composite fragment emission from relativistic heavy ion collisions
1987BO23 Intermediate-mass fragments from nonbinary processes in ${ }^{14} \mathrm{~N}+\mathrm{Ag}$ at $E / A=35 \mathrm{MeV}$
1987BU07 Projectile-like fragments from ${ }^{20} \mathrm{Ne}+{ }^{197} \mathrm{Au}$ - counting simultaneously emitted neutrons
1987DEZV ${ }^{16} \mathrm{O}$ breakup in the ${ }^{27} \mathrm{Al}+{ }^{16} \mathrm{O}$ interaction at 96 MeV (A)
1987FA09 Source properties of intermediate-mass frags. emitted in ${ }^{14} \mathrm{~N}+{ }^{232} \mathrm{Th}$ at $E / A=35 \mathrm{MeV}$
1987FE1A Study of deep inelastic collisions in ${ }^{12} \mathrm{C}+{ }^{27} \mathrm{Al}$ at 61.8 MeV
$1987 \mathrm{GE} 1 \mathrm{~A} \quad$ Charges \& angular distributions of fast fragments produced in $3.2-\mathrm{TeV}{ }^{16} \mathrm{O}+\mathrm{Pb}$
1987GO1E Photon and charged particle spectra in ${ }^{16} \mathrm{O}+\mathrm{W}$ at $200 \mathrm{GeV} /$ nucleon (A)
1987JA1B Model of transverse energy production in high energy nucleus-nucleus collisions
1987 KO 15 Intermediate mass fragments in ${ }^{6} \mathrm{Li}+{ }^{46} \mathrm{Ti}$ at $E / A=26 \mathrm{MeV}$
1987LI04 Multistep effects in ${ }^{17} \mathrm{O}+{ }^{208} \mathrm{~Pb}$ near the Coulomb barrier
1987LY04 Fragmentation \& the emission of particle stable and unstable complex nuclei
1987MA1B Peripheral like interaction model of spectator residue with central fireball
1987MI1B Projectile fragmentation of ${ }^{16} \mathrm{O}$ at medium energies (A)
1987MU03 Study of the emission of clusters by excited compound nuclei
1987NA01 Linear momentum \& angular momentum transfer in ${ }^{154} \mathrm{Sm}+{ }^{16} \mathrm{O}$
1987PA01 Complete \& incomplete fusion in ${ }^{20} \mathrm{Ne}+{ }^{93} \mathrm{Nb}$
1987PA1D Recoil accelerator mass spectrometry of nuclear reaction products
1987 RI03 Isotopic distributions of fragments from ${ }^{40} \mathrm{Ar}+{ }^{68} \mathrm{Zn}$ at $E=27.6 \mathrm{MeV} / \mathrm{u}$
1987RO10 Projectile fragmentation in heavy-ion reactions at intermediate energies
1987SH23 Dissipative phenomena and α-particle emission in ${ }^{16} \mathrm{O}+{ }^{27} \mathrm{Al}$ between 46 and 85 MeV
1987SU07 Correlated fluctuations in the ${ }^{89} \mathrm{Y}\left({ }^{19} \mathrm{~F}, \mathrm{x}\right) \mathrm{y}$ excitation functions
1987 VI14 Mechanisms of momentum \& energy transfer in intermediate-energy collisions

Table 16.12: ${ }^{16} \mathrm{O}$ - General (continued)
Reference Description

Complex Reactions - continued

1988AN1C	Multiple angular scattering of ${ }^{16,17} \mathrm{O},{ }^{40} \mathrm{Ar},{ }^{86} \mathrm{Kr}$ and ${ }^{100} \mathrm{Mo}$ at $20-90 \mathrm{MeV} / \mathrm{u}$
1988AR1D	Interactions of $60 \& 200 ~ A \mathrm{GeV}^{16} \mathrm{O}$ ions in nuclear emulsion
1988AY03	Transport description for capture processes in nuclear collisions
1988BO13	Deeply inelastic collisions as a source of intermediate mass fragments at $E / A=27 \mathrm{MeV}$
1988BR1N	Fragmentation cross sections of ${ }^{16} \mathrm{O}$ at $60 \& 200 \mathrm{GeV} /$ nucleon
1988CA27	Experimental indications of selective excitations in dissipative heavy ion collisions
1988FE1A	Meas. $\mathrm{C}, \mathrm{O}, \& \mathrm{Fe}$ charge changing σ in $\mathrm{He} \& \mathrm{H}$ at high E; appl. to cosmic-ray propag.
1988GA11	Neutron pickup \& 4-body processes in reactions of ${ }^{16} \mathrm{O}+{ }^{197} \mathrm{Au}$ at $26.5 \& 32.5 \mathrm{MeV} / \mathrm{u}$
1988GA12	Stripping- \& pickup-induced breakup in 11-\& $17-\mathrm{MeV} / \mathrm{u}{ }^{20} \mathrm{Ne}+{ }^{197} \mathrm{Au}$ reactions
1988GO11	Emissions of complex frags. \& effective temps. for collisions of ${ }^{58} \mathrm{Ni}+{ }^{58} \mathrm{Ni}$ at 11 MeV
1988HA03	Spin dependence of neutron transfer in heavy ion reactions
1988KH1B	Excit--decay vs. fragment production for ${ }^{12} \mathrm{C}\left({ }^{16} \mathrm{O},{ }^{15} \mathrm{~N}+\mathrm{p}\right) ; E=1.05 \& 2.1 \mathrm{~A} \mathrm{GeV}$ (A)
1988MI28	Multifragmentation as a possible signature of liquid-gas phase transitions
1988MO05	Dynamical model for projectile break-up \& incomplete fusion in ${ }^{20} \mathrm{Ne}+{ }^{197} \mathrm{Au}$
1988POZZ	Multifragmentation of the projectiles ${ }^{16} \mathrm{O},{ }^{14} \mathrm{~N}$, and ${ }^{12} \mathrm{C}$ at $32.5 \mathrm{MeV} / \mathrm{A}$ (A)
1988SH03	${ }^{28} \mathrm{Si}+{ }^{14} \mathrm{~N}$ orbiting interaction (experimental data) \& importance of phase space
1988SH1H	Coincidence meas. between α-particles \& projectile-like frags. in $82.7 \mathrm{MeV}{ }^{16} \mathrm{O}+{ }^{27} \mathrm{Al}$
1988SI01	Fragmentation of ${ }^{16} \mathrm{O}$ projectiles at $100 \mathrm{MeV} /$ nucleon
1988 TE 03	Incomplete deep-inelastic scattering in ${ }^{20} \mathrm{Ne}+{ }^{197} \mathrm{Au}$ collisions at $20 \mathrm{MeV} /$ nucleon
1988UT02	Quasi-free stripping mechanism of Serber model extended to complex projectiles
1988WI1F	Electromagnetic spallation of $3.2 \mathrm{TeV}{ }^{16} \mathrm{O}$ nuclei (A)
1989AD1B	Production of He projectile fragments in ${ }^{16} \mathrm{O}$-emulsion interactions at $E / A=2-200 \mathrm{GeV}$
1989BR14	Dynam. anal. of deep inelas. interac. in ${ }^{19} \mathrm{~F}+{ }^{24} \mathrm{Mg}$ at $1.3 \mathrm{MeV} / \mathrm{u}$ above Coulomb barrier
1989CA15	Fusion \& binary reactions in the collision of ${ }^{32} \mathrm{~S}$ on ${ }^{26} \mathrm{Mg}$ at $E_{\text {lab }}=163.5 \mathrm{MeV}$
1989FI05	Non-eq. vs. equilibrium complex. frag. emiss.; ${ }^{14} \mathrm{~N}+\mathrm{Ag} \&{ }^{14} \mathrm{~N}+\mathrm{Au}$ at $E / A=20-50 \mathrm{MeV}$
1989GE11	Complex fragments emitted in excited states
1989GR13	Compound nucleus emission of intermediate mass fragments in ${ }^{6} \mathrm{Li}+\mathrm{Ag}$ at 156 MeV
1989MA45	Target excitation \& angular momentum transfer in ${ }^{28} \mathrm{Si}+{ }^{181} \mathrm{Ta}$ from multiplicity meas.
1989PO06	Approach to criticality in the fragmentation of Xe by $1-19 \mathrm{GeV}$ protons
1989PO07	Excitation \& multiple dissociation of ${ }^{16} \mathrm{O},{ }^{14} \mathrm{~N}$, and ${ }^{12} \mathrm{C}$ projectiles at $32.5 \mathrm{MeV} / \mathrm{u}$
1989RE08	Large transient magnetic fields for single electron O ions on a 10 fs time scale ($\mathrm{O}+\mathrm{Gd}$)
1989SA10	Total cross sections of reactions induced by neutron-rich light nuclei
1989TE02	Dissipative mechanisms in the $120 \mathrm{MeV}{ }^{19} \mathrm{~F}+{ }^{64} \mathrm{Ni}$ reaction
1989 YO02	Quasi-elastic \& deep inelastic transfer in ${ }^{16} \mathrm{O}+{ }^{197} \mathrm{Au}$ for $E<10 \mathrm{MeV} / \mathrm{u}$
1989YO09	Energy damping feature in light heavy-ion reactions (including $118 \mathrm{MeV}{ }^{16} \mathrm{O}+{ }^{48} \mathrm{Ti}$)
1989ZHZY	Mass measurement of $Z=7-19$ neutron-rich nuclei using the TOFI spectrometer (A)
1990BO01	Critical excititation energy in fusion-evaporation reactions

Table 16.12: ${ }^{16} \mathrm{O}$ - General (continued)

Reference Description

> Complex Reactions - continued

1990SE18 Total reaction cross section for the interaction of light nuclei in Glauber-Sitenko theory 1990YE02 Intermediate mass fragment emission in the $\mathrm{p}+\mathrm{Ag}$ reaction at 161 MeV

Muon and Neutrino capture and reactions

Reviews:
1985GR1A Induced weak currents in nuclei
1986TO1D Meson-exchange currents in time-like axial-charge transitions

Other Articles:

1986DO06 Experimental results on radiative muon capture in complex nuclei
1986GM02 Continuity-equation constraint for electron scattering \& radiative muon capture
1986LI13 Signature for the existence of η-mesic nucleus
1986MA16 Emission of nucleons \& nucleon pairs following muon capture in ${ }^{12} \mathrm{C},{ }^{16} \mathrm{O}$ \& ${ }^{27} \mathrm{Al}$
1986NA14 Sum rule approach to total muon capture rates
1986TO1A Weak interaction probes of light nuclei
1987GM01 Radiative capture of polarized muons on ${ }^{16} \mathrm{O} \&{ }^{40} \mathrm{Ca}$
19870H1B Energetic neutrons after muon capture modeled using realistic nuclear Fermi motion
1988DO05 Radiative muon capture in ${ }^{12} \mathrm{C},{ }^{16} \mathrm{O},{ }^{27} \mathrm{Al},{ }^{40} \mathrm{Ca},{ }^{\text {nat }} \mathrm{Fe},{ }^{165} \mathrm{Ho} \&{ }^{209} \mathrm{Bi}$
1988FR19 Radiative muon absorption in ${ }^{16} \mathrm{O}$
1988HA22 Neutrino reactions on oxygen \& a proposed measurement of the Weinberg angle
1988PR05 Nuclear linear response to electroweak interactions in a relativistic theory for ${ }^{16} \mathrm{O}$
1989FU02 Reaction cross section for "solar flare neutrinos" with ${ }^{37} \mathrm{Cl} \&{ }^{16} \mathrm{O}$ targets
1989KA35 Second class meson exchange currents \& neutrino mass in μ^{-}-capture by light nuclei
1989NA01 Some relations for radiative-pion-capture \& muon-capture rates

Pion, Kaons \& Other Mesons

Reviews:
1986BA1C Pion-nucleus double charge exchange: the modern era
1986DO1B Strange probes of the nucleus
1986PE1E Scattering of electrons, nucleons, and pions as probes of nuclear structure
1987FA1A Conclusions \& outlook (from Proc. of the Int. Conf. on a European Hadron Facility)
1987GI1C Pion-nucleus interactions
1988FA1B Strange particles: a probe for new physics in particles and nuclei
1988JO1E Pions \& the nuclear spin-isospin response

Table 16.12: ${ }^{16} \mathrm{O}$ - General (continued)
Reference Description

Pion, Kaons \& Other Mesons - continued
1988KR1E Meson exchange models of the nuclear response function
1988KY1A Studies of pion absorption at SIN; includes quasi-deuteron absorption in ${ }^{16} \mathrm{O}$
1988PE1F The (π, η) and $\left(\pi^{+}, \mathrm{K}^{+}\right)$reactions in nuclei
1988RO1M Nuclear scattering \& reactions with low-energy pions
1988WA1B Production of hypernuclei in the (K, π) reaction
1989CH32 Recent experiments in novel nuclear excitations at the BNL AGS
1989JO07 Phenomenological optical-model anal. of pion elastic \& charge-exchange scat.
1989KH08 Problems of pion-nucleus interaction
1989RI1E Exchange currents
Other Articles:
1986BE22 Stability of the ground state of finite nuclei against neutral pion condensation
1986BE42 $\left(\mathrm{K}^{+}, \mathrm{K}^{+} \pi\right)$ in light nuclear-emulsion nuclei with small momentum transfer to nucleus
1986BL04 Pion condensates in excited states of finite nuclei \& nuclear matter
1986CE04 Inclusive n, p \& d energy spectra from stopped π-absorption in ${ }^{6} \mathrm{Li},{ }^{9} \mathrm{Be},{ }^{16} \mathrm{O}, \&{ }^{27} \mathrm{Al}$
1986CH39 Compar. of $\pi \Delta$ interact. mechan. \& dbl. chrg. exch. (exp. data on self-conjugate nucl.)
1986CO1B (e, $\mathrm{e}^{\prime} \mathrm{K}^{+}$) \& low-lying hypernuclear states using relativistic field theory (A)
1986DI07 Analytic distorted wave approx. for electro- \& photopion produc. on ${ }^{12} \mathrm{C}$ near threshold
1986FI1A Conversion width of the Σ - \& Ξ-hyperons in nuclei \& one-meson exchange
1986FR20 Kemmer-Duffin-Petiau eq. for pionic atoms \& anomalous strong interaction effects
1986GI13 Nuclear-structure aspects of nonanalog pion double charge exchange
1986HA26 Shell model analysis of Σ-hypernuclear spectra for $A=12 \& 16$
1986HA39 Strangeness exchange reactions with the recoil corrected continuum shell model
1986KI1D Quasifree process in hypernuclear formation
1986LE22 Test of effective cluster interactions by pion scattering
1986LI1B Evidence \& search for the eta-mesic nucleus
1986LI1C Extraction of particle-hole strengths for $1 \hbar \omega$ stretched states
1986MEZX Total reaction cross sections of $50 \& 65 \mathrm{MeV}$ pions on nuclei (A)
1986OS03 Theoretical study of inclusive $(\pi, 2 \pi)$ reactions in nuclei
1986SCZX ${ }^{16,18} \mathrm{O}\left(\pi^{+}, 2 \mathrm{p}\right){ }^{14,16} \mathrm{~N}$ reactions at $T=116 \mathrm{MeV}$ with energy resolution $<2 \mathrm{MeV}$ (A)
1986SI11 Effects of nuclear correlations on low-energy pion charge-exchange scattering
1986TO1A Weak interaction probes of light nuclei
1986WH03 Energy dependence of the low energy pion-nucleus optical potential
1987AM1A Spectroscopic aspects of the reaction ${ }^{16} \mathrm{O}\left(\pi^{+}, 2 \mathrm{p}\right){ }^{14} \mathrm{~N}$ at $T=116 \mathrm{MeV}$ (A)
1987BU20 p \& d production in nucl. (in inclusive reactions) induced by $1.5 \mathrm{GeV} / \mathrm{c} \pi^{+} \& \pi^{-}$mesons
1987CH10 Continuum effects \& the interpretation of Σ hypernuclei
1987CH1D Search for the bound states of an η-meson in the nuclear potential (A)
$1987 \mathrm{CO} 09\left(\mathrm{e}, \mathrm{e}^{\prime} \mathrm{K}^{+}\right) \&$ low hypnucl. excits. using relativistic transit. operator \& nucl. struc. model

Table 16.12: ${ }^{16} \mathrm{O}$ - General (continued)
Reference Description

Pion, Kaons \& Other Mesons - continued
1987CO1G Studies of the nuclear (e, $\mathrm{e}^{\prime} \mathrm{K}^{+}$) reaction in a relativistic model (A)
1987CO25 The ($\overrightarrow{\mathrm{p}}, \mathrm{n} \pi$) ground state reaction in a relativistic framework
1987GI01 The isoscalar pion-nucleus interaction from pionic atoms
1987GM02 Momentum-space second-order optical potential for pion-nucleus elastic scattering
1987GM04 Pion-nucleus scattering at low \& resonance energies
1987GO05 ${ }^{16} \mathrm{O}\left(\pi^{+}, \mathrm{pp}\right){ }^{14} \mathrm{~N}$ at 60 MeV - testing the quasi-deuteron mechanism
1987HA40 Coupled channel calculation of Σ-hypernuclear spectra from ${ }^{12} \mathrm{C},{ }^{16} \mathrm{O}, \&{ }^{6} \mathrm{Li}$
1987JE02 Photoproduction of charge pions on ${ }^{16} \mathrm{O}$ to bound states of the nuclei ${ }^{16} \mathrm{~N}$ and ${ }^{16} \mathrm{~F}$
1987KA39 Delta-hole approach to pion double charge exchange
1987KH1B New approach to the description of pion-nucleus scattering at low energies
1987KO1F $\quad \Sigma$-hypernuclear spectra from (K^{-}, π) inclusive reactions (A)
$1987 \mathrm{KO} 30 \quad \sum$-hypernuclear spectra from $\left(\mathrm{K}^{-}, \pi\right)$ inclusive reactions
1987LE1B Strong interaction studies via meson-nucleus reactions
1987MA1I Inclusive pion double charge exchange in light nuclei (A)
1987MA1M $E \& \theta$ dependence of non-analog pion double charge exchange reaction (A)
1987NA04 Sum rule approach to radiative pion capture: full hamiltonian calc. for 1 p shell nuclei
1987PI1B Studies of hypernuclei by associated production (A)
1987TE01 Inclusive $\pi^{+} \& \pi^{-}$prod. in nucleon-nucleus \& ${ }^{4} \mathrm{He}$-nucleus collisions in the GeV region
1988CH49 Search for bound states of the η meson in light nuclei
1988DH1A Delta-hole model in the local density approximation (see 1988ER04)
1988DO05 Radiative muon capture in nuclei; also measured pion capture
1988EL06 s-wave repulsion of pion-nucl. interaction, data contradicts relativistic mean-field calc.
1988ER04 Delta-hole model in the local-density approximation
1988FR02 Strong-interaction finite-range effects in light pionic atoms
1988GR1E Systematics of inclusive double charge exchange
1988HA12 Charge exchange reactions used to study giant resonances: $\left(\pi^{ \pm}, \gamma\right),\left(\pi^{ \pm}, \pi^{0}\right)$
1988HA44 Phenomenological analysis of Σ-hypernuclear spectra from $\left(\mathrm{K}^{-}, \pi^{+}\right)$reactions
1988HYZY Coincidence measurements of the reaction ${ }^{16} \mathrm{O}\left(\pi^{+}, 2 \mathrm{p}\right)^{14} \mathrm{~N}$ at $165 \mathrm{MeV}(\mathrm{A})$
1988HYZZ Measurement of the reactions ${ }^{16} \mathrm{O}\left(\pi^{+}\right.$, p) \& ${ }^{16} \mathrm{O}\left(\pi^{+}, 2 \mathrm{p}\right)^{14} \mathrm{~N}$ at 165 MeV (A)
1988 IT02 Pi-mesonic decay of hypernuclei \& pion wave function
1988JO1F The $(\pi, 2 \pi)$ reaction; experimental data compared to calc. of 1986OS03
1988KH01 Pion-nucleus dynamics at low energies
1988KR09 RPA correlation effects in radiative pion capture
1988KR1E Meson exchange models of the nuclear response function
1988LI1P Large-angle elastic scattering of $\pi^{+} \& \pi^{-}$from ${ }^{16} \mathrm{O}$ at 114 MeV (A)
1988MA09 Study of hypernucleus production by K^{-}capture at rest
1988MA27 Non-analog double charge exchange transition: ${ }^{16} \mathrm{O}\left(\pi^{+}, \pi^{-}\right)^{16} \mathrm{Ne}$ (g.s.)

Table 16.12: ${ }^{16} \mathrm{O}$ - General (continued)
Reference Description

Pion, Kaons \& Other Mesons - continued
1988MA37 Observation of pionic atom anomaly in low-energy pion scattering
1988MAZM Dominance of the two-nucleon mechanism in ${ }^{16} \mathrm{O}\left(\pi^{+}, 2 \mathrm{p}\right)$ at 115 MeV (A)
1988MI1N Λ-nucleus single-particle potential obtained from analysis of Λ-hypernuclei spectra data
1988MO1B The $\left(\pi^{+}, \mathrm{K}^{+}\right)$reaction to probe Λ and Σ states in hypernuclei
1988MO23 Hypernuclear production by the (π^{+}, K^{+}) reaction
1988OS1C Meson exchange currents in p decay in nuclei
1988PE1H Associated production of hypernuclei with $\left(\pi^{+}, \mathrm{K}^{+}\right)$reaction
1988PI1E \quad Search for bound states of the η-meson in light nuclei
1988SA24 Computer simulation of inclusive pion nuclear reactions
1988SC14 Exclusive quasi-deuteron absorption of pions in ${ }^{16} \mathrm{O} \&{ }^{18} \mathrm{O}$ at 116 MeV
1988TA21 One-nucleon knockout by pions and deltas
1988WI1B Large angle pion-nucleus scattering from ${ }^{12} \mathrm{C}$ \& ${ }^{16} \mathrm{O}$ (A)
1988WI1I Pion double charge exchange above the $\Delta(3,3)$ resonance (A)
1989BA06 Polarization of hypernuclei in the $\left(\pi^{+}, \mathrm{K}^{+}\right)$reaction
1989BA63 Slow π^{-}meson capture by C, N, \& O in nucl. emulsion with prod. of 3 charged particles
1989BA92 Strangeness production by heavy ions
1989BE02 Kaon photoproduction from nuclei in a relativistic nuclear model
1989BE11 Electromagnetic production of Σ hypernuclei
1989CA04 Quantized meson-exchange picture of the nuclear interactions
1989CH04 J dependence in the reaction ${ }^{16} \mathrm{O}\left(\pi^{+}, 2 \mathrm{p}\right)^{14} \mathrm{~N}$ at 116 MeV
1989CH31 Photoproduction of pions off nucleons \& nuclei
1989FE07 Skyrme-Hartree-Fock calculation of Λ-hypernuclear states from (π^{+}, K^{+}) reactions
1989GA09 Pionic distortion factors for radiative pion capture studies
1989HA07 Shell model calculation of Λ-hypernuclear spectra from (π^{+}, K^{+}) reactions (talk)
1989HA29 Shell model calculation of Λ-hypernuclear spectra from (π^{+}, K^{+}) reactions
1989HY1B Inclusive \& exclusive measurements of ${ }^{16} \mathrm{O}\left(\pi^{+}, \mathrm{p}\right) \&{ }^{16} \mathrm{O}\left(\pi^{+}, 2 \mathrm{p}\right)^{14} \mathrm{~N}$ at 165 MeV (A)
1989KA37 Finite-range effects in pionic atoms
1989KH01 On the reactive content of the pion-nucleus optical potential at low-energies
1989LI1H Proton-induced production of η on nuclei
1989MO17 (π, K^{+}) hypernucl. production \& struc.; DWIA calc. based on Kapur-Peierls framework
1989NA01 Some relations for radiative-pion-capture \& muon-capture rates
1989PI11 Study of hypernuclei from ${ }_{\Lambda}^{9} \mathrm{Be}$ to ${ }_{\Lambda}^{89} \mathrm{Y}$ using the (π^{+}, K^{+}) reaction
1989SI09 Mechanism of ($\mathrm{K}^{+}, \mathrm{K}^{+} \mathrm{p}$) on light nuclei at kaon energies $130 \& 283 \mathrm{MeV}$
1989 TA04 Absorptive effects in $\mathrm{K}^{+} \Lambda$ photoproduction on nucleons \& nuclei
1989 TA16 Formation of ${ }_{\Lambda}^{4} \mathrm{H}$ hypernuclei from K^{-}absorption at rest on light nuclei
1989 TA17 Compound-hypernucl. interpretation on ${ }_{\Lambda}^{4} \mathrm{H}$ formation probab. in stopped- K^{-}absorption
1989TA19 ${ }_{\Lambda}^{4} \mathrm{H}$ formation from K^{-}absorption at rest on ${ }^{4} \mathrm{He},{ }^{7} \mathrm{Li},{ }^{9} \mathrm{Be},{ }^{12} \mathrm{C},{ }^{16} \mathrm{O}, \&{ }^{40} \mathrm{Ca}$

Table 16.12: ${ }^{16} \mathrm{O}$ - General (continued)
Reference Description

Pion, Kaons \& Other Mesons - continued
1989 TO11 Structure \& formation of deeply-bound pionic atoms
1989VI01 Inclusive pion-nucleus double charge exchange
1989WI20 Pion double charge exchange in the D33 resonance region
1990MO36 Meson exchange current corrections to magnetic moments in quantum hadro-dynamics
1991CI08 Momentum-space method for pionic atoms
1991LE13 Cross sections for production of eta nuclei by photons
1991PI07 Study of hypernuclei by associated production through the (π^{+}, K^{+}) reaction

Hypernuclei

Reviews:
1986CH1I Summary — hypernuclear sessions of "Interactions Between Particle \& Nuclear Physics"
1986CO1B (e, $e^{\prime} \mathrm{K}^{+}$) \& low-lying hypernuclear states using relativistic field theory (A)
1986GA1H Hypernuclear interactions
1988CH48 Studies of hypernuclei by associated production
1988GA1A Recent developments in hypernuclear spectroscopy
1988GA1I Issues in hypernuclear physics
1988HA41 Nuclear physics with strange probes
1988PO1H Flavour and the structure of hadrons and nuclei
1988WA1B Production of hypernuclei in the (K, p) reaction
1989CH32 Recent experiments in novel nuclear excitations at the BNL AGS
1989DO1I On the production \& spectroscopy of hypernuclei
1989RE1C Relativistic mean-field description of nuclei and nuclear dynamics
1989ZO03 Hypernuclear physics
Other articles:
1986BA1H Pionic decay of hypernuclei
1986GA14 Calc. of $\left(\mathrm{K}^{-}, \pi\right)$ hypernuclear yields for stopped kaons in ${ }^{12} \mathrm{C} \& 1 \mathrm{p}_{\Lambda}$ states in ${ }_{\Lambda}^{16} \mathrm{O}$
1986HA26 Shell model analysis of Σ-hypernuclear spectra for $A=12 \& 16$
1986HA39 Strangeness exchange reactions with the recoil corrected continuum shell model
1986MA1C Decay properties of hypernuclear resonances
1986MO1A The $\Lambda \mathrm{N}$ interaction \& structures of the ${ }^{16-18} \mathrm{O}$ hypernuclei
1987 CO 09 (e, $\mathrm{e}^{\prime} \mathrm{K}^{+}$) \& low hypnucl. excits. using relativistic transit. operator \& nucl. struc. model
1987MI38 Semiphenomenological studies of the ground state binding energies of hypernuclei
1987PI1C Hypernuclei studied with the $\left(\pi^{+}, \mathrm{K}^{+}\right)$reaction (A)
1987RU1A Single-particle spectra of Λ hypnucl. \& enhanced interact. radii of multi-strange objects
1987WU05 Resonant and quasi-free mechanisms of Σ-production on nuclei

Table 16.12: ${ }^{16} \mathrm{O}$ - General (continued)
Reference Description

Hypernuclei - continued
1987YA1C Density-dependent effective Λ N \& Λ NN interaction applied to light hypernuclei
1988HA44 Phenomenological analysis of Σ-hypernuclear spectra from $\left(\mathrm{K}^{-}, \pi^{+}\right)$reactions
1988MA09 Study of hypernucleus production by K ${ }^{-}$capture at rest
1988MA1G Non-mesonic hypernuclear weak decays - systematic testing in the shell model
1988MI1N Λ-nucleus single-particle potential from analysis of Λ-hypernuclei spectra data
1988MO1B $\left(\pi^{+}, \mathrm{K}^{+}\right)$reaction used to probe Λ and Σ states in hypernuclei
1988 MO 23 Hypernuclear production by the $\left(\pi^{+}, \mathrm{K}^{+}\right)$reaction
1988PE1H Associated production of hypernuclei with $\left(\pi^{+}, \mathrm{K}^{+}\right)$reaction
1989BA06 Polarization of hypernuclei in the (π^{+}, K^{+}) reaction
1989BA92 Strangeness production by heavy ions
1989BA93 Production of hypernuclei in relativistic ion beams
1989FE07 Skyrme-Hartree-Fock calculation of Λ-hypernuclear states from (π^{+}, K^{+}) reactions
1989HA29 Shell model calculation of Λ-hypernuclear spectra from $\left(\pi^{+}, \mathrm{K}^{+}\right)$reactions
1989HA32 Σ-hypernuclear production in flight
1989KO37 Relativistic motion of the Λ in hypernuclei using Woods-Saxon \& Gaussian potentials
1989LA1I Indirect methods of study of decays of excited hypernuclei - hypernuclear spectroscopy
1989MA30 On Λ-hyperon(s) in the nuclear medium; relativistic mean field theory analysis
1989MO17 $\left(\pi, \mathrm{K}^{+}\right)$hypernucl. production \& struc.; DWIA calc. based on Kapur-Peierls framework
1989PI11 Study of hypernuclei from ${ }_{\Lambda}^{9} \mathrm{Be}$ to ${ }_{\Lambda}^{89} \mathrm{Y}$ using the (π^{+}, K^{+}) reaction
1989TA16 Formation of ${ }_{\Lambda}^{4} \mathrm{H}$ hypernuclei from K^{-}absorption at rest on light nuclei
1989TA17 Compound-hypernucl. interpretation on ${ }_{\Lambda}^{4} \mathrm{H}$ formation probab. in stopped-K ${ }^{-}$absorption
1989TA19 ${ }_{\Lambda}^{4} \mathrm{H}$ formation from K^{-}absorption at rest on ${ }^{4} \mathrm{He},{ }^{7} \mathrm{Li},{ }^{9} \mathrm{Be},{ }^{12} \mathrm{C},{ }^{16} \mathrm{O}, \&{ }^{40} \mathrm{Ca}$
1989 TA32 Schmidt diagrams \& configuration mixing effects on hypernuclear magnetic moments
1991BE01 Electromagnetic production of polarization in hypernuclei
1991FE06 Effective $\Lambda \mathrm{N}$-interaction \& spectroscopy of low-lying states of 1 p -shell hyernuclei
1991PI07 Study of hypernuclei by associated production through the (π^{+}, K^{+}) reaction

Antinucleon Interactions
Reviews:
1987GR1I Low energy antiproton physics in the early LEAR era
1987YA1E Why study ($\overline{\mathrm{p}}, \overline{\mathrm{n}}$) on nuclei?
Other Articles:
1986DU10 Microscopic calculation of antiproton atomic-like bound states in light nuclei
1986FR10 Fourier-Bessel potential description of antiproton-nucleus elastic scattering data
1986KO1E Search for \bar{p}-atomic X-rays; observed spin-dependence of \bar{p}-nucleus interaction

Table 16.12: ${ }^{16} \mathrm{O}$ - General (continued)
Reference Description

Antinucleon Interactions - continued
1986MA46 Relativistic impulse approx. analysis of elastic $\overline{\mathrm{p}}$ scattering at intermediate energies
1986RO23 Measurement of the $4 f$ strong interaction level width in light antiprotonic atoms
1986ZA06 Sensitivity of σ_{R} \& forward scattering amp. to form of nucl. optical pot. for N \& $\overline{\mathrm{N}}$
1987AD04 Microscopic analysis of antiproton-nucleus elastic scattering
1987BA18 Optical model analysis of antiprotonic Oxygen atom data
1987BA21 Neutron-antineutron oscillations in ${ }^{16} \mathrm{O}$
1987BE26 $\overline{\mathrm{p}}$-neutron scattering amplitude from $\overline{\mathrm{p}}$-nucleus elastic scattering data; Glauber model
1987CU1B Nucleus excitation and deexcitation following $\overline{\mathrm{p}}$-annihilation at rest
1987DA1D Glauber-Sitenko description of low-energy antiproton-nucleus interactions
1987GR20 Widths of $4 f$ antiprotonic levels in the Oxygen region
1987MA04 Spin effects in elastic \bar{p}-nucleus scattering; Glauber analysis
1987SP05 Spin and isospin effects in a relativistic treatment of \bar{p}-atom shifts and widths
1987ZA08 Strong absorption and noneikonal effects in antiproton-nucleus scattering
1988JA09 Residual mass distribution following $\overline{\mathrm{p}}$-nucleus annihilation
1988LI1O Optical potential analysis of antiproton-nucleus elastic scattering (A)
1989CH13 Phenomenological model analysis of elastic \& inelastic scat. of $180 \mathrm{MeV} \overline{\mathrm{p}}$ from nuclei
1989HE21 Microscopic calculation of antiproton elastic scattering on even-even nuclei
1989TA24 Spin \& $\overline{\mathrm{N}}$ annihilation effects in elastic antiproton-nucleus scattering (Glauber theory)
1990TA31 Elastic scattering \& spin effects of antiprotons from nuclei
1991 AL02 $\mathrm{N}-\overline{\mathrm{N}}$ oscillation times estimated from Paris NN̄ potential
1991BA44 Finite-range effects in kaonic and antiprotonic atoms
1991LA02 Geometries of the antiproton-nucleus optical potentials at 180 MeV

Other Topics

Review:

1988HE1G A summary of theoretical discussion regarding hadronic parity violation Other Articles:
1986BE23 Realistic many-body wave functions \& nucleon momentum distributions in finite nuclei
1986DE11 Nuclear spin-isospin polarizability \& the spatial non-locality of the mean field
1986IS04 Anomalous absorption of proton partial waves by the optical potential
1986KU11 The dynamical origin of nuclear mass number dependence in EMC-effect
1986PA23 Methods of in-beam internal-pair spectroscopy applied to nucl. structure investigations
1986RO26 Self-organization in nuclei
1987AB21 Evid. of subshell closures from binding-ener. systematics \& ener. lvls. of dbl. even nucl.
1987CH11 Lifetimes of monopole resonances in time-dependent Hartree-Fock theory

Table 16.12: ${ }^{16} \mathrm{O}$ - General (continued)
Reference Description

Other Topics - continued

1987FUZZ Relativistic RPA calculations of finite nuclei including negative-energy states (A)
1987KR1F Local scale transform. meth. with >1 scalar func. for descr. of monopole excits. in nucl.
1988 KO 23 Information on three-body interactions from inversion of the energy equations
1988 TO09 Damping of quadrupole motion in time-dependent density-matrix theory
1988TO1C Quenching of Gamow-Teller strength
1988ZH1G Self-consistent calculation of relativistic microscopic optical potential (in Chinese) (A)
1989CEZZ Composite particle production in intermediate energy nuclear reactions (A)
1989PO05 Isobaric multiplets reconstructed from equidistance rule for separation \& decay energies
1989SH13 Continuum RPA with exchange term \& appls. to spin-isosp. \& longitudinal resp. funcs.
1990BL16 Microscopic approach to the calculation of the vertex constants of neutron cleavage
1990HO24 Relativistic RPA for finite nuclei with Skyrme type interaction
1990ZHZV Effects of central, spin-orbit \& tensor interactions in nuclei (A)
1991UM01 Nuclear Hartree-Fock calculations with splines

Ground State Properties

Review:

1988MA1X Relativistic theory of nuclear matter and finite nuclei
Other Articles:
1985SH1A Unified microscopic description of elastic \& inel. cross sections of heavy-ion reactions.
1986AN08 Nucleon momentum \& density distributions in the generator co-ordinate method
1986ANZM A multi harmonic oscillator calculation of binding energies \& charge radii
1986AY01 Effect of higher states on the ground \& low-lying excited 0^{+}states of ${ }^{4} \mathrm{He} \&{ }^{16} \mathrm{O}$
1986DE33 Correlations in the $\operatorname{Sp}(1, \mathrm{R})$ model for the monopole oscillations
1986FU1B Relativistic shell model calculations
1986GL1A Effects of particle-hole excitations in light nuclei
1986HE26 Nuclear single-particle energies as functions of the binding energies for $4 \leq A \leq 90$
1986MAZE Form \& relative importance of first-order contributions to density distribution of ${ }^{16} \mathrm{O}$
1986PE22 Effects of the Dirac sea on finite nuclei
1986QU1A Relativistic self-consistent field calculations for closed-shell nuclei
1986SU13 Unitary-model-operators \& the ground-state \& one-body energies of ${ }^{16} \mathrm{O}$
1986SU16 (1986SU13 cont.) Three-body-cluster effects on properties of ${ }^{16} \mathrm{O}$
1986 TO16 Hartree-Fock calculations of nuclear matter saturation density
1986YE1A Hartree-Fock calculations with extended Skyrme forces for ${ }^{16} \mathrm{O}$ and ${ }^{40} \mathrm{Ca}$
1987AB03 Measurement \& folding-potential analysis of the elastic α-scattering on light nuclei

Table 16.12: ${ }^{16} \mathrm{O}$ - General (continued)

Reference Description

> Ground State Properties - continued

1987BL18 Calc. ground \& excited states of light $N=Z$ nuclei; also spin-isospin order for excited
1987BL20
1987BO11
1987BO42
1987CA27
1987ES06
1987HA37
1987HA42
1987KR1B
1987MA30
1987PR03
1987SU08
1987SU12
1987TZ1A
1987ZE05
1988AL1N
1988AN18
1988BO04
1988DE09
1988GU03
1988HO10
1988KU18
1988LU1A
1988ME09
1988MU04
1988RA1G
1988RU04
1988SA03
1988SO03
1988VA03
1988WO04
1988YE1A
1989AN10
1989CA04
1989DO04
1989DO05
1989FI04

Relativistic Hartree-Fock calculations for ${ }^{16} \mathrm{O}$ and ${ }^{40} \mathrm{Ca}$
Relativistic description of nuclear systems in the Hartree-Fock approximation Monte Carlo test of the convergence of cluster expansions in Jastrow correlated nuclei Mean field approach to the momentum distribution
Consistent description of effect of long-range residual interaction on the RMS radius Excitation of $\Delta(3,3)$ resonance in compressed finite nuclei (early version of 1987HA42) Exc. of $\Delta(3,3)$ resonance in compressed finite nucl. from constrained mean-field method Microscopic calc. of model for ${ }^{16} \mathrm{O}: 16$ nucleons interacting via Malfliet-Tjon potential Contrib. of particle-particle, hole-hole \& particle-hole ring diagrams to binding energies Self-consistent Hartree descrip. of deformed nuclei in a relativistic quantum field theory Effects of self-consistent single-particle potential on nuclear effective interaction Nuclear ground-state properties \& nuclear forces in unitary-model-operator approach Particle-particle ring diagrams in ${ }^{16} \mathrm{O}$ \& Skyrme effective interactions (A) Microscopic estimation of clustering in ${ }^{4} \mathrm{He},{ }^{12} \mathrm{C}$ and ${ }^{16} \mathrm{O}$
Scaling in electron scattering from a relativistic Fermi gas
Generator coordinate calcs. of nucleon momentum \& density dists. in ${ }^{4} \mathrm{He},{ }^{16} \mathrm{O} \&{ }^{40} \mathrm{Ca}$ Correlated basis functions theory of light nuclei: general description \& ground states ${ }^{15} \mathrm{~N}$ ground state studied with elastic electron scattering; also calc. ${ }^{16} \mathrm{O}$ charge density Charge-density distribution of $1 \mathrm{~s}-1 \mathrm{p} \& 1 \mathrm{~d}-2 \mathrm{~s}$ shell nuclei \& filling numbers of the states Shell-model with Hartree-Fock condition calc. of giant resnces. \& spectroscopic factors Nuclear structure of ${ }^{16} \mathrm{O}$ in a mean-field boson approach
Relativistic Hartree calculations of ${ }^{16} \mathrm{O} \&{ }^{40} \mathrm{Ca}$ using effective interactions
Three-dimensional, spherically symmetric, saturating model of an N-boson condensate
Dirac-Brueckner-Hartree-Fock approach to finite nuclei
Clustering phenomena and shell effects in nuclear structure \& reactions
Optimal parametrization for the relativistic mean-field model of the nucleus
Thermodynamic coefficients of hot nuclei
Model ground state calculations with two-variable integro-differential equations for ${ }^{16} \mathrm{O}$ Static moments from a phenomenological interaction
An expansion of the shell-model space for light nuclei
Calc. charge density distribs. \& radii from Hartree-Fock method with Skyrme forces 1- \& 2-nucleon momentum distributions in nuclei in coherent density fluctuation model Quantized meson-exchange picture of nuclear interactions; application to ${ }^{16} \mathrm{O} \&{ }^{40} \mathrm{Ca}$ Kuchta mean-field boson approach used to describe structure of ${ }^{16} \mathrm{O}$
Relativistic Coulomb sum rules - expansions in moments of nucl. momentum density Systematic study of potential energy surfaces of light nuclei in relativistic Hartree calcs.

Table 16.12: ${ }^{16} \mathrm{O}$ - General (continued)
Reference Description

> Ground State Properties - continued

1989LE24 Nuclei with diffuse surfaces for future Boltzmann-Uehling-Uhlenbeck calculations
1989LI01 Self-consistent semiclassical calculation of rms radii of spherical nuclei
1989MA41 Descr. of nucleon high-momentum components due to short-range correlations in nuclei
1989MC05 Finite nucleus Dirac mean field theory \& RPA using finite B splines for ${ }^{16} \mathrm{O}$ \& ${ }^{40} \mathrm{Ca}$
1989PI1F Ground state of closed-shell nuclei (A)
1990MU15 Dirac-Brueckner-Hartree-Fock calculation of the ground state properties of ${ }^{16} \mathrm{O}$
1991BO02 Meson exchange effects on magnetic dipole moments of p-shell nuclei
1991CR1A Finite velocity meson exchange in nuclei
1991GM02 Relativistic mean-field fit to microscopic results in nuclear matter
1991 KO23 Scalar coupling in relativistic mean field theory \& properties of nuclei \& nuclear matter
1991MA33 Super-RPA ground-state correlations
1991MU04 Effects of correlations on calc. of binding energy \& radii of nuclei
1991RA14 Thermal properties of finite nuclei based on a realistic interaction
1991 SC26 Meson exchange potentials \& the problem of saturation in finite nuclei
1991 TO03 Properties of nuclei far from stability \& spherical nuclei in relativistic Hartree theory
(A) denotes that only an abstract was available for this reference.

Table 16.13: Energy Levels of ${ }^{16} \mathrm{O}^{\text {a }}$

$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})$	$J^{\pi} ; T$	K^{π}	$\Gamma_{\text {c.m. }}$ or $\tau_{\mathrm{m}}(\mathrm{keV})$	Decay	Reactions
0	$0^{+} ; 0$		stable		$5,7,11,12,13,14,15,16$, $17,18,19,22,23,24,30$, $32,33,34,37,38,39,40$, $41,42,43,44,45,46,47$, $48,49,50,51,52,53,54$, $55,56,57,58,59,60,61$, $62,63,64,65,66,67,68$, $70,71,72,73,74,75,76$, $77,78,79,80,81,82$
6.0494 ± 1.0	$0^{+} ; 0$	0^{+}	$\tau_{\mathrm{m}}=96 \pm 7 \mathrm{psec}$	π	$\begin{aligned} & 5,7,11,12,13,15,17,19, \\ & 21,23,30,32,33,34,38, \\ & 39,43,44,47,54,55,57, \\ & 66,67,70,71,73,79,81 \end{aligned}$
6.129893 ± 0.04	$3^{-} ; 0$		$\tau_{\mathrm{m}}=26.6 \pm 0.7 \mathrm{psec} ;$	γ	1, 5, 7, 11, 12, 13, 15, 17,

Table 16.13: Energy Levels of ${ }^{16} \mathrm{O}^{\text {a }}$ (continued)

$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})$	$J^{\pi} ; T$	K^{π}	$\Gamma_{\text {c.m. }}$ or $\tau_{\mathrm{m}}(\mathrm{keV})$	Decay	Reactions
			$g=+0.556 \pm 0.004$		$\begin{aligned} & 18,19,21,30,31,32,33, \\ & 34,37,38,39,43,44,45, \\ & 46,49,50,51,53,54,66 \\ & 67,68,70,71,73,79,81 \end{aligned}$
6.9171 ± 0.6	$2^{+} ; 0$	0^{+}	$\tau_{\mathrm{m}}=6.78 \pm 0.19 \mathrm{fsec}$	γ	$\begin{aligned} & 1,5,7,11,12,13,15,17, \\ & 19,30,31,32,33,34,37, \\ & 38,42,43,44,45,46,47, \\ & 49,50,53,54,55,67,68, \\ & 70,71,73,78,80 \end{aligned}$
7.11685 ± 0.14	$1^{-} ; 0$		$\tau_{\mathrm{m}}=12.0 \pm 0.7 \mathrm{fsec}$	γ	$\begin{aligned} & 1,5,7,11,12,13,17,30 \\ & 31,32,33,34,37,38,39 \\ & 42,43,44,46,47,50,66 \\ & 67,68,70,71,73,81 \end{aligned}$
8.8719 ± 0.5	$2^{-} ; 0$		$\tau_{\mathrm{m}}=180 \pm 16 \mathrm{fsec}$	γ, α	$\begin{aligned} & 5,7,11,12,16,19,30,31, \\ & 33,37,38,39,43,45,46 \\ & 47,49,50,67,68,73,81 \end{aligned}$
9.585 ± 11	$1^{-} ; 0$	0^{-}	$\Gamma=420 \pm 20$	γ, α	$\begin{aligned} & 7,9,11,12,30,38,39,45 \\ & 46,47,49,50,54,55 \end{aligned}$
9.8445 ± 0.5	$2^{+} ; 0$	$2^{+\mathrm{b}}$	0.625 ± 0.100	γ, α	$\begin{aligned} & 5,7,9,11,12,19,30,31, \\ & 33,37,38,39,43,46,47, \\ & 49,50,54,55,66,68,70 \\ & 73,78,81 \end{aligned}$
10.356 ± 3	$4^{+} ; 0$	0^{+}	26 ± 3	γ, α	$\begin{aligned} & 5,7,9,11,12,13,14,16 \text {, } \\ & 19,21,30,31,33,38,43 \\ & 46,47,49,50,54,55,61, \\ & 66,68,71,73,81 \end{aligned}$
10.957 ± 1	$0^{-} ; 0$		$\tau_{\mathrm{m}}=8 \pm 5 \mathrm{fsec}$		5, 30, 37, 38, 46, 47, 68, 73
11.080 ± 3	$3^{+} ; 0$	$2^{+\mathrm{b}}$	$\Gamma<12$	γ	5, 30, 37, 38, 68, 73
11.0967 ± 1.6	$4^{+} ; 0$		0.28 ± 0.05	γ, α	$\begin{aligned} & 5,7,9,11,13,14,16,19 \\ & 30,31,43,46,47,49,50 \\ & 54,55,73 \end{aligned}$
$(11.26)^{\text {c }}$	$\left(0^{+} ; 0\right)$		(2500)	(α)	9,38
11.520 ± 4	$2^{+} ; 0$		71 ± 3	γ, α	$\begin{aligned} & 5,7,9,19,30,43,44,46 \\ & 47,49,50,54,55,61 \end{aligned}$
11.60 ± 20	$3^{-} ; 0$	0^{-}	800 ± 100	α	9, 14, 54, 55
12.049 ± 2	$0^{+} ; 0$		1.5 ± 0.5	γ, α	$\begin{aligned} & 9,19,23,30,43,46,47 \\ & 49,50,54,55 \end{aligned}$
12.440 ± 2	$1^{-} ; 0$		91 ± 6	$\gamma, \mathrm{p}, \alpha$	$\begin{aligned} & 7,8,9,30,34,36,37,38 \\ & 43,47,50,54,55 \end{aligned}$
12.530 ± 1	$2^{-} ; 0$		$(97 \pm 10) \times 10^{-3}$	$\gamma, \mathrm{p}, \alpha$	$\begin{aligned} & 5,19,30,34,36,37,38 \\ & 43,46,47,50,67 \end{aligned}$
12.796 ± 4	$0^{-} ; 1$		40 ± 4	p	30, 36, 37, 38, 46

Table 16.13: Energy Levels of ${ }^{16} \mathrm{O}^{\text {a }}$ (continued)

$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})$	$J^{\pi} ; T$	K^{π}	$\Gamma_{\text {c.m. }}$ or $\tau_{\mathrm{m}}(\mathrm{keV})$	Decay	Reactions
12.9686 ± 0.4	$2^{-} ; 1$		1.34 ± 0.04	$\gamma, \mathrm{p}, \alpha$	$\begin{aligned} & 19,30,34,36,37,38,43 \\ & 66,67,68 \end{aligned}$
13.020 ± 10	$2^{+} ; 0$		150 ± 10	$\gamma, \mathrm{p}, \alpha$	$\begin{aligned} & 7,9,43,46,47,49,50,54 \\ & 55,61 \end{aligned}$
13.090 ± 8	$1^{-} ; 1$		130 ± 5	$\gamma, \mathrm{p}, \alpha$	$\begin{aligned} & 7,8,9,11,30,37,38,43, \\ & 68 \end{aligned}$
13.129 ± 10	$3^{-} ; 0$		110 ± 30	$\gamma, \mathrm{p}, \alpha$	6, 7, 8, 9, 30, 38
13.259 ± 2	$3^{-} ; 1$		21 ± 1	$\gamma, \mathrm{p}, \alpha$	$\begin{aligned} & 7,8,9,30,36,37,38,43 \\ & 46,66,67,68,70,72 \end{aligned}$
13.664 ± 3	$1^{+} ; 0$		64 ± 3	$\gamma, \mathrm{p}, \alpha$	30, 34, 36, 47
13.869 ± 20	$4^{+} ; 0$		89 ± 2	p, α	$\begin{aligned} & 5,9,30,36,43,45,49,50 \\ & 54,55 \end{aligned}$
13.980 ± 2	2^{-}		20 ± 2	p, α	5, 30, 31, 36
14.032 ± 15	0^{+}		185 ± 35	γ, α	9, 43
14.1 ± 100	3^{-}		750 ± 200	α	9
14.302 ± 3	$4^{(-)}$		34 ± 12		19, 30, 31
14.399 ± 2	5^{+}		27 ± 5		5, 12, 19, 30, 31
14.620 ± 20	$4^{(+)}$		490 ± 15	α	9,11
14.660 ± 20	5^{-}	0^{-}	670 ± 15	α	$9,11,12,13,14,54,55$
14.8153 ± 1.6	$6^{+} ; 0$		70 ± 8	α	$\begin{aligned} & 5,9,11,19,30,31,49,50 \\ & 54,55 \end{aligned}$
14.926 ± 2	2^{+}		54 ± 5	p, α	5, 30, 36, 43
15.097 ± 5	0^{+}		166 ± 30	p, α	8, 9, 30, 36
15.196 ± 3	$2^{-} ; 0$		63 ± 4	p, α	$\begin{aligned} & 30,31,36,43,46,49,66 \\ & 67,68 \end{aligned}$
15.26 ± 50	2^{+}; (0)		300 ± 100	p, α	36, 43, 46, 49
15.408 ± 2	$3^{-} ; 0$		132 ± 7	p, α	$\begin{aligned} & 8,9,30,31,36,43,46,50 \\ & 54,55,61,66,67,68 \end{aligned}$
15.785 ± 5	3^{+}		40 ± 10		19, 30, 31
15.828 ± 30	3^{-}		700 ± 120	α	9, 43
16.20 ± 90	$1^{-} ; 0$		580 ± 60	$\gamma, \mathrm{p}, \alpha$	7, 30, 36
16.209 ± 2	$1^{+} ; 1$		19 ± 3	$\gamma, \mathrm{n}, \mathrm{p}$	30, 31, 34, 35, 36, 41, 43
16.275 ± 7	6^{+}	0^{+b}	420 ± 20	α	$\begin{aligned} & 5,9,11,12,13,14,21,31 \\ & 54,55,61 \end{aligned}$
16.352 ± 8	$\left(2^{+}\right)^{\text {d }}$		61 ± 8	p, α	8, 9, 30, 36, 46, 49, 50, 70
16.4423 ± 1.6	$2^{+} ; 1$		25 ± 2	$\gamma, \mathrm{n}, \mathrm{p}, \alpha$	7, 8, 9, 30, 36, 43
16.817 ± 2	$\left(3^{+} ; 1\right)^{\text {b,e }}$		28 ± 3	$\gamma, \mathrm{p}, \alpha$	19, 30, 34, 36
16.844 ± 21	4^{+}		570 ± 60	α	9
16.93 ± 50	2^{+}		≈ 280	$\alpha,{ }^{8} \mathrm{Be}$	9, 10

Table 16.13: Energy Levels of ${ }^{16} \mathrm{O}^{\text {a }}$ (continued)

$E_{\text {x }}(\mathrm{MeV} \pm \mathrm{keV})$	$J^{\pi} ; T$	K^{π}	$\Gamma_{\text {c.m. }}$ or $\tau_{\mathrm{m}}(\mathrm{keV})$	Decay	Reactions
17.09 ± 40	$1^{-} ; 1$		380 ± 40	γ, p	34,36
17.129 ± 5	2^{+}		107 ± 14	$\mathrm{n}, \mathrm{p}, \alpha$	8, 9
17.140 ± 10	$1^{+} ; 1$		34 ± 3	$\gamma, \mathrm{n}, \mathrm{p}, \alpha$	9, 34, 35, 36, 43
17.197 ± 17	2^{+}		160 ± 60	$\alpha,{ }^{8} \mathrm{Be}$	$5,9,10,31,38,46,49,50$
17.282 ± 11	$1^{-} ; 1$		78 ± 5	$\gamma, \mathrm{n}, \mathrm{p}, \alpha$	8, 34, 35, 36, 41, 43
17.510 ± 26	1^{-}		180 ± 60	α	9
17.555 ± 21	$\left(6^{+}\right)$		180 ± 70	n, α	8,9
17.609 ± 7	2^{+}; (1)		114 ± 14	p, α	8, 9, 36
17.72	$\left(0^{+}, 2^{+}\right)$		≈ 75	p, $\alpha,{ }^{8} \mathrm{Be}$	9,10
17.775 ± 11	$4^{-} ; 0$		45 ± 7	p	$\begin{aligned} & 19,43,44,46,49,50,67 \text {, } \\ & 68 \end{aligned}$
17.784 ± 15	4^{+}		400 ± 40	$\mathrm{n}, \alpha,{ }^{8} \mathrm{Be}$	8, 9, 10, 43, 54, 55
17.877 ± 6	$(2)^{-} ; 1^{\text {b }}$		24 ± 3	$\gamma, \mathrm{p},(\alpha)$	34, 36, 41
18.016 ± 1	4^{+}; (0)		14 ± 2	$\mathrm{n}, \mathrm{p}, \alpha,{ }^{8} \mathrm{Be}$	8, 9, 10, 19
18.029 ± 5	$3^{(-)} ; 1$		26 ± 4	$\gamma, \mathrm{n}, \mathrm{p}, \alpha$	$19,34,35,36,43,67$
18.089 ± 25	$\left(0^{+}\right)$		288 ± 44	$(\gamma), \mathrm{n}, \mathrm{p}, \alpha$	$7,8,9,35,46,50$
18.202 ± 8	2^{+}		220 ± 50	γ, p	36, 43, 46, 50
18.29			≈ 380	$\gamma, \mathrm{p}, \alpha$	7,8,9
18.404 ± 12	5^{-}		550 ± 40	α	9
18.430 ± 15	$2^{+} ; 0$		90 ± 40	p	36, 46, 49, 50
18.484 ± 6	$\left(1^{-}, 2^{-}\right)$		35 ± 6	p	36
18.6	$\left(1^{-}, 5^{-}\right)$		≈ 150	α	9
18.6	$\left(4^{+}\right)$		≈ 300	$\alpha,{ }^{8} \mathrm{Be}$	9,10
18.640 ± 15	$\left(5^{+}\right)$		22 ± 7	(n, p)	5,19, 43
18.773 ± 22	1^{-}		215 ± 45	p, α	8, 9
18.785 ± 6	4^{+}		260 ± 20	$\mathrm{n}, \mathrm{p}, \alpha,{ }^{8} \mathrm{Be}$	8, 9, 10
18.79 ± 10	$1^{+} ; 1$		120 ± 20	γ, p	34, 36, 43
18.977 ± 6	$4^{-} ; 1$		8.2 ± 3.8	$\gamma, \mathrm{p}, \alpha$	$\begin{aligned} & 19,34,36,43,44,46,49 \\ & 67,68 \end{aligned}$
19.001 ± 24	$2^{-} ; 1$		420 ± 50	γ, p	34, 36, 43
19.08 ± 30	2^{+}; (1)		≈ 120	$\gamma,(\mathrm{n}), \mathrm{p}, \alpha$	8, 9, 14, 34, 36
19.206 ± 12	$3^{-} ; 1$		68 ± 10		43, 67, 68
19.253 ± 30	$\left(5^{-}\right)$		50 ± 45	n, α	8,9
19.257 ± 9	2^{+}; (1)		155 ± 25	$\gamma, \mathrm{p}, \alpha$	8, 9, 34, 36
19.319 ± 14	$\left(6^{+}\right)$		65 ± 35	p, $\alpha,{ }^{8} \mathrm{Be}$	8, 9, 10
19.375 ± 2	4^{+}		23 ± 4	p, α	8, 9
19.47 ± 30	$1^{-} ; 1$		200 ± 70	γ, p	34, 36, 43
19.539 ± 19	$2^{+} ; 0$		255 ± 75	n, α	$5,8,9,46,50$

Table 16.13: Energy Levels of ${ }^{16} \mathrm{O}^{\text {a }}$ (continued)

$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})$	$J^{\pi} ; T$	K^{π}	$\Gamma_{\text {c.m. }}$ or $\tau_{\mathrm{m}}(\mathrm{keV})$	Decay	Reactions
19.754 ± 16	2^{+}		290 ± 50	p, α	8, 9
19.808 ± 11	$4^{-} ; 0$		32 ± 4		19, 44, 46, 67, 68
19.895 ± 7	3;1		42 ± 9	$\gamma, \mathrm{p}, \alpha$	5,34,36
20.055 ± 13	$2^{+} ; 0$		400 ± 32	$\gamma, \mathrm{n}, \mathrm{p}, \alpha$	7, 8, 9, 49, 50
20.412 ± 17	$\left(2^{-}, 4^{+}\right) ; 1$		190 ± 20	$\gamma, \mathrm{n}, \mathrm{p}$	$34,35,36,43,67,68$
20.510 ± 0.025	$\left(4^{-} ; 1\right)$	50 ± 30	γ	43	
20.541 ± 2	$5^{-} ; 1$		11 ± 2	p, α	5,8,9
20.560 ± 2	even π		< 5	p, α	8,9
20.615 ± 3	even π		<10	α	9
(20.8)			(≈ 60)	$\mathrm{n}, \mathrm{p}, \alpha$	8
20.857 ± 14	7^{-}	0^{-}	900 ± 60	α	9, 11, 12, 13, 14
20.945 ± 20	$1^{-} ; 1$		300 ± 10	$\gamma, \mathrm{n}, \mathrm{p}$	34, 35, 36, 43
21.05 ± 50	$\left(2^{+} ; 0\right)$		298 ± 43		46, 50
21.052 ± 6	6^{+}		205 ± 15	α	9
21.175 ± 15					5
21.50	$(1 \rightarrow 4)$		120	p	36
21.623 ± 11	7^{-}		60 ± 30	$\mathrm{n}, \mathrm{p}, \alpha$	8,9
21.648 ± 3	6^{+}		115 ± 8	n, α	8, 9, 11
21.776 ± 9	3^{-}		43 ± 20	$\mathrm{n}, \mathrm{p}, \alpha$	5, 8, 9
22.04	0^{+}		60	$\mathrm{n}, \mathrm{d}, \alpha$	8,25
22.150 ± 10	$1^{-} ; 1$		680 ± 10	$\gamma, \mathrm{n}, \mathrm{p}, \mathrm{d}, \alpha$	$\begin{aligned} & 14,24,26,29,34,35,36 \\ & 40,41,42 \end{aligned}$
22.35	2^{+}		175	$\mathrm{n}, \mathrm{d}, \alpha$	25, 29
22.5 ± 100	3^{-}		400 ± 50	p, d, α	26, 29, 50
22.65 ± 30			60	n, $\alpha,{ }^{8} \mathrm{Be}$	5, 8, 10
22.721 ± 3	$0^{+} ; 2$		12.5 ± 2.5	$\mathrm{n}, \mathrm{p}, \mathrm{d}, \alpha$	8, 9, 23, 26, 29, 70
22.89 ± 10	$1^{-} ; 1$		300 ± 10	$\gamma, \mathrm{p}, \mathrm{d}$	24, 26, 34, 36
23.0 ± 100	6^{+}		$\lesssim 500$	(d), $\alpha,{ }^{8} \mathrm{Be}$	10, 11, 29
23.1			≈ 20	(n), d, $\alpha,{ }^{8} \mathrm{Be}$	9, 10, 25, 29
23.235 ± 62	$\left(1^{-} ; 1\right)$		560 ± 150	$\mathrm{n}, \mathrm{p}, \mathrm{d}$	25, 26, 27, 35, 46
23.51 ± 30	$\left(5^{-}\right)$		300	p, d, α	5, 9, 14, 26, 27, 29, 49, 50
23.879 ± 6	6^{+}		26 ± 4	p, $\alpha,{ }^{8} \mathrm{Be}$	8, 9, 10, 11
24.07 ± 30	$1^{-} ; 1$		550 ± 40	$\gamma, \mathrm{p},{ }^{3} \mathrm{He}$	17, 34, 36, 46
24.36 ± 70	$\left(2^{+}, 3^{-}\right) ; 0$		424 ± 45	n, p	35, 50
24.522 ± 11	$2^{+} ; 2$		<50		23, 70
24.76 ± 50	$(2,4)^{+} ; 1$		340 ± 60	$\gamma, \mathrm{n}, \mathrm{p}$	34, 35, 36
25.12 ± 50	$1^{-} ; 1$		3000 ± 300	$\gamma, \mathrm{p},{ }^{3} \mathrm{He}, \alpha$	17, 34, 36, 42, 49
25.50 ± 150	$1^{-} ; 1$		1300 ± 300	γ	43, 46

Table 16.13: Energy Levels of ${ }^{16} \mathrm{O}^{\text {a }}$ (continued)

$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})$	$J^{\pi} ; T$	K^{π}	$\Gamma_{\mathrm{c} . \mathrm{m} .}$ or $\tau_{\mathrm{m}}(\mathrm{keV})$	Decay	Reactions
25.6	$\left(3^{-}\right) ; 1$		450	${ }^{3} \mathrm{He}, \alpha$	9,17
26.0 ± 100	$1^{-} ;(1)$		$500-1000$	$\gamma,{ }^{3} \mathrm{He}, \alpha$	17
26.363 ± 62	$(2,4)^{+} ; 1$		550 ± 70	$\gamma, \mathrm{n}, \mathrm{p}, \alpha$	$9,34,35,36$
27.35 ± 100	$(2,4)^{+} ; 1$		830 ± 110	$\gamma, \mathrm{p},{ }^{3} \mathrm{He}, \alpha,{ }^{8} \mathrm{Be}$	$17,34,36$
27.5	$\left(3^{-} ; 0\right)$		≈ 2500	$\gamma,{ }^{3} \mathrm{He}$	17
28.2	7^{-}		1000	α	9,11
28.6 ± 200		7000	$\gamma,{ }^{3} \mathrm{He}$	17	
29.0	7^{-}		$500-1000$	p, α	9,11
29.8 ± 100	$9^{-}+8^{+}$			${ }^{3} \mathrm{He}, \alpha$	14,17
31.8 ± 600				γ, α	11,42
34	$10^{+}\left(9^{-}\right)$			α	9,11
35					

${ }^{\text {a }}$ See also Tables 16.14 and 16.26.
${ }^{\mathrm{b}}$ D.J. Millener, private communication.
${ }^{\text {c }}$ See (1986AJ04).
${ }^{\text {d }}$ See reaction 70 and (1986VO10).
${ }^{e}$ (1983SN03). See also Table 16.22.

Table 16.14: Radiative decays in ${ }^{16} \mathrm{O}^{\text {a }}$

$E_{\mathrm{i}}(\mathrm{MeV})$	$J_{\mathrm{i}}^{\pi} ; T$	$E_{\mathrm{f}}(\mathrm{MeV})$	$J_{\mathrm{f}}^{\pi} ; T$	Branch $(\%)$	$\Gamma_{\mathrm{rad}}(\mathrm{eV})$
6.05	$0^{+} ; 0$	0	$0^{+} ; 0$	100	$3.55 \pm 0.21^{\mathrm{b}}$
6.13	$3^{-} ; 0$	0	$0^{+} ; 0$	100	$(2.60 \pm 0.13) \times 10^{-5}$
6.92	$2^{+} ; 0$	0	$0^{+} ; 0$	>99	$0.097 \pm 0.003^{\mathrm{c}}$
		6.05	$0^{+} ; 0$	$(2.7 \pm 0.3) \times 10^{-2}$	$(2.7 \pm 0.3) \times 10^{-5}$
		6.13	$3^{-} ; 0$	$\leq 8 \times 10^{-3}$	
7.12	$1^{-} ; 0$	0	$0^{+} ; 0$	>99	$0.055 \pm 0.003^{\mathrm{c}}$
		6.05	$0^{+} ; 0$	$<6 \times 10^{-4}$	
		6.13	$3^{-} ; 0$	$(7.0 \pm 1.4) \times 10^{-2}$	
	87	$2^{-} ; 0$	0	$0^{+} ; 0$	7.2 ± 0.8
		6.05	$0^{+} ; 0$	0.122 ± 0.033	$(2.6 \pm 0.4) \times 10^{-4}$
		6.13^{f}	$3^{-} ; 0$	$77.7 \pm 1.6^{\mathrm{i}}$	$(2.8 \pm 0.3) \times 10^{-3 \mathrm{~d}}$

Table 16.14: Radiative decays in ${ }^{16} \mathrm{O}^{\text {a }}$ (continued)

$E_{\mathrm{i}}(\mathrm{MeV})$	$J_{\mathrm{i}}^{\pi} ; T$	$E_{\mathrm{f}}(\mathrm{MeV})$	$J_{\mathrm{f}}^{\pi} ; T$	Branch (\%)	$\Gamma_{\text {rad }}(\mathrm{eV})$
9.59	$1^{-} ; 0$	6.92	$2^{+} ; 0$	$3.6 \pm 0.5{ }^{\text {i }}$	$(1.5 \pm 0.3) \times 10^{-4}$
		7.12	$1^{-} ; 0$	$11.4 \pm 0.5^{\text {i }}$	$(4.2 \pm 0.8) \times 10^{-4} \mathrm{e}$
		0	$0^{+} ; 0$	≈ 100	$(2.5 \pm 0.4) \times 10^{-2}$
		6.92	$2^{+} ; 0$		$(2.9 \pm 1.0) \times 10^{-3}$
9.84	$2^{+} ; 0$	0	$0^{+} ; 0$	61 ± 4	$(5.7 \pm 0.6) \times 10^{-3}$
		6.05	$0^{+} ; 0$	18 ± 4	$(1.9 \pm 0.4) \times 10^{-5}$
10.36	$4^{+} ; 0$	6.92	$2^{+} ; 0$	21 ± 4	$(2.2 \pm 0.4) \times 10^{-5}$
		0	$0^{+} ; 0$		$(5.6 \pm 2.0) \times 10^{-8}$
		6.13	$3^{-} ; 0$		$<1.0 \times 10^{-3}$
		6.92	$2^{+} ; 0$	≈ 100	$(6.2 \pm 0.6) \times 10^{-2}$
10.96	$0^{-} ; 0^{\text {g }}$	7.12	$1^{-} ; 0$	> 99	0.08 ± 0.05
11.10	$4^{+} ; 0$	6.13	$3^{-} ; 0$		$(3.1 \pm 1.3) \times 10^{-3}$
		6.92	$2^{+} ; 0$		$(2.5 \pm 0.6) \times 10^{-3}$
11.52	$2^{+} ; 0$	0	$0^{+} ; 0$	91.7	0.61 ± 0.02
		6.05	$0^{+} ; 0$	4.2 ± 0.7	$(3.0 \pm 0.5) \times 10^{-2}$
		6.92	$2^{+} ; 0$	4.0 ± 1.0	$(2.9 \pm 0.7) \times 10^{-2}$
		7.12	1-; 0	≤ 0.8	
12.05	$0^{+} ; 0$	0	$0^{+} ; 0$		$4.03 \pm 0.09^{\text {b }}$
12.44	$1^{-} ; 0$	0	$0^{+} ; 0$	≈ 100	12 ± 2
		6.05	$0^{+} ; 0$	1.2 ± 0.4	0.12 ± 0.04
12.53	$2^{-} ; 0$	0	$0^{+} ; 0$		$(3.3 \pm 0.5) \times 10^{-2 \mathrm{j}}$
		6.13	$3^{-} ; 0$	60 ± 6	2.1 ± 0.2
		6.92	$2^{+} ; 0$	<10	<0.34
		7.12	$1^{-} ; 0$	15 ± 3	0.5 ± 0.1
		8.87	$2^{-} ; 0$	25 ± 3	0.9 ± 0.1
12.80	$0^{-} ; 1$	7.12	1-; 0	≈ 100	2.5 ± 0.2
12.97	$2^{-} ; 1$	0	$0^{+} ; 0$		$(3.4 \pm 0.9) \times 10^{-2 \mathrm{j}}$
		6.13	$3^{-} ; 0$	63 ± 6	2.3 ± 0.2
		7.12	$1^{-} ; 0$	12 ± 3	0.44 ± 0.10
		8.87	$2^{-} ; 0$	25 ± 3	0.90 ± 0.10
$13.09{ }^{\text {h }}$	$1^{-} ; 1$	0	$0^{+} ; 0$	≈ 100	32 ± 5

Table 16.14: Radiative decays in ${ }^{16} \mathrm{O}^{\text {a }}$ (continued)

$E_{\mathrm{i}}(\mathrm{MeV})$	$J_{\mathrm{i}}^{\pi} ; T$	$E_{\mathrm{f}}(\mathrm{MeV})$	$J_{\mathrm{f}}^{\pi} ; T$	Branch (\%)	$\Gamma_{\mathrm{rad}}(\mathrm{eV})$
		6.05	$0^{+} ; 0$	0.58 ± 0.12	
		7.12	$1^{-} ; 0$	3.1 ± 0.8	1.4 ± 0.4

[^3]At $E\left({ }^{6} \mathrm{Li}\right)=4.9 \mathrm{MeV}$, the cross sections for reactions (b) to (f) leading to low-lying states in the residual nuclei are proportional to $2 J_{\mathrm{f}}+1$: this is interpreted as indicating that the reactions proceed via a statistical compound nucleus mechanism. For highly excited states, the cross section is higher than would be predicted by a $2 J_{\mathrm{f}}+1$ dependence: see (1982AJ01, 1986AJ04).
5. ${ }^{10} \mathrm{~B}\left({ }^{10} \mathrm{~B}, \alpha\right){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=26.413$

States of ${ }^{16} \mathrm{O}$ observed at $E\left({ }^{10} \mathrm{~B}\right)=20 \mathrm{MeV}$ are displayed in Table 16.10 of (1977AJ02). At the higher excitation energies, states are reported at $E_{\mathrm{x}}=17.200 \pm 0.020,17.825 \pm 0.025,18.531 \pm$ $0.025,18.69 \pm 0.03,18.90 \pm 0.035,19.55 \pm 0.035,19.91 \pm 0.02,20.538 \pm 0.015,21.175 \pm 0.015$, $21.84 \pm 0.025,22.65 \pm 0.03$ and $23.51 \pm 0.03 \mathrm{MeV}$. The reaction excites known $T=0$ states: σ_{t} follows $2 J_{\mathrm{f}}+1$ for 11 of 12 groups leading to states of known J. The angular distributions show little structure: see (1977AJ02).
6. ${ }^{11} \mathrm{~B}\left({ }^{7} \mathrm{Li}, \mathrm{nn}\right){ }^{16} \mathrm{O}$

$$
Q_{\mathrm{m}}=12.170
$$

Cross section measurements at $E_{\text {c.m. }}=1.46-6.10 \mathrm{MeV}$ were reported in (1990DA03).
7. ${ }^{12} \mathrm{C}(\alpha, \gamma){ }^{16} \mathrm{O}$
$Q_{\mathrm{m}}=7.161$

Table 16.15: Resonances in ${ }^{12} \mathrm{C}+\alpha^{\text {a }}$

Table 16.15: Resonances in ${ }^{12} \mathrm{C}+\alpha^{\text {a }}$ (continued)

	No.	$E_{\alpha}(\mathrm{MeV} \pm \mathrm{keV})$	$\Gamma_{\text {c.m. }}(\mathrm{keV})$	Outgoing particles ${ }^{\text {b }}(x)$	Γ_{x}	$\Gamma_{\alpha_{0}} / \Gamma$	${ }^{16} \mathrm{O} *(\mathrm{MeV} \pm \mathrm{keV})$	$J^{\pi} ; T$
				γ_{4}	$1.35 \pm 0.4 \mathrm{eV}$			
				p	100 keV			
				α_{0}	$45 \pm 18 \mathrm{keV}$	0.3		
				α_{1}	1 keV			
	12	7.960 ± 10	110 ± 30	γ_{0}	$>0.01 \mathrm{eV}$		13.129	$3^{-} ; 0$
				p	1 keV			
				α_{0}	$90 \pm 14 \mathrm{keV}$	0.7		
				α_{1}	$\approx 20 \mathrm{keV}$			
	13	8.130 ± 15	26 ± 7	γ			13.257	$3^{-} ; 1$
				p	4.5 keV			
				α_{0}	$9 \pm 4 \mathrm{keV}$			
				α_{1}	7.5 keV			
∞				$\gamma_{4.4}$				
	14	8.960 ± 10	75 ± 7	α_{0}	49 keV	0.65 ± 0.05	13.879 ± 8	4^{+}
				α_{1}	23 keV			
	15	9.1	4800	α_{0}			(14.0)	$\left(0^{+}\right)$
	16	9.164 ± 15	200 ± 15	α_{0}	$\approx 200 \mathrm{keV}$	> 0.9	14.032	0^{+}
	17	9.3 ± 100	750 ± 200	α_{0}		0.2 ± 0.1	14.1	3^{-}
				α_{1}				
	18	9.948	487 ± 12	α_{0}		$0.8{ }^{\text {h }}$	$14.620 \pm 11^{\mathrm{g}}$	$\left(4^{+}\right)$
				α_{1}				
	19	10.002	672 ± 11	α_{0}		0.94	$14.660 \pm 11^{\mathrm{g}}$	5^{-}
				α_{1}				
	20	10.195 ± 7	70 ± 8	α_{0}	22 keV	0.45 ± 0.05	14.805	6^{+}
				α_{1}	48 keV			
	21	10.544	166 ± 30	$\alpha_{0}, \alpha_{1}, \mathrm{p}_{0}$		0.35	15.066 ± 11	0^{+}
	22	10.999	133 ± 7	$\alpha_{0}, \alpha_{1}, \mathrm{p}_{0}$		0.58	15.408 ± 2	3^{-}
	23	11.560	703 ± 113	$\alpha_{0},\left(\alpha_{1}\right), \gamma_{4.4}$		0.21	15.828 ± 30	3^{-}

Table 16.15: Resonances in ${ }^{12} \mathrm{C}+\alpha^{\text {a }}$ (continued)

	No.	$E_{\alpha}(\mathrm{MeV} \pm \mathrm{keV})$	$\Gamma_{\text {c.m. }}(\mathrm{keV})$	Outgoing particles ${ }^{\text {b }}(x)$	Γ_{x}	$\Gamma_{\alpha_{0}} / \Gamma$	${ }^{16} \mathrm{O} *(\mathrm{MeV} \pm \mathrm{keV})$	$J^{\pi} ; T$
ug	24	11.6	≈ 600	γ_{0}	$\Gamma_{\alpha} \Gamma_{\gamma} / \Gamma \approx 0.4 \mathrm{eV}$		15.9	2^{+}
	25	12.156	422 ± 14	α_{0}		0.93	16.275 ± 7	6^{+}
	26	12.272	65 ± 45	$\alpha_{0},\left(\alpha_{1}, \alpha_{2}\right), \mathrm{p}_{0}$		0.07	16.362 ± 20	$\left(0^{+}, 1^{-}\right)$
	27	12.380	22 ± 3	$\gamma_{0}, \mathrm{n}, \mathrm{p}_{0}, \alpha_{0}, \alpha_{1}, \alpha_{2}, \gamma_{4.4}$	$\Gamma_{\alpha} \Gamma_{\gamma} / \Gamma=0.45 \mathrm{eV}$	0.28	16.443 ± 2	2^{+}; (1)
	28	12.5	730	$\mathrm{p}_{0}, \alpha_{0}$			(16.5)	
	29	12.915	567 ± 60	α_{0}		0.28	16.844 ± 21	4^{+}
	30	13.0	700	α_{0}			(16.9)	5^{-}
	31	13.05	≈ 280	$\alpha_{2},{ }^{8} \mathrm{Be}$			16.94	2^{+}
	32	13.296	107 ± 14	$\mathrm{n}, \mathrm{p}_{0}, \alpha_{0}, \alpha_{1}, \gamma_{4.4}$		0.37	17.129 ± 5	2^{+}
	33	13.32	36 ± 5	α_{0}, α_{1}			17.15	
	34	13.35	160 ± 60	$\alpha_{2},{ }^{8} \mathrm{Be}$			17.17	2^{+}
	35	13.50	< 100	n			17.28	
	36	13.805	182 ± 56	$\alpha_{0},\left(\alpha_{1}\right), \alpha_{2}$		0.16	17.510 ± 26	1^{-}
	37	13.865	178 ± 66	$\mathrm{n},\left(\alpha_{0}, \alpha_{1}\right)$		0.07	17.555 ± 21	$\left(6^{+}\right)$
	38	13.948	175 ± 55	$\mathrm{p}_{0}, \alpha_{0}$		0.32	17.618 ± 20	$\left(0^{+}, 1^{-}\right)$
	39	14.08	(≈ 75)	$\left(\mathrm{p}_{0}\right),{ }^{8} \mathrm{Be}$			17.72	$\left(0^{+}, 2^{+}\right)$
	40	14.170	396 ± 41	n, $\alpha_{0}, \alpha_{1}, \gamma_{4.4},{ }^{8} \mathrm{Be}$		0.34	17.784 ± 15	4^{+}
	41	14.480	14 ± 2	(n), $\mathrm{p}_{0}, \alpha_{0}, \alpha_{1}, \gamma_{4.4},{ }^{8} \mathrm{Be}$		0.36	18.016 ± 1	$4^{+} ;(0)$
	42	14.577	248 ± 90	$\left(\gamma_{0}\right), \mathrm{n}_{0}, \mathrm{p}_{0}, \alpha_{0}$		0.31	18.089 ± 25	$\left(0^{+}\right)$
	43	(14.62)	(≈ 45)	α_{0}			(18.12)	$\left(\neq 4^{+}\right)$
	44	14.85	≈ 380	$\gamma_{0}, \mathrm{p}_{0},\left(\alpha_{1}, \gamma_{4.4}\right)$	$\Gamma_{\alpha} \Gamma_{\gamma} / \Gamma=0.95 \mathrm{eV}$		18.29	
	45	14.997	544 ± 39	α_{0}		0.40	18.404 ± 12	5^{-}
	46	15.2	≈ 150	$\alpha_{0}, \alpha_{1}, \alpha_{2}, \gamma_{4.4}$			18.6	$\left(1^{-}, 5^{-}\right)$
	47	15.2	≈ 300	$\alpha_{2},{ }^{8} \mathrm{Be}$			18.6	$\left(4^{+}\right)$
	48	15.490	215 ± 45	$\mathrm{p}_{0}, \alpha_{0}$		0.26	18.773 ± 22	1^{-}
	49	15.506	260 ± 16	n, $\mathrm{p}_{0}, \alpha_{0},\left(\alpha_{1}\right),{ }^{8} \mathrm{Be}$		0.48	18.785 ± 6	4^{+}
	50	15.8	≈ 550	$\left(\alpha_{0}\right), \alpha_{1}, \gamma_{4.4}$			19.0	$\left(5^{-}\right)$
	51	15.96	41	(n), α_{0}			(19.12)	$\left(2^{+}, 4^{+}\right)$

Table 16.15: Resonances in ${ }^{12} \mathrm{C}+\alpha^{\text {a }}$ (continued)

8	No.	$E_{\alpha}(\mathrm{MeV} \pm \mathrm{keV})$	$\Gamma_{\text {c.m. }}(\mathrm{keV})$	Outgoing particles ${ }^{\text {b }}(x)$	Γ_{x}	$\Gamma_{\alpha_{0}} / \Gamma$	${ }^{16} \mathrm{O} *(\mathrm{MeV} \pm \mathrm{keV})$	$J^{\pi} ; T$
	52	16.130	50 ± 45	(n), (α_{0})		0.04	19.253 ± 30	(5^{-})
	53	16.137	155 ± 23	$\mathrm{p}_{0}, \alpha_{0},\left(\alpha_{1}\right)$		0.34	19.257 ± 9	2^{+}
	54	16.219	63 ± 33	$\mathrm{p}_{0},\left(\alpha_{0}\right), \alpha_{1}, \alpha_{2},{ }^{8} \mathrm{Be}$		0.07	19.319 ± 14	$\left(6^{+}\right)$
	55	16.293	23 ± 4	$\mathrm{p}_{0}, \alpha_{0}, \alpha_{1}, \alpha_{2}$		0.23	19.375 ± 2	4^{+}
	56	16.496	255 ± 75	(n), $\alpha_{0},\left(\alpha_{1}, \alpha_{2}\right)$		0.20	19.527 ± 26	2^{+}
	57	16.799	286 ± 44	$\mathrm{p}_{0}, \alpha_{0}, \alpha_{1}$		0.29	19.754 ± 16	2^{+}
	58	(16.92)	(≈ 175)	α_{2}			(19.85)	
	59	(17.05)	(≈ 30)	$\left(\alpha_{0}\right)$			(19.94)	$\left(\neq 3^{-}\right)$
	60	17.201	432 ± 40	$\gamma_{0}, \mathrm{n},\left(\mathrm{p}_{0}\right), \alpha_{0},\left(\alpha_{1}\right)$		0.43	20.055 ± 13	2^{+}
	61	(17.27)	(≈ 45)	$\left(\alpha_{0}\right)$			(20.11)	$\left(\neq 3^{-}\right)$
	62	17.5	≈ 1500	p_{0}			(20.3)	
	63	(17.66)	(≈ 150)	$\mathrm{n},\left(\mathrm{p}_{0}\right), \alpha_{0}, \alpha_{2}$			(20.40)	$\left(4^{+}\right)$
	64	(17.8)	(≈ 300)	$\left(\alpha_{0}\right), \alpha_{1}$			(20.5)	
	65	17.849	11 ± 2	$\mathrm{p}_{0}, \alpha_{0}, \alpha_{1}, \alpha_{2}$		0.14 ± 0.02	20.541 ± 2	5^{-}
	66	17.875	< 5	α_{0}			20.560 ± 2	even
	67	17.948	<10	α_{0}			20.615 ± 3	even
	68	(18.2)	(≈ 60)	$\mathrm{n},\left(\mathrm{p}_{0}\right)$			(20.8)	
	69	18.271	904 ± 55	α_{0}		0.60	20.857 ± 14	7^{-}
	70	(18.3)		α_{0}			(20.9)	2^{+}
	71	(18.48)	(≈ 50)	$\mathrm{n}, \mathrm{p}_{0},\left(\alpha_{0}\right)$			(21.01)	
	72	18.50 ± 25	240 ± 80	$\gamma_{0},\left(\alpha_{0}, \alpha_{1}\right)$		0.20	21.03	$\left(1^{-}\right)$
	73	18.5	900	α_{0}		i	(21.0)	$5{ }^{-}$
	74	18.531	205 ± 14	α_{0}		0.50	21.052 ± 6	6^{+}
	75	18.593	306 ± 46	$\left(\alpha_{0}\right)$		0.20	(21.098)	4^{+}
	76	19.294	61 ± 32	$\mathrm{n}, \mathrm{p}_{0}, \alpha_{0}, \alpha_{2}$		<0.05	21.623 ± 11	7^{-}
	77	$19.327^{\text {j }}$	115 ± 8	$\mathrm{n}, \alpha_{0}, \alpha_{1}, \alpha_{2}$		0.41	21.648 ± 3	6^{+}
	78	$19.498{ }^{\text {j }}$	43 ± 20	$\mathrm{n}, \mathrm{p}_{0}, \alpha_{0}, \alpha_{1}, \alpha_{2}$		0.07	21.776 ± 9	3^{-}
	79	19.85	60	n			22.04	

Table 16.15: Resonances in ${ }^{12} \mathrm{C}+\alpha^{\text {a }}$ (continued)

${ }^{\text {a }}$ References are listed in Tables 16.11 (1971AJ02), 16.12 (1977AJ02), 16.13 (1982AJ01), and 16.12 (1986AJ04).
${ }^{\mathrm{b}} \mathrm{p}_{0}$ corresponds to ${ }^{15} \mathrm{~N}(0) . \alpha_{0}, \alpha_{1}$ corresponds to ${ }^{12} \mathrm{C}^{*}(0,4.4)$ and $\gamma_{4.4}$ corresponds to the γ-ray from the decay of ${ }^{12} \mathrm{C}^{*}(4.4)$; $\gamma_{0}, \gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}$ correspond to the transitions to ${ }^{16} \mathrm{O}^{*}(0,6.05,6.13,6.92,7.12)$.
${ }^{c}$ These are observed widths from (1987RE02). We are indebted to Dr. F.C. Barker who informed us of these and other recent observed width determinations. $\Gamma_{\gamma_{3}}^{0}=2.4 \pm 1.4 \mathrm{meV}(1987 \mathrm{RE} 02), \Gamma_{\gamma_{3}}=2.4 \mathrm{meV}, \Gamma_{\gamma_{4}}=8.0 \mathrm{meV}(1991 \mathrm{BA} 1 \mathrm{~K})$, $\Gamma_{\gamma_{0}}=16.4 \mathrm{meV}$ (R-matrix fit by (1991HU10)).
${ }^{\mathrm{d}}$ Branching ratios to ${ }^{16} \mathrm{O} *(0,6.05)=98.8 \%, 1.2 \%$.
${ }^{\mathrm{e}} \Gamma_{\gamma_{0}}=0.7 \pm 0.2 \mathrm{eV}$, based on $\Gamma_{\alpha_{0}} / \Gamma=1.0$ and $\Gamma_{\text {c.m. }}=190 \pm 40 \mathrm{keV}$.
${ }^{\mathrm{f}} \Gamma_{\alpha_{0}} \Gamma_{\gamma_{0}} / \Gamma^{2}=(1.49 \pm 0.17) \times 10^{-4}$.
${ }^{\mathrm{g}}$ Uncertainties in E_{x} may be larger.
${ }^{\mathrm{h}}$ For this and the states below Γ_{α} / Γ is ± 0.10 for isolated narrow levels.
${ }^{\mathrm{i}} \Gamma_{\alpha_{2}} / \Gamma=0.16$ (1982KA30).
${ }^{\mathrm{j}}$ A resonance is reported at $E_{\alpha}=19.4 \mathrm{MeV}: 4^{+}$is dominant, $\Gamma_{\alpha} / \Gamma \ll 1, \Gamma \geq 0.48$ (1982KA30).
${ }^{\mathrm{k}} \Gamma_{8} \mathrm{Be}, \Gamma_{\alpha_{0}}$, and $\Gamma_{\alpha_{2}} \approx 3.5,1.5 \pm 0.5$ and $\approx 6 \mathrm{keV}$, respectively.
${ }^{1} \Gamma_{\alpha_{2}} / \Gamma=0.2$ (1983AR12).
${ }^{m}$ Broad maxima are reported in the activation cross section at $E_{\alpha}=22.8,24.3,25.3$ and 26.9 MeV (1983KOZD; prelim.).
${ }^{n}$ See (1981SA07) for $\left(\alpha, \gamma_{14.8}\right)$ measurements which indicate an 8^{+}GQR built on the 6_{1}^{+}state ${ }^{16} \mathrm{O}^{*}(14.82)$.

Table 16.16: Astrophysical factors for ${ }^{12} \mathrm{C}(\alpha, \gamma)^{\text {a }}$

Reference	$S_{\mathrm{E} 1}\left(E_{0}\right)(\mathrm{MeV} \cdot \mathrm{b})$	$S_{\mathrm{E} 2}\left(E_{0}\right)(\mathrm{MeV} \cdot \mathrm{b})$
(1987RE02)	$0.20_{-0.11}^{+0.27 \mathrm{~b}}$	$0.096_{-0.030}^{+0.024}$
	$0.09_{-0.06}^{+0.0}, 0.14_{-0.08}^{+0.12} \mathrm{c}$	
(1987PL03)	$0.20 \pm 0.08^{\mathrm{b}}$	0.089 ± 0.030
	$0.16 \pm 0.10^{\mathrm{c}}$	
(1987BA53)	$0.14_{-0.05}^{+0.13}, 0.18_{-0.10}^{+0.16 \mathrm{~b}}$	$0.03_{-0.03}^{+0.05}$
(1988KR06)	$0.01_{-0.01}^{+0.13 \mathrm{~b}}$	
	0.08^{c}	
(1989FI08)	$0.03_{-0.03}^{+0.14 \mathrm{~d}}$	$0.007_{-0.005}^{+0.024 \mathrm{~d}}$
(1991BA1K)	$0.15_{-0.07}^{+0.17}, 0.26_{-0.16}^{+0.14} \mathrm{~b}$	$0.12_{-0.07}^{+0.06}$
(1991HU10)	$0.043_{-0.016}^{+0.020} \mathrm{~d}$	

${ }^{\text {a }}$ We are indebted to Dr. F.C. Barker for providing this list of recent values.
${ }^{\mathrm{b}}$ 3-level R fitting.
${ }^{c}$ Hybrid R fitting.
${ }^{\mathrm{d}} \mathrm{K}$ fitting.

The yield of capture γ-rays has been studied for E_{α} up to 42 MeV [see Table 16.11 in (1977AJ02) and (1982AJ01)]. See also (1986AJ04). Observed resonances are displayed in Table 16.15 here.

This reaction plays an important role in astrophysical processes. The cross sections at astrophysical energies have been obtained by fitting measured cross sections and extrapolating them to low energies utilizing standard R-matrix, Hybrid R-matrix and K-matrix procedures. A list of recent values of the E2 and E1 astrophysical factors for $E_{0}=300 \mathrm{keV}$ obtained from fits to the data is given in Table 16.16.

The influence of vacuum polarization effects on subbarrier fusion is evaluated in (1988AS03), and the relevance of Coulomb dissociation of ${ }^{16} \mathrm{O}$ into ${ }^{12} \mathrm{C}+\alpha$ is studied in (1986BA50, 1989BA64, 1992SH11). Calculations to test the sensitivity of stellar nucleosynthesis to the level in ${ }^{12} \mathrm{C}$ at 7.74 MeV are described in (1989LI29). For other astrophysical studies see (1982AJ01, 1986AJ04) and (1985TA1A, 1986FI15, 1986MA1E, 1986WO1A, 1987AR1C, 1987BO1B, 1987DE32, 1987RO25, 1988CA26, 1988PA1H, 1988TRZZ, 1990BL1K, 1990BR1Q, 1990JI02).

At higher energies the E 2 cross section shows resonances at $E_{\mathrm{x}}=13.2,15.9,16.5,18.3,20.0$, and 26.5 MeV [see Table 16.16]. Some E2 strength is also observed for $E_{\mathrm{x}}=14$ to 15.5 and 20.5 to 23 MeV . In the range $E_{\alpha}=7$ to 27.5 MeV the $T=0 \mathrm{E} 2$ strength is $\sim 17 \%$ of the sum-rule value. It appears from this and other experiments that the E 2 centroid is at $E_{\mathrm{x}} \sim 15 \mathrm{MeV}$, with a 15 MeV spread. Structures are observed in the yield of γ-rays from the decay to ${ }^{16} \mathrm{O}^{*}(14.8 \pm 0.1)$
for $E_{\mathrm{x}}=34-39 \mathrm{MeV}$. It is suggested that these correspond to a giant quadrupole excitation with $J^{\pi}=8^{+}$built on the 6_{1}^{+}state at $E_{\mathrm{x}}=14.815 \mathrm{MeV}$: see (1982AJ01, 1986AJ04).
8. (a) ${ }^{12} \mathrm{C}(\alpha, \mathrm{n})^{15} \mathrm{O}$
$Q_{\mathrm{m}}=-8.502$
$E_{\mathrm{b}}=7.161$
(b) ${ }^{12} \mathrm{C}(\alpha, p)^{15} \mathrm{~N}$
$Q_{\mathrm{m}}=-4.966$
(c) ${ }^{12} \mathrm{C}(\alpha, \mathrm{d})^{14} \mathrm{~N}$
$Q_{\mathrm{m}}=-13.575$

For reaction (a) cross section measurements from threshold to $E_{\alpha}=24.7 \mathrm{MeV}$ [see (1986AJ04)], and at $E_{\alpha}=10.5$ to 20 MeV (see Table 16.16 here). For excitation functions from $E_{\alpha}=21.8$ to 27.2 MeV , see (1986AJ04). Thick-target neutron yields have been measured for $E_{\alpha}=1.0$ to 9.8 MeV (1989HE04) and for $4-7 \mathrm{MeV}$ (1982WE16). For reaction (b) cross section measurements from threshold to 33 MeV , see (1986AJ04). The excitation curve for p_{3} (to ${ }^{15} \mathrm{~N}^{*}(6.32)$, measured for $E_{\alpha}=24$ to 33 MeV , shows a large peak at $E_{\mathrm{x}} \approx 29 \mathrm{MeV}, \Gamma \approx 4 \mathrm{MeV}$. It is suggested that it is related to the GQR in ${ }^{16} \mathrm{O}$: see (1982AJ01). For reaction (c) deuteron spectra have been measured for $E_{\alpha}=200,400,600,800 \mathrm{MeV} /$ nucleon (1991MO1B). For the observed resonances see Table 16.16 here.
9. ${ }^{12} \mathrm{C}(\alpha, \alpha){ }^{12} \mathrm{C}$

$$
E_{\mathrm{b}}=7.161
$$

The yield of α-particles leading to ${ }^{12} \mathrm{C}^{*}(0,4.4,7.7)$ and $4.4,12.7$ and $15.1 \mathrm{MeV} \gamma$-rays has been studied at many energies in the range $E_{\alpha}=2.5$ to 42 MeV [see (1986AJ04)], and at $E_{\alpha}=0.4-$ 1.8 MeV (1990TO09). Observed resonances are displayed in Table 16.15. Attempts have been made to observe narrow states near ${ }^{16} \mathrm{O}^{*}(8.87,9.85)$. No evidence has been found for a narrow $(100 \mathrm{eV}) 0^{+}$state in the vicinity of the 2^{-}state at 8.87 MeV [see (1982AJ01)] nor for a 3^{-}state near the 2^{+}state at 9.84 MeV (1986AJ04).

For total cross section measurements see (1986AJ04) and for $E_{\alpha}=100 \mathrm{MeV}$ (1986DU15). For integral cross sections for inelastic scattering at 50.5 MeV , see (1987BU27). For elastic scattering differential cross sections at $E_{\alpha}=96.6 \mathrm{MeV}$ see (1990KO2C), at 90 MeV (1990GL02), at 90 and 98 MeV (1991GO25). For diffraction scattering at momentum $17.9 \mathrm{GeV} / \mathrm{c}$, see (1991AB1F). For inelastic scattering and polarization of ${ }^{12} \mathrm{C}\left(9.64 \mathrm{MeV}, 3^{-}\right)$see (1989KO55, 1991KO40), who report that the reaction at $E_{\alpha}=27.2 \mathrm{MeV}$ proceeds mostly via an 8^{+}state in the compound system. For pion production at momenta $4.5 \mathrm{GeV} / \mathrm{c}$ per nucleon see (1990AB1D), at $4.2 \mathrm{GeV} / \mathrm{c}$ per nucleon (1987AG1A), at energies of 3.6 GeV per nucleon (1987AN20), and at 200 to 800 MeV per nucleon (1987LH01), at $E_{\alpha}=0.8,1.6 \mathrm{GeV}$ (1991LE06). Differential cross sections at $E_{\alpha}=1-6.6 \mathrm{MeV}$ measured to obtain information on ${ }^{12} \mathrm{C}(\alpha, \gamma)$ stellar reaction rates are reported by (1987PL03).

Calculations of total cross sections for $E_{\alpha}=96.6-172.5 \mathrm{MeV}$ are presented in (1989KU30) and distributions of α-particle strengths in (1988LE05). Energy dependence at high energies (~ 1 $\mathrm{GeV} /$ nucleon) is studied in (1988MO18). The iterative-perturbative method for S-matrix to potential inversion was applied to $\alpha+{ }^{12} \mathrm{C}$ phase shifts at $E_{\text {lab }}=1.0-6.6 \mathrm{MeV}$ in (1990CO29). See
also (1991LI25). Nucleus-nucleus scattering and interaction radii were studied in (1986SA30). Core-plus alpha particle states in ${ }^{16} \mathrm{O}$ populated in $\alpha+{ }^{12} \mathrm{C}$ scattering are studied in terms of vibron models in (1988CS01). See also (1991AB10, 1991DE15, 1991ES1B, 1991RU1B, 1992SA26). The effects of electron screening on low energy fusion reactions of astrophysical interest are explored in (1987AS05, 1990TO09). The nature of the $\alpha+{ }^{12} \mathrm{C}$ potential at low energy is explored in (1990AL05). For other theoretical work see (1986MI24, 1986SU06, 1987BA83, 1989BA92, 1990DA1Q).
10. (a) ${ }^{12} \mathrm{C}\left(\alpha,{ }^{8} \mathrm{Be}\right)^{8} \mathrm{Be}$
$Q_{\mathrm{m}}=-7.4585$
$E_{\mathrm{b}}=7.16195$
(b) ${ }^{12} \mathrm{C}(\alpha, 2 \alpha){ }^{8} \mathrm{Be}$
$Q_{\mathrm{m}}=-7.365$

The yield of ${ }^{8} \mathrm{Be}$ from reaction (a) shows a number of resonances: see Table 16.16. There is no evidence below $E_{\mathrm{x}} \sim 24 \mathrm{MeV}$ for $J^{\pi}=8^{+}$states although the existence of such states below this energy cannot be ruled out since it is possible that the L of the entrance channel inhibits the formation of such states. Above $26 \mathrm{MeV} L=8$ becomes dominant: see (1982AJ01, 1986AJ04). See also the angular distribution measurements of (1991GL03) at $E_{\alpha}=90 \mathrm{MeV}$. For differential cross sections for reaction (b) at $E_{\alpha}=27.2 \mathrm{MeV}$ see (1987KO1E). See also (1977AJ02).

$$
\text { 11. }{ }^{12} \mathrm{C}\left({ }^{6} \mathrm{Li}, \mathrm{~d}\right){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=5.6868
$$

This reaction has been studied at many energies: see (1977AJ02) and Table 16.17 here. At higher energies the spectra are dominated by states with $J \geq 4$ and natural parity (1986AJ04). A kinematic coincidence technique was applied in (1986CA19) to study the unresolved doublet at $E_{\mathrm{x}}=11.09 \mathrm{MeV}$ enabling clear observation of the γ-decaying 3^{+}member at 11.080 MeV although it contributes only $\sim 15 \%$ of the singles yield of the doublet which is dominated by the 4^{+}member at 11.096 MeV . Angular correlation measurements (1980CU08) suggested that the 11.0964^{+}state is populated via a two-step process, and this interpretation was confirmed in calculations by (1988SE07). See also (1986AJ04). An interference effect was observed in the angular correlation function for the 7^{-}level at $E_{\mathrm{x}}=20.9 \mathrm{MeV}$ in measurements by (1987AR28). See also (1986AR1A, 1987BE1C, 1987GO1C, 1988ARZU).

Inclusive deuteron spectra from the break-up of ${ }^{6} \mathrm{Li}$ ions at 156 MeV are described in (1989JE07). See also (1986AJ04).

A numerical method for evaluation of ($\left.{ }^{6} \mathrm{Li}, \mathrm{d}\right)$ stripping into the $5^{-}(15.6 \mathrm{MeV})$ and $6^{+}(16.3 \mathrm{MeV})$ states is presented in (1989SE06). See also (1991SE12). An extensive discussion of alpha clustering in nuclei is presented in (1990HO1Q). Cluster stripping and heavy-group substitution in the reaction is discussed in (1988BE49), and the effect of including Coulomb forces in the Faddeev formalism is studied in (1988OS05).

Table 16.17: States of ${ }^{16} \mathrm{O}$ from ${ }^{12} \mathrm{C}\left({ }^{6} \mathrm{Li}, \mathrm{d}\right)$ and ${ }^{12} \mathrm{C}\left({ }^{7} \mathrm{Li}, \mathrm{t}\right)$

$E_{\mathrm{x}}{ }^{\text {a }}(\mathrm{MeV} \pm \mathrm{keV})$	$\Gamma_{\text {c.m. }}{ }^{\text {b }}(\mathrm{keV})$	$\theta_{\alpha}^{2} / \theta_{\alpha}^{2}\left(2^{+}\right)^{\text {c }}$	$\Gamma_{\alpha_{0}} / \Gamma$	$J^{\pi} ; K^{\pi}$
0		0.93, 0.18		0^{+}
6.05		0.38, 1.10		$0^{+} ; 0^{+}$
6.13		0.23, 0.22		3^{-}
6.92		$\equiv 1.0$		$2^{+} ; 0^{+}$
7.12		0.53, 0.39		1^{-}
8.87	<20			2^{-}
$9.63 \pm 30{ }^{\text {d }}$	400 ± 10	0.30, 0.60		$1^{-} ; 0^{-}$
9.84	<20	$\leq 0.05, \leq 0.01$		2^{+}
$10.346 \pm 6^{\text {e }}$	35 ± 5	0.25, 0.47	0.86 ± 0.09	$4^{+} ; 0^{+}$
10.96				0^{-}
$11.10{ }^{\text {e }}$	<30	$\leq 0.06, \leq 0.03$	$\begin{gathered} 0.31 \pm 0.03 \\ \left(J=4^{+}\right) \end{gathered}$	$3^{+}+4^{+}$
11.59 ± 20	700 ± 100	≈ 0.4		$3^{-} ; 0^{-}$
13.09	≈ 230			1^{-}
14.363 ± 15	< 120			$>5, \pi=$ nat
14.66 ± 20	500 ± 50		1.03 ± 0.1	$5^{-} ; 0^{-}$
14.82	45 ± 10			$\left(6^{+}\right)$
16.30 ± 20	300 ± 50		1.07 ± 0.11	$6^{+} ; 0^{+}$
17.65 ± 50	100 ± 50			
$\begin{array}{r} 17.85 \pm 50 \\ (18.6)^{\mathrm{f}} \end{array}$	≈ 200			$\left(5^{-}\right)$
19.30 ± 50	≈ 200			
$20.8 \pm 100{ }^{\text {e }}$	500 ± 100		1.16 ± 0.23	$7^{-} ; 0^{-}$
21.6 ± 100	≤ 100		0.67 ± 0.14	6^{+}
23.0 ± 100	≈ 200			$\left(6^{+}\right)$
23.8 ± 100	1980 ± 250			$\left(6^{+}\right)$
26.9 ± 100	1700 ± 250			$\left(7^{-}\right)$
$27.7{ }^{\text {f }}$				(7^{-})
(29.3) ${ }^{\text {f }}$				$\left(7^{-}\right)$
32 g	broad			
$34^{\text {h }}$				$10^{+}\left(9^{-}\right)$
35^{g}	broad			

${ }^{\text {a }} E_{\mathrm{x}}$ quoted without errors are from Table 16.13. For the earlier references see Table 16.14 (1982AJ01). Angular distributions are reported in both reactions for the first nine states.
${ }^{\mathrm{b}}$ Line widths, not corrected for α-penetrabilities.
${ }^{\text {c }}$ Ratio of dimensionless reduced α-width calculated at a channel radius of 5.4 fm , relative to that for ${ }^{16} \mathrm{O}^{*}(6.92)$. (N, L) here are taken to be $(2,0)$ and $(4,1)$ respectively, for ${ }^{16} \mathrm{O}^{*}(0,7.12)$. The first number listed is the value reported at $E\left({ }^{6} \mathrm{Li}\right)=42 \mathrm{MeV}$, the second at $E\left({ }^{6} \mathrm{Li}\right)=90.2 \mathrm{MeV}$.
${ }^{d}$ On the basis of studies of the ${ }^{12} \mathrm{C}\left({ }^{6} \mathrm{Li}, \mathrm{d}\right),{ }^{12} \mathrm{C}\left({ }^{7} \mathrm{Li}, \mathrm{t}\right),{ }^{12} \mathrm{C}\left({ }^{10} \mathrm{~B},{ }^{6} \mathrm{Li}\right)$ and ${ }^{19} \mathrm{~F}(\mathrm{p}, \alpha)$ reactions, the energy of ${ }^{16} \mathrm{O}^{*}(9.6)$ is $9619 \pm 15 \mathrm{keV}$ with $\Gamma=400 \pm 100 \mathrm{keV}$ (line width). $\Gamma_{\mathrm{R}}=430 \pm 10 \mathrm{keV}$ as inferred from the best fit B-W line shape. This value is corrected for penetrability (1981OV02; Becchetti, private communication.).
${ }^{\text {e }}$ Angular distributions are reported at $E\left({ }^{6} \mathrm{Li}\right)=35.5-35.6 \mathrm{MeV}$ to ${ }^{16} \mathrm{O}^{*}(10.36)$ and to the unresolved 3^{+}and 4^{+}states at 11.1 MeV (1986AJ04). More recent coincidence measurements (1986CA19) have indicated that while the 4^{+}state is dominantly populated and decays by α emission, the 3^{+}state decays by γ emission. Angular correlation measurements (1980CU08) and analysis (1988SE07) indicate the the 4^{+}state is populated by a two-step process.
${ }^{\mathrm{f}}$ (1982AR20); decay primarily by α_{0}.
${ }^{\mathrm{g}}$ (1982AR20); decay primarily by α_{1}.
${ }^{\mathrm{h}}$ (1982AR20, 1983AR12); decays primarily by α_{2}.
12. ${ }^{12} \mathrm{C}\left({ }^{7} \mathrm{Li}, \mathrm{t}\right){ }^{16} \mathrm{O}$

$$
Q_{\mathrm{m}}=4.695
$$

This reaction has been studied extensively: see (1977AJ02, 1982AJ01) and Table 16.17 here. Measurements of α-t angular correlations for the process ${ }^{12} \mathrm{C}\left({ }^{7} \mathrm{Li}, \mathrm{t}\right){ }^{16} \mathrm{O}(\alpha){ }^{12} \mathrm{C}$ are reported in (1988AR22) for the $7^{-}(20.9 \mathrm{MeV}), 6^{+}(16.3 \mathrm{MeV})$, and $5^{-}(14.6 \mathrm{MeV})$ levels in ${ }^{16} \mathrm{O}$. Analyses of the ($\left.{ }^{7} \mathrm{Li}, \mathrm{t}\right)$ reaction for cluster states in ${ }^{16} \mathrm{O}$ are reported in (1986CO15, 1988BE49). See also (1987BE1C, 1988BE1D, 1988BEYB, 1989AL1D, 1990HO1Q) and the sections on ${ }^{19} \mathrm{~F}$ in (1983AJ01, 1987AJ02).

Angular distributions at $E\left({ }^{10} \mathrm{~B}\right)=18$ and 45 MeV have been studied involving ${ }^{16} \mathrm{O} *(0,6.1$, 7.1, 8.9, 9.9, 10.4). At $E\left({ }^{10} \mathrm{~B}\right)=68 \mathrm{MeV}$ angular distributions to ${ }^{16} \mathrm{O}^{*}(0,6.1,6.9,10.4,11.1,14.7$, $16.2,20.9)$ are forward peaked and fairly structureless. ${ }^{16} \mathrm{O} *(0,6.9,11.1)$ are weakly excited: see (1982AJ01, 1986AJ04, 1990HO1Q).
14. ${ }^{12} \mathrm{C}\left({ }^{12} \mathrm{C},{ }^{8} \mathrm{Be}\right){ }^{16} \mathrm{O}$

$$
Q_{\mathrm{m}}=-0.2047
$$

Angular distributions have been reported at $E\left({ }^{12} \mathrm{C}\right)$ to 63 MeV [see (1977AJ02)] and at 4.9 to 10.5 MeV , and 11.2 to 12.6 MeV [see (1986AJ04)]. Angular correlations at $E\left({ }^{12} \mathrm{C}\right)=78 \mathrm{MeV}$ confirm $J^{\pi}=4^{+}, 5^{-}, 6^{+}$and 7^{-}for ${ }^{16} \mathrm{O}^{*}(10.36,14.59,16.3,20.9) . \quad \Gamma_{\gamma_{0}} / \Gamma=0.90 \pm 0.10$, 0.75 ± 0.15 and 0.90 ± 0.10, respectively, for the first three of these states. In addition a state is reported at $E_{\mathrm{x}}=22.5 \pm 0.5 \mathrm{MeV}$ which may be the 8^{+}member of the $K^{\pi}=0^{+}, 4 \mathrm{p}-4 \mathrm{~h}$ rotational band (1979SA29). For further work at $E\left({ }^{12} \mathrm{C}\right)=90,110$ and 140 MeV see (1986SH10). At $E\left({ }^{12} \mathrm{C}\right)=120 \mathrm{MeV} \alpha_{0}$ decays of ${ }^{16} \mathrm{O}^{*}(16.3,20.9)\left[J^{\pi}=6^{+}, 7^{-}\right]$and α_{1} decays of ${ }^{16} \mathrm{O}^{*}(19.1$, $22.1,23.5)$ are observed as is a broad structure in both channels corresponding to ${ }^{16} \mathrm{O} *(30.0)$ with $J^{\pi}=9^{-}+8^{+}$. A gross structure ${ }^{12} \mathrm{C}^{12} \mathrm{C}$ resonance at $E_{\text {c.m. }}=25 \mathrm{MeV}$ in the reaction leading to the ${ }^{16} \mathrm{O} 11.09 \mathrm{MeV} 4^{+}$state is reported in (1987RA22). For other work on alpha cluster resonances see (1986ALZN, 1986RAZI, 1987RA02, 1990HO1Q). Measurements of differential cross sections at sub-barrier energies $2.43 \leq E_{\text {c.m. }} \leq 5.24 \mathrm{MeV}$ are reported in (1989CU03) and a statistical model calculation is discussed in (1990KH05). See also (1991CE09). For the decay of ${ }^{20} \mathrm{Ne}$ states see (1983AJ01, 1986AJ04, 1987AJ02), and for excitation functions see (1986AJ04).
15. (a) ${ }^{12} \mathrm{C}\left({ }^{14} \mathrm{~N},{ }^{10} \mathrm{~B}\right){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=-4.4503$
(b) ${ }^{12} \mathrm{C}\left({ }^{17} \mathrm{O},{ }^{13} \mathrm{C}\right){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=0.8027$

Angular distributions are reported at $E\left({ }^{14} \mathrm{~N}\right)=53 \mathrm{MeV}$ involving ${ }^{16} \mathrm{O}^{*}(0,6.05,6.13,6.92)$ and various states of ${ }^{10} \mathrm{~B}$, and at 78.8 MeV involving ${ }^{16} \mathrm{O}_{\text {g.s. }}$: see (1982AJ01). Angular distributions have been measured for the g.s. in reaction (b) for $E\left({ }^{17} \mathrm{O}\right)=40$ to 70 MeV (1986AJ04). See also (1986AR04, 1989WUZZ, 1990HO1Q), the two-center shell model basis calculations of (1991TH04) and the review of Landau-Zener effect investigations in (1990TH1D).

$$
\text { 16. }{ }^{12} \mathrm{C}\left({ }^{20} \mathrm{Ne},{ }^{16} \mathrm{O}\right){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=2.428
$$

Angular distributions have been measured to $E\left({ }^{20} \mathrm{Ne}\right)=147 \mathrm{MeV}$: see (1977AJ02). For yield measurements see (1986AJ04). Studies of projectile-breakup and transfer re-emission in the ${ }^{12} \mathrm{C}+{ }^{20} \mathrm{Ne}$ system at an incident ${ }^{20} \mathrm{Ne}$ energy of 157 MeV are described in (1987SI06). See also (1990HO1Q).
17. (a) ${ }^{13} \mathrm{C}\left({ }^{3} \mathrm{He}, \gamma\right)^{16} \mathrm{O}$
(b) ${ }^{13} \mathrm{C}\left({ }^{3} \mathrm{He}, \mathrm{n}\right)^{15} \mathrm{O}$
$Q_{\mathrm{m}}=22.79338$
(c) ${ }^{13} \mathrm{C}\left({ }^{3} \mathrm{He}, \mathrm{p}\right){ }^{15} \mathrm{~N}$
$Q_{\mathrm{m}}=7.1295$
(d) ${ }^{13} \mathrm{C}\left({ }^{3} \mathrm{He}, \mathrm{d}\right){ }^{14} \mathrm{~N}$
$Q_{\mathrm{m}}=10.6658$
(e) ${ }^{13} \mathrm{C}\left({ }^{3} \mathrm{He},{ }^{3} \mathrm{He}\right){ }^{13} \mathrm{C}$
(f) ${ }^{13} \mathrm{C}\left({ }^{3} \mathrm{He}, \alpha\right)^{12} \mathrm{C}$
$Q_{\mathrm{m}}=15.6314$
(g) ${ }^{13} \mathrm{C}\left({ }^{3} \mathrm{He},{ }^{8} \mathrm{Be}\right){ }^{8} \mathrm{Be}$
$Q_{\mathrm{m}}=8.1729$

$$
E_{\mathrm{b}}=22.79338
$$

The yield of capture γ-rays (reaction a) has been studied for $E\left({ }^{3} \mathrm{He}\right)$ up to 16 MeV [see (1977AJ02)], as have angular distributions. Observed resonances are displayed in Table 16.18. It is suggested that the structures at $E_{\mathrm{x}} \approx 26-29 \mathrm{MeV}$ are related to the giant resonances built on the first few excited states of ${ }^{16} \mathrm{O}$ (1979VE02). See also (1986AJ04).

The excitation functions (reaction b) up to $E\left({ }^{3} \mathrm{He}\right)=11 \mathrm{MeV}$ are marked at low energies by complex structures and possibly by two resonances at $E\left({ }^{3} \mathrm{He}\right)=1.55$ and 2.0 MeV : see Table 16.18. See also (1977AJ02) for polarization measurements. Excitation functions (reaction c) for $E\left({ }^{3} \mathrm{He}\right)=3.6$ to 6.6 MeV have been measured for $\mathrm{p}_{0}, \mathrm{p}_{1+2}, \mathrm{p}_{3}$: a resonance is reported at $E\left({ }^{3} \mathrm{He}\right)=4.6 \mathrm{MeV}$. A resonance at 6 MeV has also been observed: see Table 16.18. A comparison of polarization measured in this reaction and of analyzing powers measured in ${ }^{15} \mathrm{~N}\left(\mathrm{p},{ }^{3} \mathrm{He}\right)$ has been made [see (1986AJ04)]. Analyzing powers have been measured at $E\left({ }^{3} \mathrm{He}\right)=33 \mathrm{MeV}$ for the elastic scattering (reaction d) and the deuteron groups to ${ }^{14} \mathrm{~N}^{*}(0,2.31,3.95,9.51)$ (1986DR03).

Yields of $\alpha_{0}, \alpha_{1}, \alpha_{2}$, and γ-rays from the decay of ${ }^{12} \mathrm{C}^{*}(12.71,15.11)$ (reaction f) have been studied up to $E\left({ }^{3} \mathrm{He}\right)=12 \mathrm{MeV}$. Observed resonances are displayed in Table 16.18. Those seen in the yield of $\gamma_{15.1}$ are assumed to correspond to ${ }^{16} \mathrm{O}$ states which have primarily a $T=1$ character. Analyzing power measurements are reported at $E\left({ }^{3} \mathrm{He}\right)=33 \mathrm{MeV}$ to ${ }^{12} \mathrm{C}^{*}(4.4)$. Excitation functions for α_{0} and α_{1} are also reported for $E\left({ }^{3} \mathrm{He}\right)=16$ to 23 MeV (1986AJ04). DWBA analyses for data at $E\left({ }^{3} \mathrm{He}\right)=50,60 \mathrm{MeV}$ are described in (1990ADZU). See also (1986ZE1B). The excitation function for ${ }^{8} \mathrm{Be}$ (g.s.) (reaction g) has been studied for $E\left({ }^{3} \mathrm{He}\right)=2$ to 6 MeV . It shows a strong resonance at $E\left({ }^{3} \mathrm{He}\right)=5.6 \mathrm{MeV}$ corresponding to a state in ${ }^{16} \mathrm{O}$ at $E_{\mathrm{x}}=27.3 \mathrm{MeV} . J^{\pi}$ appears to be 2^{+}from angular distribution measurements. A search for anomalous deuterons at 10.8 GeV has been reported (1986AJ04).
18. ${ }^{13} \mathrm{C}(\alpha, \mathrm{n}){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=2.2156$

Angular distributions for the n_{0} group have been measured for $E_{\alpha}=12.8$ to 22.5 MeV : see (1971AJ02). Polarization measurements for n_{0} at $\theta=0-70^{\circ}$ at $E_{\alpha}=2.406$ and 3.308 MeV are reported in (1990WE10). The energy of the γ-ray from the decay of ${ }^{16} \mathrm{O} *(6.13)$ is $6129.266 \pm$ 0.054 keV (1986AJ04) [based on the ${ }^{198} \mathrm{Au}$ standard $E_{\gamma}=411804.4 \pm 1.1 \mathrm{eV}$]. See also (1982AJ01). Analytical expressions for reaction rates for ${ }^{13} \mathrm{C}(\alpha, \mathrm{n})^{16} \mathrm{O}$ and other astrophysically important lowmass reactions are given in (1988CA26). See also the related work of (1986SM1A, 1987HA1E, 1989KA24, 1990HO1I).

$$
\text { 19. }{ }^{13} \mathrm{C}\left({ }^{6} \mathrm{Li}, \mathrm{t}\right)^{16} \mathrm{O} \quad Q_{\mathrm{m}}=6.9977
$$

See Table 16.19. See also (1982AJ01) and ${ }^{19} \mathrm{~F}$ in (1983AJ01).
20.

$$
Q_{\mathrm{m}}=1.617
$$

Table 16.18: Resonances in ${ }^{13} \mathrm{C}+{ }^{3} \mathrm{He}{ }^{\text {a }}$

$E\left({ }^{3} \mathrm{He}\right)(\mathrm{MeV} \pm \mathrm{keV})$	$\Gamma_{\text {c.m. }}(\mathrm{keV})$	Outgoing particles	${ }^{16} \mathrm{O}^{*}(\mathrm{MeV})$	$J^{\pi} ; T$
1.55	≈ 80	$\mathrm{n}_{0}, \mathrm{n}_{3}$	24.05	
1.55 ± 100	450	γ_{0}	24.1	
2.0	≈ 250	n_{0}	24.4	
2.6 ± 100	600	$\alpha \gamma_{15.1}$	24.9	$(T=1)$
2.87 ± 50	γ_{0}	25.12	1^{-}	
≈ 3.1	α_{0}, α_{2}	≈ 25.3		
≈ 3.5	α_{0}	≈ 25.6	$\left(3^{-}\right)$	
≈ 4	≈ 300	$\alpha_{0}, \alpha_{1}, \alpha_{2}$	≈ 26	$\left(3^{-}\right)$
4.0 ± 100	b	$\gamma_{0}, \gamma_{1+2}, \alpha \gamma_{15.1}$	26.0	$1^{-} ;(1)$
$4.6 \pm 100^{\mathrm{c}}$	$720 \pm 160^{\mathrm{c}}$	$\gamma_{2}, \mathrm{p}_{0}$	26.5	$2^{+}, 4^{+}$
5.2 ± 100	b	$\alpha \gamma_{15.1}$	27.0	$(T=1)$
5.6 ± 100	≈ 600	$\gamma_{0}, \gamma_{1+2}, \alpha \gamma_{15.1},{ }^{8} \mathrm{Be}$	27.3	$\left(1^{-}\right)$
≈ 5.8	≈ 2500	γ_{3+4}	27.5	
6.0 ± 100	≈ 500	$\mathrm{p}_{0}, \mathrm{p}_{1+2},{ }^{3} \mathrm{He}, \alpha_{1}, \alpha_{2}$	27.7	$\left(3^{-} ; 0\right)$
≈ 6	γ_{0}	28		
6.5 ± 100	b	$\alpha \gamma_{15.1}$	28.1	$(T=1)$
6.8 ± 100		$\alpha_{0}, \alpha_{1}, \alpha_{2}$	28.3	$(T=0)$
7.1 ± 200		γ_{1+2}	28.6	
7.5 ± 100	b	$\alpha \gamma_{15.1}$	28.9	$(T=1)$
8.6 ± 100	b	$\alpha \gamma_{15.1}$	29.8	$(T=1)$
9.4 ± 100	b	$\alpha \gamma_{15.1}$	30.4	$(T=1)$
10.1 ± 100	b	$\alpha \gamma_{15.1}$	31.0	$(T=1)$

${ }^{a}$ For references see Tables 16.15 in (1971AJ02), 16.13 in (1977AJ02), and 16.15 in (1982AJ01).
${ }^{\mathrm{b}}$ Lab widths $0.5-1 \mathrm{MeV}$.
${ }^{\mathrm{c}}$ Based on $\Gamma_{\text {c.m. }}=530 \pm 80 \mathrm{keV}\left[\right.$ from ${ }^{15} \mathrm{~N}(\mathrm{p}, \gamma)$, see Table 16.22], $\Gamma_{\mathrm{p}_{0}}=150 \pm 45 \mathrm{keV}\left[J^{\pi}=2^{+}\right]$, $110 \pm 35 \mathrm{keV}\left[4^{+}\right] ; \Gamma_{\mathrm{p}_{0}} / \Gamma=0.29 \pm 0.10\left[2^{+}\right], 0.21 \pm 0.07\left[4^{+}\right] ; \Gamma_{\gamma_{2}}=740 \pm 240 \mathrm{eV}\left[2^{+}\right], 410 \pm 140 \mathrm{eV}$ [4+]. See (1977CH16, 1978CH19, 1986AJ04).

See (1986AJ04).
21. ${ }^{13} \mathrm{C}\left({ }^{12} \mathrm{C},{ }^{9} \mathrm{Be}\right){ }^{16} \mathrm{O}$
$Q_{\mathrm{m}}=-3.4856$

At $E\left({ }^{13} \mathrm{C}\right)=105 \mathrm{MeV},{ }^{16} \mathrm{O} *(6.05,6.13,10.35,16.3,20.7)$ are strongly populated: see (1977AJ02, 1982AJ01, 1986AJ04). Excitation functions ($E_{\text {c.m. }}=13.4-16.8 \mathrm{MeV}$) and angular distributions $\left(E_{\text {c.m. }}=13.4,16.38 \mathrm{MeV}\right)$ have been measured (1988JA1B).
22. ${ }^{13} \mathrm{C}\left({ }^{17} \mathrm{O},{ }^{14} \mathrm{C}\right){ }^{16} \mathrm{O}$

$$
Q_{\mathrm{m}}=4.0328
$$

See (1982AJ01).
23. ${ }^{14} \mathrm{C}\left({ }^{3} \mathrm{He}, \mathrm{n}\right){ }^{16} \mathrm{O}$

$$
Q_{\mathrm{m}}=14.6169
$$

At $E\left({ }^{3} \mathrm{He}\right)=11$ to 16 MeV , neutron groups are observed to $T=2$ states at $E_{\mathrm{x}}=22.717 \pm$ 0.008 and $24.522 \pm 0.011 \mathrm{MeV}(\Gamma<30 \mathrm{keV}$ and $<50 \mathrm{keV}$, respectively). These two states are presumably the first two $T=2$ states in ${ }^{16} \mathrm{O}$, the analog states to ${ }^{16} \mathrm{C}^{*}(0,1.75) . J^{\pi}$ for ${ }^{16} \mathrm{O}^{*}(24.52)$ is found to be 2^{+}from angular distribution measurements (1970AD01). At $E\left({ }^{3} \mathrm{He}\right)=25.4 \mathrm{MeV}$ forward angle differential cross sections have been determined to the 0^{+}states of ${ }^{16} \mathrm{O}^{*}(0,6.05$, 12.05) (1986AJ04).
24. ${ }^{14} \mathrm{~N}(\mathrm{~d}, \gamma){ }^{16} \mathrm{O}$
$Q_{\mathrm{m}}=20.7363$

The γ_{0} yield has been studied for $E_{\mathrm{d}}=0.5$ to 5.5 MeV . Observed resonances are displayed in Table 16.20. Radiative capture in the region of the GDR [$E_{\mathrm{d}}=1.5$ to 4.8 MeV] has been measured with polarized deuterons. See (1986AJ04).
25. ${ }^{14} \mathrm{~N}(\mathrm{~d}, \mathrm{n}){ }^{15} \mathrm{O}$
$Q_{\mathrm{m}}=5.0724$
$E_{\mathrm{b}}=20.7363$

For $E_{\mathrm{d}}=0.66$ to 5.62 MeV , there is a great deal of resonance structure in the excitation curves with the anomalies appearing at different energies at different angles: the more prominent structures in the yield curves are displayed in Table 16.20. For polarization measurements see (1977AJ02) and (1981LI23) in ${ }^{15} \mathrm{O}$ (1986AJ01).

Table 16.19: States of ${ }^{16} \mathrm{O}$ from ${ }^{13} \mathrm{C}\left({ }^{6} \mathrm{Li}, \mathrm{t}\right){ }^{16} \mathrm{O}$

$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})^{\mathrm{a}}$	$\Gamma_{\mathrm{c} . \mathrm{m} .}(\mathrm{keV})^{\mathrm{c}}$	Comments ${ }^{\mathrm{d}}$
0^{b}		
6.13^{b}		
$7.0[\mathrm{u}]^{\mathrm{b}}$		c.n.
$8.87^{\mathrm{b}, \mathrm{c}}$		c.n.
$9.84^{\mathrm{b}, \mathrm{c}}$		4^{+}probably dominates; m.s.
$10.36^{\mathrm{b}, \mathrm{c}}$		
$11.10[\mathrm{u}]^{\mathrm{b}, \mathrm{c}}$		consistent with $L=1 \rightarrow 0^{+}$
11.52^{c}		consistent with $L=2 \rightarrow 2^{-}$
12.05^{c}		consistent with $L=2 \rightarrow 2^{-}$
12.53^{c}		$L=2$, but which state is involved?
12.97^{c}		$L=4 \rightarrow 4^{(-)}$
$13.10[\mathrm{u}]^{\mathrm{c}}$		anomalous shape
14.3^{c}		$L=5 ;$ probably $J^{\pi}=6^{+}$
14.40^{c}		consistent with $L=3 \rightarrow 3^{+}$
14.82^{c}		consistent with $L=3 \rightarrow 3^{+}$
15.79^{c}		$L=4$ or $L=5$
$16.812 \pm 15^{\mathrm{c}}$	28 ± 7	$L=3 ;$ both states are probably populated
$17.764 \pm 15^{\mathrm{c}, \mathrm{e}}$	45 ± 7	$L=4$ or 5; probably 5^{+}
$18.032 \pm 15[\mathrm{u}]^{\mathrm{c}, \mathrm{f}}$	40 ± 7	probably 4^{-}
$18.640 \pm 15^{\mathrm{c}}$	22 ± 7	
$18.976 \pm 15^{\mathrm{c}}$	25 ± 7	23 ± 7
$19.814 \pm 15^{\mathrm{c}}$		very strongly excited
$20.5[\mathrm{u}]$		

$[u]=$ unresolved.
c.n. $=$ formation appears to be by a compound nuclear process.
m.s. $=$ multistep process.
${ }^{\text {a }} E_{\mathrm{x}}$ without uncertainties are from Table 16.13.
${ }^{\text {b }}$ Angular distributions have been reported at $E\left({ }^{6} \mathrm{Li}\right)=25 \mathrm{MeV}$ to the first seven groups shown here and at 28 MeV : see (1986AJ04) for references. See also (1982AJ01).
${ }^{\text {c }}$ Angular distribution at $E\left({ }^{6} \mathrm{Li}\right)=34 \mathrm{MeV}$ (see 1983KE06, 1986AJ04).
${ }^{\mathrm{d}}$ For abbreviations see above. When an L value is shown, stripping patterns are evident (1983KE06).
${ }^{\mathrm{e}}$ There is some evidence for a state at $E_{\mathrm{x}}=17.90 \mathrm{MeV}$ (1983KE06, 1986AJ04).
${ }^{\mathrm{f}}$ There is some evidence for a state at $E_{\mathrm{x}}=18.46 \mathrm{MeV}$ with $\Gamma \approx 60 \mathrm{keV}$ (1983KE06, 1986AJ04).

Table 16.20: Structure in ${ }^{14} \mathrm{~N}+\mathrm{d}^{\text {a }}$

$E_{\mathrm{d}}(\mathrm{MeV})$	Resonant channel	$\Gamma_{\text {c.m. }}(\mathrm{keV})$	$J^{\pi} ; T$	$E_{\mathrm{x}}(\mathrm{MeV})$
1.4	$\mathrm{n}_{0}, \alpha_{0}$	300^{e}	$0^{+\mathrm{e}}$	22.0
1.7 ± 0.1	$\gamma_{0}, \mathrm{p}_{0}, \mathrm{p}_{1}, \alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}$	400^{e}	$1^{-\mathrm{e}}$	22.2
1.85	$\mathrm{n}_{0}, \alpha_{0}$	175	$2^{+\mathrm{e}}$	22.35
2.0 ± 0.1	$\mathrm{p}_{0}, \mathrm{p}_{1}, \alpha_{0}, \alpha_{3}$	350^{e}	$3^{-\mathrm{e}}$	22.5
$2.272 \pm 0.005^{\mathrm{b}}$	$\mathrm{p}_{0}, \mathrm{p}_{1+2},\left(\mathrm{p}_{3}\right), \mathrm{p}_{4}, \mathrm{p}_{5}, \alpha_{0}, \alpha_{2}$			22.722
$2.40 \pm 0.05^{\mathrm{c}}$	$\gamma_{0}{ }^{\mathrm{d}}, \mathrm{p}_{0}, \mathrm{p}_{1}$	500^{e}	$1^{-} ; 1$	22.83
2.5	α_{0}			22.9
2.6	$\left(\mathrm{n}_{0}\right), \alpha_{0}, \alpha_{1}$	200^{e}	$4^{+\mathrm{e}}$	23.0
2.8	$\left(\mathrm{n}_{0}\right), \mathrm{p}_{0}, \mathrm{p}_{1}, \mathrm{~d}_{0}$	350^{e}	$2^{+\mathrm{e}}$	23.2
3.24	$\mathrm{p}_{0}, \mathrm{p}_{1+2}, \mathrm{p}_{4}, \mathrm{p}_{5}, \mathrm{p}_{6}, \mathrm{~d}_{0}, \alpha_{3}$			23.57
4.2	$\gamma_{0},\left(\mathrm{p}_{0}\right), \mathrm{d}_{0}, \gamma_{15.1}$			24.4
4.58	$\left(\mathrm{p}_{0}\right), \mathrm{d}_{0}, \gamma_{15.1}$			24.74
4.9	$\mathrm{n}_{0}, \mathrm{p}_{0}$			25.0
5.95	$\mathrm{~d}_{1}, \gamma_{15.1}$			
7.1	$\gamma_{15.1}$			25.9
7.4	$\mathrm{~d}_{2}$			26.9
7.7	$\mathrm{~d}_{1}$			27.2
(8.5)	$\left(\gamma_{15.1}\right)$			
10.2	$\mathrm{~d}_{2}$			27.5

${ }^{a}$ For earlier references see Table 16.14 in (1977AJ02) and 16.16 in (1982AJ01, 1986AJ04).
${ }^{\mathrm{b}}\left(\Gamma_{\mathrm{d}_{0}} \Gamma_{\mathrm{i}} / \Gamma^{2}\right) \times 10^{-3}$ are greater than $1.6 \pm 0.4,0.27 \pm 0.13,0.41 \pm 0.15$ and 0.07 ± 0.05 for the $\alpha_{2}, \mathrm{p}_{0}, \mathrm{p}_{1+2}$, and p_{3} groups.
${ }^{\text {c }}$ If this resonance is fitted with a single-level Breit-Wigner shape, penetrability effects could lower the resonance energy by as much as 50 keV , assuming $l=1$.
${ }^{\mathrm{d}}$ The angular distribution of γ_{0} is consistent with E1.
${ }^{\mathrm{e}}$ See references in (1986AJ04).
26. ${ }^{14} \mathrm{~N}(\mathrm{~d}, \mathrm{p}){ }^{15} \mathrm{~N}$
$Q_{\mathrm{m}}=8.6087$
$E_{\mathrm{b}}=20.7363$

The yield of various proton groups for $E_{\mathrm{d}}<5.0 \mathrm{MeV}$ shows some fluctuations and two resonances: see Table 16.20 and (1982AJ01). For polarization measurements see (1982AJ01, 1986AJ04). Analyzing power measurements at $E_{\mathrm{d}}=70 \mathrm{MeV}$ are reported in (1986MO27).
27. ${ }^{14} \mathrm{~N}(\mathrm{~d}, \mathrm{~d}){ }^{14} \mathrm{~N}$

$$
E_{\mathrm{b}}=20.7363
$$

Table 16.21: ${ }^{16} \mathrm{O}$ states from ${ }^{14} \mathrm{~N}\left({ }^{3} \mathrm{He}, \mathrm{p}\right){ }^{16} \mathrm{O}^{\text {a }}$

$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})$	$\Gamma_{\text {c.m. }}(\mathrm{keV})$	L	J^{π}
0		$0+2$	
6.052 ± 5		$(0)^{\mathrm{b}}$	
6.131 ± 4		$1+3$	
6.916 ± 3		(0)	
7.115 ± 3		$1+3$	
8.870 ± 3	<20	$3+1$	
9.614 ± 30	510 ± 60		
9.847 ± 3	<20	$0(+2)$	
10.356 ± 3	25 ± 5	b	
10.957 ± 1	<12	1	
11.080 ± 3	$<12\}$	$2+4^{\mathrm{c}}$	
11.098 ± 2	$<12\}$	b	
11.520 ± 4	64 ± 5	0	
12.049 ± 2	<12	1	
12.438 ± 3	70 ± 10	$1+3$	
$12.530 \pm 2^{\mathrm{d}}$	<12	$1+5=0^{\mathrm{f}}$	
12.797 ± 4	40 ± 10	1	$0^{-} ; T=1^{\mathrm{f}}$
12.970 ± 1	<12	$1+3$	$2^{-} ; T=1^{\mathrm{f}}$
13.105 ± 15	160 ± 30	$0+3^{\mathrm{c}}$	
13.257 ± 2	20 ± 5	$(1+3)$	$3^{-} ; T=1^{\mathrm{f}}$
13.663 ± 4	63 ± 7	0	
13.869 ± 2	85 ± 20	$(4)^{\mathrm{b}}$	
$13.979 \pm 2^{\mathrm{d}}$	14 ± 5	$1(+3)$	

Table 16.21: ${ }^{16} \mathrm{O}$ states from ${ }^{14} \mathrm{~N}\left({ }^{3} \mathrm{He}, \mathrm{p}\right){ }^{16} \mathrm{O}{ }^{\text {a }}$ (continued)

$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})$	$\Gamma_{\text {c.m. }}(\mathrm{keV})$	L	J^{π}
14.302 ± 3	<20	b	
$14.399 \pm 2^{\mathrm{d}}$	27 ± 5	(4)	
14.818 ± 3		2	$(0 \rightarrow 4)^{+}$
$14.927 \pm 2^{\mathrm{d}}$	60 ± 10	$0(+2)$	$(0,1,2)^{+\mathrm{g}}$
15.103 ± 5			
15.196 ± 3		$(0+2)$	
15.409 ± 6		b	
$15.785 \pm 5^{\mathrm{d}}$	40 ± 10	$2(+4)$	$(2,3,4)^{+\mathrm{g}}$
$16.114 \pm 4^{\mathrm{e}}$			
$16.209 \pm 2^{\mathrm{d}}$	40 ± 10	$0+2$	
16.350 ± 13			
16.440 ± 13	≈ 30	$0+2$	
16.817 ± 2	70 ± 10		
h			

[^4]The yield of elastically scattered deuterons has been studied for $E_{\mathrm{d}}=0.65$ to 5.5 MeV and for 14.0 to 15.5 MeV : see (1971AJ02, 1977AJ02). There is indication of broad structure at $E_{\mathrm{d}}=$ 5.9 MeV and of sharp structure at $E_{\mathrm{d}}=7.7 \mathrm{MeV}$ in the total cross section of the d d_{1} group to the $T=1$ (isospin-forbidden), $J^{\pi}=0^{+}$state at $E_{\mathrm{d}}=2.31 \mathrm{MeV}$ in ${ }^{14} \mathrm{~N}$. The yield of deuterons $\left(\mathrm{d}_{2}\right)$ to ${ }^{14} \mathrm{~N}^{*}(3.95)\left[J^{\pi}=1^{+}, T=0\right]$ shows gross structures at $E_{\mathrm{d}}=7.4$ and 10.2 MeV (1970DU04):
see Table 16.20 The yield of d_{1} has also been studied for $E_{\mathrm{d}}=10.0$ to 17.9 MeV : see (1982AJ01). For polarization measurements see (1982AJ01, 1986AJ04).
28. (a) ${ }^{14} \mathrm{~N}(\mathrm{~d}, \mathrm{t})^{13} \mathrm{~N}$
$Q_{\mathrm{m}}=-4.2962$
$E_{\mathrm{b}}=20.7363$
(b) ${ }^{14} \mathrm{~N}\left(\mathrm{~d},{ }^{3} \mathrm{He}\right){ }^{13} \mathrm{C}$
$Q_{\mathrm{m}}=-2.0571$

See (1982AJ01).
29. ${ }^{14} \mathrm{~N}(\mathrm{~d}, \alpha){ }^{12} \mathrm{C} \quad Q_{\mathrm{m}}=13.5743 \quad E_{\mathrm{b}}=20.7363$

There is a great deal of structure in the yields of various α-particle groups for $E_{\mathrm{d}}=0.5$ to 12 MeV . Broad oscillations ($\Gamma \sim 0.5 \mathrm{MeV}$) are reported in the α_{0} and α_{1} yields for $E_{\mathrm{d}}=2.0$ to 5.0 MeV . In addition, ${ }^{16} \mathrm{O}^{*}(23.54)$ is reflected in the α_{3} yield (see Table 16.20). The yield of $15.11 \mathrm{MeV} \gamma$-rays, [from the decay of ${ }^{12} \mathrm{C}^{*}(15.11), J^{\pi}=1^{+}, T=1$] which is isospin-forbidden, has been studied for $E_{\mathrm{d}}=2.8$ to 12 MeV . Pronounced resonances are observed at $E_{\mathrm{d}}=4.2,4.58$ and 5.95 MeV and broader peaks occur at $E_{\mathrm{d}}=7.1$ and, possibly, at 8.5 MeV : see (1982AJ01). For polarization measurements see (1982AJ01, 1986AJ04).
30. (a) ${ }^{14} \mathrm{~N}\left({ }^{3} \mathrm{He}, \mathrm{p}\right){ }^{16} \mathrm{O}$
$Q_{\mathrm{m}}=15.24276$
(b) ${ }^{14} \mathrm{~N}\left({ }^{3} \mathrm{He}, \mathrm{p} \alpha\right){ }^{12} \mathrm{C}$
$Q_{\mathrm{m}}=8.08081$

Observed proton groups are displayed in Table 16.21. Angular distributions have been measured at $E\left({ }^{3} \mathrm{He}\right)=2.5$ to 24.7 MeV : see (1982AJ01). Branching ratios and τ_{m} measurements are shown in Tables 16.13 and 16.14.
31. ${ }^{14} \mathrm{~N}(\alpha, \mathrm{~d}){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=-3.1104$

Angular distributions to states of ${ }^{16} \mathrm{O}$ have been reported at many energies to $E_{\alpha}=48 \mathrm{MeV}$: see (1971AJ02, 1977AJ02). Among the states which have been reported [see Table 16.7 in (1977AJ02)] are ${ }^{16} \mathrm{O}^{*}(11.094 \pm 3,13.98 \pm 50,14.32 \pm 20,14.400 \pm 3,14.815 \pm 2,15.17 \pm 50$, $15.44 \pm 50,15.78 \pm 50,16.214 \pm 15,17.18 \pm 50)[\mathrm{MeV} \pm \mathrm{keV}]:$ the results are consistent with $J^{\pi}=5^{+}, 6^{+}, 4^{+}$for ${ }^{16} \mathrm{O}^{*}(14.40,14.82,16.29)[2 \mathrm{p}-2 \mathrm{~h}]$ and with 6^{+}for ${ }^{16} \mathrm{O}^{*}(16.30)[4 \mathrm{p}-4 \mathrm{~h}]$. [See refs. in (1977AJ02).] Work reported in (1979CL10) and reviewed in (1982AJ01) determined $\Gamma_{\text {c.m. }}=34 \pm 12,27 \pm 5$ and $70 \pm 8 \mathrm{keV}$, respectively for ${ }^{16} \mathrm{O}^{*}(14.31 \pm 10,14.40 \pm 10,14.81)$.

Table 16.22: Levels of ${ }^{16} \mathrm{O}$ from ${ }^{15} \mathrm{~N}(\mathrm{p}, \gamma),{ }^{15} \mathrm{~N}(\mathrm{p}, \mathrm{p})$ and ${ }^{15} \mathrm{~N}(\mathrm{p}, \alpha)$

$\begin{gathered} E_{\mathrm{p}} \\ (\mathrm{keV}) \end{gathered}$	$\begin{aligned} & \hline \Gamma_{\gamma_{0}} \\ & (\mathrm{eV}) \end{aligned}$	$\begin{aligned} & \Gamma_{\gamma_{1}} \\ & (\mathrm{eV}) \end{aligned}$	$\begin{gathered} \Gamma_{\mathrm{p}} \\ (\mathrm{keV}) \end{gathered}$	$\begin{gathered} \hline \Gamma_{\mathrm{p}} \Gamma_{\gamma} / \Gamma \\ (\mathrm{eV}) \end{gathered}$	$\begin{gathered} \Gamma_{\alpha_{0}} \\ (\mathrm{keV}) \end{gathered}$	$\begin{aligned} & \Gamma_{\alpha_{1}} \\ & (\mathrm{keV}) \end{aligned}$	$\begin{aligned} & \hline \Gamma_{\text {lab }} \\ & (\mathrm{keV}) \end{aligned}$	$J^{\pi} ; T$	$\begin{gathered} E_{\mathrm{x}} \\ (\mathrm{MeV} \pm \mathrm{keV}) \end{gathered}$
$335 \pm 4^{\text {a }}$	12 ± 2	0.12 ± 0.04	0.9 ± 0.1		102 ± 4	0.025	110 ± 4	$1^{-} ; 0$	12.442
$429.57 \pm 0.09{ }^{\text {b }}$	$(33 \pm 5) \times 10^{-3} \mathrm{c}$	2.1 ± 0.2	$0.016 \pm 0.003^{\text {c }}$		nr	$0.092 \pm 0.010^{\text {c }}$	0.103 ± 0.011	$2^{-} ; 0$	12.530
710 ± 7			40		$n \mathrm{r}$		40 ± 40	$0^{-} ; 1$	12.793
897.37 ± 0.29	$(34 \pm 9) \times 10^{-3 \mathrm{c}}$		$1.04 \pm 0.07^{\text {c }}$		nr	$0.30 \pm 0.06^{\text {c }}$	1.47 ± 0.04	$2^{-} ; 1$	12.9686
1028 ± 10	32 ± 5		100		40	r	140 ± 10	$1^{-} ; 1$	13.091
1050 ± 150					$\begin{gathered} \Gamma_{\mathrm{P}} \Gamma_{\alpha_{0}}= \\ 500 \mathrm{keV}^{2} \end{gathered}$			2^{+}	13.1
1210 ± 3			4.1		r	8.2 ± 1.1	22.5 ± 1	$3^{-} ; 1$	13.262
1640 ± 3	$<1^{\text {d }}$		10		$n \mathrm{r}$	59 ± 6	68 ± 3	$1^{+} ; 0$	13.664
1890 ± 20			0.5		r	(r)	90 ± 2		13.90
1979 ± 3			r		nr	r	23 ± 2	2^{-}	13.982
$2982 \pm 6^{\text {e }}$			$20 \pm 3^{\text {f }}$		1.5	30^{g}	$55 \pm 5^{\text {e }}$	2^{+}	14.921^{1}
$3170{ }^{\text {h }}$			$12^{\text {i }}$		152	163	330 ± 100	0^{+}	$15.10{ }^{1}$
3264 ± 11 e			j		nr	7 k	$67 \pm 4^{\text {e }}$	2^{-}	$15.186{ }^{1}$
3340 hm			$15^{\text {i }}$		12	182	315 ± 100	2^{+}; (0)	15.26^{1}
$3499 \pm 8{ }^{\text {e,m }}$			$15 \pm 5^{\text {f }}$		103	1	$131 \pm 18{ }^{\text {e }}$	3^{-}	15.406^{1}
$4350 \pm 90^{\text {f }}$			$210 \pm 38^{\text {f }}$				$620 \pm 60^{\text {f }}$	$1^{-} ; 0$	16.20
$4357 \pm 5^{\text {e }}$	$3.7 \pm 0.5^{\text {n }}$	$0.44 \pm 0.06{ }^{\text {n }}$	$7 \pm 3^{\text {f }}$	$2.70 \pm 0.25{ }^{\text {d }}$			20 ± 3 e	$1^{+} ; 1$	16.210
$4505 \pm 12^{\text {f }}$			$53 \pm 12^{\text {f }}$				$65 \pm 8^{\text {f }}$	$0^{+} ; 0$	16.349
$4612 \pm 9^{\text {d }}$			r	$1.11 \pm 0.24{ }^{\circ}$	r	r	$26 \pm 8^{\text {d }}$	$1-4 ; 1^{\text {d }}$	16.449
$5001 \pm 5^{\text {e,m }}$			$7 \pm 2^{\text {f }}$	p	nr	r	$28 \pm 4{ }^{\text {e }}$	$3^{+} ; 0+1^{\text {d }}$	16.813
$5300 \pm 40^{\text {f }}$	r		q				$405 \pm 43{ }^{\text {e }}$	$1^{-} ; 1$	17.09
$5329 \pm 5^{\text {e }}$	6.7 ± 1.0	1.00 ± 0.17^{n}	$22^{\text {d }}$	$3.90 \pm 0.50{ }^{\text {d }}$			$33 \pm 4^{\text {e }}$	$1^{+} ; 1$	17.120
$5487 \pm 9^{\text {e }}$	67		45	r			$80 \pm 8^{\text {e }}$	$1^{-} ; 1$	17.268
$5848 \pm 8^{\text {f }}$			$37 \pm 8^{\text {f }}$				$117 \pm 15^{\text {f }}$	2^{+}; (1)	17.607
$6100 \pm 100{ }^{\text {f }}$			$500 \pm 100^{\text {f }}$				$875 \pm 110^{\text {f }}$	2^{-}	17.84
$6137 \pm{ }^{\text {e }}$			$6^{\text {d }}$	(r)		r	$26 \pm 3^{\text {e }}$	$1^{-} ; 2^{-} ; 1$	17.877
$6297 \pm 6^{\text {e }}$	$n \mathrm{r}$	$4.8 \pm 1.9^{\text {t }}$	$13 \pm 3^{\text {f,u }}$			$8.9 \pm 3.2{ }^{\text {d }}$	28 ± 6	$3^{-} ; 1^{\text {y }}$	18.027
$6490 \pm 15^{\text {f }}$			$33 \pm 12^{\text {f }}$				150 ± 26	2^{+}	18.208
$6727 \pm 15^{\text {f }}$			11 ± 6				97 ± 41	2^{+}	18.430
$6785 \pm 6^{\text {f }}$			17 ± 3				37 ± 6	1^{-}	18.484
$7100 \pm 100{ }^{\text {d }}$	$\geq 3.6{ }^{\text {n }}$		v					$1^{+} ; 1$	18.78
$7313 \pm 9^{\text {d }}$		$7.1 \pm 3.1{ }^{\text {w }}$	x	x		$0.57 \pm 0.49 \mathrm{~d}$	$8.7 \pm 4.1^{\text {d }}$	$4^{-} ; 1^{\text {y }}$	18.979
7330 ± 30	38		≤ 130	$\geq 1.8 \pm 0.3$			≈ 260	1^{+}	18.99
7420	r		≈ 30				≈ 130	2^{+}; (1)	19.08

Table 16.22: Levels of ${ }^{16} \mathrm{O}$ from ${ }^{15} \mathrm{~N}(\mathrm{p}, \gamma),{ }^{15} \mathrm{~N}(\mathrm{p}, \mathrm{p})$ and ${ }^{15} \mathrm{~N}(\mathrm{p}, \alpha)$ (continued)

$\mathrm{nr}=$ non-resonant; $\mathrm{r}=$ resonant.

For earlier references see Tables 16.21 in (1971AJ02), 16.19 in (1977AJ02), 16.18 in (1982AJ01) and 16.18 in (1986AJ04).
a (1982RE06).
${ }^{\mathrm{b}}$ (1987OS01). See also the result $E_{\mathrm{p}}=429.88 \pm 0.14$ from the ${ }^{1} \mathrm{H}\left({ }^{15} \mathrm{~N}, \alpha \gamma\right)$ reaction.
c (1986ZI08).
${ }^{\mathrm{d}}$ See (1983SN03)
e Weighted mean of values obtained by (1983SN03, 1984DA18) and in earlier work [see (1982AJ01)].
${ }^{\mathrm{f}}$ (1984DA18). See also for calculated Γ_{n}.
${ }^{\mathrm{g}} \Gamma_{\mathrm{p}} \Gamma_{\alpha_{1}} / \Gamma=16.4 \mathrm{keV}$ (1983SN03).
${ }^{\mathrm{h}}$ Nominal E_{p} calculated from E_{x}.
${ }^{\mathrm{i}}$ Not observed in p_{0} channel.
${ }^{\mathrm{j}} 35 \pm 3 \mathrm{keV}(s=1), 15 \pm 2 \mathrm{keV}(s=0) ; \Gamma_{\mathrm{p}} / \Gamma=0.78$ (1984DA18).
${ }^{\mathrm{k}} \Gamma_{\mathrm{p}} \Gamma_{\alpha_{1}} / \Gamma=10.9 \mathrm{keV}(1983 \mathrm{SN03})$.
${ }^{1}$ See also footnote ${ }^{\mathrm{c}}$) in Table 16.18 (1982AJ01).
${ }^{\mathrm{m}}$ Broad structures have also been observed at $E_{\mathrm{p}} \approx 3.5 \mathrm{MeV}$ in $\left(\alpha_{1} \gamma\right)$ and at 5.7 MeV in $\left(\alpha_{1} \gamma\right)$ and $\left(\gamma_{1+2}\right)$ (1983SN03).
${ }^{\mathrm{n}} \Gamma_{\gamma}$ uncertainties neglect the error in $\Gamma_{\mathrm{p}} / \Gamma$ (1983SN03).
${ }^{\circ} \Gamma_{\mathrm{p}} \Gamma_{\gamma_{2}} / \Gamma$; also $\Gamma_{\gamma_{2}} \approx 11 \mathrm{eV}$ (1983SN03).
${ }^{\mathrm{p}} \Gamma_{\mathrm{p}} \Gamma_{\gamma_{2}} / \Gamma=0.48 \pm 0.09 \mathrm{eV}, \Gamma_{\mathrm{p}} \Gamma_{\gamma_{3+4}} / \Gamma=0.62 \pm 0.13 \mathrm{eV}, \Gamma_{\mathrm{p}} \Gamma_{\alpha_{1}} / \Gamma=6.8 \mathrm{eV} ; \Gamma_{\gamma_{2}}=1.0 \mathrm{eV}, \Gamma_{\gamma_{3}}=1.2 \mathrm{eV}, \Gamma_{\mathrm{p}} / \Gamma=0.5$ [see, however, values shown for Γ_{p} and Γ] (1983SN03).
${ }^{\mathrm{q}} \Gamma_{\mathrm{p}}=24 \pm 6(l=0), 246 \pm 24 \mathrm{keV}(l=2)(1984 \mathrm{DA} 18)$.
${ }^{\mathrm{r}} \Gamma_{\gamma_{3}}=8 \mathrm{eV}, \Gamma_{\mathrm{p}} \Gamma_{\gamma_{3}} / \Gamma=3.27 \pm 0.41 \mathrm{eV}$ (1983SN03).
${ }^{\mathrm{s}} \Gamma_{\gamma_{4}}=2 \mathrm{eV}, \Gamma_{\mathrm{p}} \Gamma_{\gamma_{4}} / \Gamma=0.69 \pm 0.10 \mathrm{eV}, \Gamma_{\mathrm{p}} \Gamma_{\alpha_{1}} / \Gamma=1.48 \mathrm{keV}$ (1983SN03).
${ }^{\mathrm{t}} \Gamma_{\gamma_{2}} ; \Gamma_{\gamma_{3}}=0.76 \pm 0.39 \mathrm{eV}$: see (1983SN03).
${ }^{\mathrm{u}} \Gamma_{\mathrm{p}_{0}}=7.8 \pm 2.8 \mathrm{keV}, \Gamma_{\mathrm{p}_{1+2}}=2.7 \pm 1.2 \mathrm{keV} ; \Gamma_{\mathrm{p}} \Gamma_{\gamma_{2}} / \Gamma=1.96 \pm 0.27 \mathrm{eV}, \Gamma_{\mathrm{p}} \Gamma_{\gamma_{3+4}} / \Gamma=0.31 \pm 0.11 \mathrm{eV}, \Gamma_{\mathrm{p}} \Gamma_{\mathrm{p}_{1+2}} / \Gamma=1.11 \pm 0.26 \mathrm{keV}, \Gamma_{\mathrm{p}} \Gamma_{\alpha_{1}} / \Gamma=4.25 \pm 1.00 \mathrm{keV}:$ see (1983SN03).
${ }^{\mathrm{v}} \Gamma_{\mathrm{p}} / \Gamma \leq 0.5, \Gamma_{\mathrm{p}} \Gamma_{\gamma_{0}} / \Gamma \geq 1.8 \pm 0.3 \mathrm{eV}$ (1983SN03).
${ }^{\mathrm{w}} \Gamma_{\mathrm{p}} \Gamma_{\gamma_{2}} ; \Gamma_{\mathrm{p}} \Gamma_{\gamma_{3}}<0.3 \mathrm{eV}$: see (1983SN03).
${ }^{\mathrm{x}} \Gamma_{\mathrm{p}_{0}}=0.98 \pm 0.19 \mathrm{keV}, \Gamma_{\mathrm{p}_{1+2}}=5.2 \pm 2.3 \mathrm{keV} ; \Gamma_{\mathrm{p}} \Gamma_{\gamma_{2}} / \Gamma=0.85 \pm 0.01 \mathrm{eV}, \Gamma_{\mathrm{p}} \Gamma_{\gamma_{3+4}} / \Gamma<0.03 \mathrm{eV}, \Gamma_{\mathrm{p}} \Gamma_{\mathrm{p}_{1+2}} / \Gamma=0.62 \pm 0.09, \Gamma_{\mathrm{p}} \Gamma_{\alpha_{0}} / \Gamma<0.09 \mathrm{keV}: \operatorname{see}(1983 \mathrm{SN} 03)$.
${ }^{\text {y }}$ See also Table IV in (1983SN03).
${ }^{\text {z }}$ See also (1983SN03).
${ }^{\text {aa }} \gamma_{1}+\gamma_{2}$.
${ }^{\mathrm{bb}} \Gamma_{\gamma_{0}}(1977 \mathrm{CH} 19)$. See also (1983SN03).
${ }^{\text {cc }} \Gamma_{\mathrm{p}_{0}}$ based on $\Gamma_{\mathrm{c} . \mathrm{m}}$. and values of $\Gamma_{\mathrm{p}_{0}} / \Gamma$ assumed by (1977CH19).
${ }^{\mathrm{dd}} \Gamma_{\mathrm{p}} \Gamma_{\gamma_{2}} / \Gamma=3.9 \pm 0.56 \mathrm{eV}, \Gamma_{\mathrm{p}} \Gamma_{\mathrm{p}_{1+2}} / \Gamma=4.48 \mathrm{keV}, \Gamma_{\mathrm{p}} \Gamma_{\mathrm{p}_{3}} / \Gamma=0.52 \mathrm{keV}, \Gamma_{\mathrm{p}} \Gamma_{\alpha_{1}} / \Gamma=1.07 \mathrm{keV}$ (1983SN03).
${ }^{\text {ee }} \Gamma_{\gamma_{2}}=38 \mathrm{eV} ; \Gamma_{\mathrm{p}} \Gamma_{\gamma_{2}} / \Gamma=18.8 \pm 3.9 \mathrm{eV}, \Gamma_{\mathrm{p}} \Gamma_{\mathrm{p}_{1+2}} / \Gamma=15.8 \mathrm{keV}, \Gamma_{\mathrm{p}} \Gamma_{\mathrm{p}_{3}} / \Gamma=5.8 \mathrm{keV}, \Gamma_{\mathrm{p}} \Gamma_{\mathrm{n}_{0}} / \Gamma=22 \mathrm{keV}$; the state is probably $4^{+} ; T=1:$ see (1983SN03).
${ }^{\text {ff }}$ Resonant in p_{2}.
gg $\sigma=12.9 \mathrm{mb}$ at peak of GDR (1978OC01).
${ }^{\text {hh }}$ Resonant in p_{1}.
${ }^{\text {ii }}$ Resonant in $\mathrm{p}_{0}, \mathrm{p}_{1}, \mathrm{p}_{6}$.
${ }^{\mathrm{jj}} \Gamma_{\gamma_{2}}(\mathrm{eV})$.
${ }^{\mathrm{kk}}$ Apparent resonance in yield of $\left(\alpha \gamma_{15.1}\right)$ (1978OC01).
${ }^{11}$ Average of values obtained in this experiment and in ${ }^{12} \mathrm{C}\left(\alpha, \gamma_{2}\right)$
32. ${ }^{14} \mathrm{~N}\left({ }^{6} \mathrm{Li}, \alpha\right){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=19.2611$

See (1977AJ02).
33. (a) ${ }^{14} \mathrm{~N}\left({ }^{11} \mathrm{~B},{ }^{9} \mathrm{Be}\right){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=4.9208$
(b) ${ }^{14} \mathrm{~N}\left({ }^{12} \mathrm{C},{ }^{10} \mathrm{~B}\right){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=-4.4503$
(c) ${ }^{14} \mathrm{~N}\left({ }^{13} \mathrm{C},{ }^{11} \mathrm{~B}\right){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=2.0575$
(d) ${ }^{14} \mathrm{~N}\left({ }^{14} \mathrm{~N},{ }^{12} \mathrm{C}\right)^{16} \mathrm{O} \quad Q_{\mathrm{m}}=10.46390$

For reactions (a) and (c) see (1982AJ01). For reactions (b), (c), and (d) see (1986AJ04).
34. ${ }^{15} \mathrm{~N}(\mathrm{p}, \gamma){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=12.12776$

The yield of γ-rays has been measured for $E_{\mathrm{p}}=0.15$ to 27.4 MeV [see (1986AJ04)] and for $E_{\mathrm{p}}=6.25-13.75 \mathrm{MeV}$ (1988WI16), $20-100 \mathrm{MeV}$ (1988HA04), 20-90 MeV (1989KA02), and $10-17 \mathrm{MeV}$ (1987BA71): observed resonances are displayed in Table 16.22. The γ_{0} cross section shows a great deal of structure up to $E_{\mathrm{p}}=17 \mathrm{MeV}$. Above that energy the γ_{0} yield decreases monotonically. Besides the GDR which peaks at ${ }^{16} \mathrm{O}^{*}(22.15)$ there is evidence for the emergence of a giant structure (E2) with $E_{\mathrm{x}}=24-29 \mathrm{MeV}$ in the $\gamma_{1+2+3+4}$ yield (1978OC01). Measurements for (p, γ_{0}) cross sections and analyzing powers for $E_{\mathrm{p}}=6.25-13.75 \mathrm{MeV}$ indicated a clear enhancement of the E2 cross section above $E_{\mathrm{x}}=22 \mathrm{MeV}$. Differential cross sections for γ_{0} and several other (unresolved) γ-rays at $E_{\mathrm{p}} \approx 28$ to 48 MeV generally show a broad bump at $E_{\mathrm{x}} \approx 34 \pm 2 \mathrm{MeV}$. The angular distributions show a dominant E1 character (1986AJ04). See also (1988HA04, 1988KI1C, 1989BOYV) and the review of (1988HA12). For comparisons with measurements of the inverse reaction see (1991FI08).

Measurements of (p, γ_{1}) yields (1987BA71) indicated a pronounced concentration of dipole strength which was interpreted as an E 1 giant resonance built on the ${ }^{16} \mathrm{O}$ first excited state. Other measurements of proton capture to excited states for $E_{\mathrm{p}}=20-90 \mathrm{MeV}$ are reported in (1989KA02).

Cross sections and analyzing powers for capture into the 3^{-}state at $E_{\mathrm{x}}=6.13 \mathrm{MeV}$ were studied by (1988RA15). Studies of quadrupole and octupole radiation from ${ }^{16} \mathrm{O}$ at $E_{\mathrm{x}}=39 \mathrm{MeV}$ determine $\sigma_{\mathrm{E} 2} / \sigma_{\mathrm{E} 1}=0.124 \pm 0.015$, and $\sigma_{\mathrm{E} 3} / \sigma_{\mathrm{E} 1}=0.0051 \pm 0.0026$ (1989KO29).

A study of the M1 decays of ${ }^{16} \mathrm{O}^{*}(16.21,17.14)$ [both $\left.J^{\pi} ; T=1^{+} ; 1\right]$ to ${ }^{16} \mathrm{O}^{*}(6.05)$ finds $\mathrm{B}\left(\mathrm{M} 1,1^{+} \rightarrow 0_{2}^{+}\right) / \mathrm{B}\left(\mathrm{M} 1,1^{+} \rightarrow 0_{1}^{+}\right)=0.48 \pm 0.03$ and 0.55 ± 0.04, respectively. ${ }^{16} \mathrm{O}^{*}(18.03)$ is a $3^{-} ; 1$ state with a strength $\Gamma_{\mathrm{p}} \Gamma_{\gamma_{2}} / \Gamma=1.96 \pm 0.27 \mathrm{eV}$ and ${ }^{16} \mathrm{O}^{*}(18.98)$ is the $4^{-} ; 1$ stretched particle-hole state with a strength of $(0.85 \pm 0.10) \mathrm{eV}$ (1983SN03). See also (1983SN03) for the identification of analog states in ${ }^{16} \mathrm{~N}$ and in ${ }^{16} \mathrm{O}$, and for a discussion of Gamow-Teller matrix elements in $A=14-18$ nuclei. See also the review of (1987BE1G). A study of the strong M2 transitions $E_{\mathrm{x}}=12.53 \rightarrow 0 \mathrm{MeV}$ and $E_{\mathrm{x}}=12.97 \rightarrow 0 \mathrm{MeV}$ is reported in (1986ZI08).

For astrophysical considerations see (1986AJ04) and (1985CA41, 1988CA26, 1989BA2P). See also Table 16.14 here. An application of this reaction for thin film analysis is described in (1992EN02).

Calculations of the decay of the GDR and GQR by (1990BU27) have included $1 \mathrm{p}-1 \mathrm{~h}$ and $2 \mathrm{p}-2 \mathrm{~h}$ configurations, but the fine structure of the GDR remains unexplained. RPA calculations overestimate p_{0} decay but the use of a non-local mean field partially corrects this. The ISGQR is misplaced by RPA calculations, but is lowered by coupling to $\alpha-{ }^{12} \mathrm{C}$ channels. Data from (e, é α) experiments are needed. RPA spectra have been examined (1988BL10) using a relativistic Hartree-Fock model for the ground state. Hartree-Fock based calculations appear to be insensitive to short-range repulsion. 1^{-}and $T=1$ strength distributions for ${ }^{16} \mathrm{O}$ have been calculated using Hartree and Hartree-Fock methods. Shell-model plus R-matrix and continuum shell-model results for 1 p shell nuclei have been considered (1987KI1C), but underestimate ground state (γ, N_{0}) decay branches. Ground state shell-model plus R-matrix calculations describe the GDR region reasonably well.

$$
\text { 35. }{ }^{15} \mathrm{~N}(\mathrm{p}, \mathrm{n})^{15} \mathrm{O} \quad Q_{\mathrm{m}}=-3.5363 \quad E_{\mathrm{b}}=12.12776
$$

Excitation functions and cross sections have been measured for $E_{\mathrm{p}}=3.8$ to 19.0 MeV : see (1982AJ01). For a listing of observed resonances see Table 16.23. (1983BY03) have measured the polarization and analyzing power for the n_{0} group for $E_{\mathrm{p}}=4.5$ to 11.3 MeV and have deduced integrated cross sections. Differential cross sections and analyzing powers at $E_{\mathrm{p}}=200$ and 494 MeV have been measured (1988CIZZ). See also (1986AJ04).

The theoretical work of (1987BE1D) has shown the sensitivity of the (p, n) reaction to spin dynamics and pionic fields for $E_{\mathrm{p}}=150-500 \mathrm{MeV}$ and isovector density below 50 MeV . The importance of configuration mixing in Gamow-Teller quenching is also considered. The authors of (1989RA15) discuss the failure of the DWIA to explain the analyzing power for (p , n) at 500 MeV , focusing on transverse and longitudinal spin-flip cross sections and projectile no-spin-flip cross sections as the sensitive terms primarily responsible for the inadequacies of this method.
36. (a) ${ }^{15} \mathrm{~N}(\mathrm{p}, \mathrm{p}){ }^{15} \mathrm{~N}$

$$
E_{\mathrm{b}}=12.12776
$$

(b) ${ }^{15} \mathrm{~N}(\mathrm{p}, \alpha){ }^{12} \mathrm{C}$

$$
Q_{\mathrm{m}}=4.9656
$$

(c) ${ }^{15} \mathrm{~N}\left(\mathrm{p},{ }^{3} \mathrm{He}\right){ }^{13} \mathrm{C}$
$Q_{\mathrm{m}}=-10.6658$

Elastic scattering studies have been reported for $E_{\mathrm{p}}=0.6$ to 15 MeV and angular distributions and excitation functions have been measured for $E_{\mathrm{p}}=2.5$ to 9.5 MeV for the ($\mathrm{p}_{1+2} \gamma$) and ($\mathrm{p}_{3} \gamma$) transitions [see (1986AJ04)]. Measurements of the depolarization parameter $K_{\mathrm{y}}{ }^{\mathrm{y}^{\prime}}$ at $E_{\mathrm{p}}=65 \mathrm{MeV}$ are reported in (1990NA15). Excitation functions for α_{0} and α_{1} particles [corresponding to $\left.{ }^{12} \mathrm{C}^{*}(0,4.43)\right]$ and of $4.43 \mathrm{MeV} \gamma$-rays have been measured for $E_{\mathrm{p}}=93 \mathrm{keV}$ to 45 MeV [see (1982AJ01)] and at $E_{\mathrm{p}}=77.6 \mathrm{keV}$ to 9.5 MeV (1986AJ04). The yield of 15.1 MeV γ-rays has been measured for $E_{\mathrm{p}}=12.5$ to 17.7 MeV (1978OC01). Measurements of the 430 keV

Table 16.23: Resonances in ${ }^{15} \mathrm{~N}(\mathrm{p}, \mathrm{n}){ }^{15} \mathrm{O}^{\text {a }}$

$E_{\mathrm{p}}(\mathrm{MeV} \pm \mathrm{keV})$	$\Gamma_{\text {c.m. }}(\mathrm{keV})$	$J^{\pi} ; T^{\mathrm{b}}$	$E_{\mathrm{x}}(\mathrm{MeV})$
4.37 ± 15	19 ± 6	$1^{(+)} ; 1$	16.22
4.45 ± 30	240 ± 30	$0^{(-)}$	16.30
5.35 ± 15	33 ± 5	$1^{(-)} ; 1$	17.14
5.52 ± 15	90 ± 10	$1^{-} ; 1$	17.30
5.88 ± 15	59 ± 10	$\geq 1 ; 1$	17.64
6.12 ± 15	101 ± 10	$\geq 1 ; 1$	17.86
$6.23 \pm 15^{\mathrm{c}}$	≤ 50	$T=1$	17.96
6.33 ± 15	26 ± 5	$\geq 1 ; 1$	18.06
6.43 ± 30	$\simeq 300$		18.15
6.76 ± 25	$\simeq 160$		18.46
7.03 ± 30	260 ± 30		18.71
7.59 ± 25	90 ± 10	$2^{-} ; 1$	19.24
7.86 ± 30	300 ± 80		19.49
8.30 ± 25	120 ± 40		19.90
$8.88 \pm 40{ }^{\mathrm{d}}$	200 ± 50	2	20.45
9.08 ± 40	130 ± 50		20.63
9.42 ± 100	235 ± 45		20.95
10.73 ± 100	800 ± 95	1	22.18
11.01 ± 100	300 ± 100		22.44
11.92 ± 100	520 ± 200		23.29
13.03 ± 100	520 ± 100		24.33
13.63 ± 100	≈ 280	2,4	24.89
15.12 ± 100	610 ± 140	2,4	26.29
18.4 ± 200	470 ± 150		29.4

${ }^{\text {a }}$ For references see Table 16.19 in (1982AJ01).
${ }^{\mathrm{b}}$ Assignments are from (p, n) and (p, γ) results. The T-assignments are made on the basis of energy and width comparisons with states of ${ }^{16} \mathrm{~N}$.
${ }^{\text {c }}$ Probably a doublet.
${ }^{\mathrm{d}}$ Values of $(2 J+1) \Gamma_{\mathrm{p}_{0}} \Gamma_{\mathrm{n}_{0}} / \Gamma^{2}$ are derived for this resonance and the ones below: see (1978CH09).
resonance in ${ }^{15} \mathrm{~N}(\mathrm{p}, \alpha \gamma){ }^{12} \mathrm{C}$ were carried out by (1987OS01, 1987EV01). Observed anomalies and resonances are displayed in Table 16.22 . The resonance at $E\left({ }^{15} \mathrm{~N}\right)=6.4 \mathrm{MeV}$ observed in the reaction ${ }^{1} \mathrm{H}\left({ }^{15} \mathrm{~N}, \alpha \gamma\right){ }^{12} \mathrm{C}$ has been used extensively to determine hydrogen concentration in thin films. See (1987EV01, 1987OS01, 1990FU06, 1990HJ02, 1992FA04).

A phase shift analysis of angular distributions of cross section and analyzing power for elastic scattering has yielded information on many ${ }^{16} \mathrm{O}$ states in the range $E_{\mathrm{x}}=14.8$ to 18.6 MeV . In particular a broad $J^{\pi}=2^{-}, T=1$ state at 17.8 MeV appears to be the analog of the $1 \mathrm{p}-1 \mathrm{~h}\left(\mathrm{~d}_{3 / 2}, \mathrm{p}_{1 / 2}^{-1}\right)$ ${ }^{16} \mathrm{~N}$ state at $E_{\mathrm{x}} \approx 5.0 \mathrm{MeV}$ (1986AJ04). The isospin mixing of the 2^{-}states ${ }^{16} \mathrm{O}^{*}(12.53,12.97)$ has been studied by (1983LE25): the charge-dependent matrix element responsible for the mixing is deduced to be $181 \pm 10 \mathrm{keV}$. The α_{0} yield and angular distribution study by (1982RE06) leads to a zero-energy intercept of the astrophysical $S(E)$ factor, $S(0)=65 \pm 4 \mathrm{MeV} \cdot \mathrm{b}$. See (1982AJ01, 1986AJ04) for the earlier work. See also (1987RO25), and see the tables of thermonuclear reaction rates in (1985CA41).

Among recent theoretical developments related to these reactions, electron screening effects for $\left.{ }^{15} \mathrm{~N}(\mathrm{p}, \alpha)\right)^{12} \mathrm{C}$ at very low energies ($<50 \mathrm{keV}$) have been evaluated (1987AS05). Expressions for longitudinal and irregular transverse PNC analyzing powers in cases of parity-mixed resonances such as ${ }^{15} \mathrm{~N}(\overrightarrow{\mathrm{p}}, \mathrm{p}){ }^{15} \mathrm{~N}$ and ${ }^{15} \mathrm{~N}(\overrightarrow{\mathrm{p}}, \alpha){ }^{12} \mathrm{C}$ are derived in (1989CA1L). Recent theoretical studies of the parity- and isospin-forbidden α-decay of the 12.97 MeV state to the ${ }^{12} \mathrm{C}$ ground state are reported in (1991DU04, 1991KN03). See also the theoretical study of single particle resonances in (1991TE03).

An investigation into the separation of the strength of the giant resonance for underlying levels neglecting statistical assumptions (1986KL06) has shown deviations from statistical behavior at the tops of resonances, leading to missing spectroscopic strength. A calibration method for heavyion accelerators has been described by (1987EV01), who have also determined the energy of the $E_{\mathrm{p}}=430 \mathrm{keV}$ resonance in the ${ }^{15} \mathrm{~N}(\mathrm{p}, \alpha \gamma)^{12} \mathrm{C}$ reaction. Quantum fluctuations are shown to cause structures having collective properties (1986RO26). These new collective states are dissipative. ${ }^{15} \mathrm{~N}(\mathrm{p}, \mathrm{p}){ }^{15} \mathrm{~N}$ is considered for $25<E_{\mathrm{p}}<40 \mathrm{MeV}$. (1988RO09) consider the transition from resonance to direct reactions as well as the significance of quantum fluctuations.
37. ${ }^{15} \mathrm{~N}(\mathrm{~d}, \mathrm{n}){ }^{16} \mathrm{O}$

$$
Q_{\mathrm{m}}=9.9030
$$

Observed neutron groups, l-values and spectroscopic factors are displayed in Table 16.24. See also (1986AJ04).
38. ${ }^{15} \mathrm{~N}\left({ }^{3} \mathrm{He}, \mathrm{d}\right){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=6.6340$

See Table 16.24.
39. ${ }^{16} \mathrm{~N}\left(\beta^{-}\right){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=10.419$

Table 16.24: States in ${ }^{16} \mathrm{O}$ from ${ }^{15} \mathrm{~N}(\mathrm{~d}, \mathrm{n})$ and ${ }^{15} \mathrm{~N}\left({ }^{3} \mathrm{He}, \mathrm{d}\right)$

${ }^{16} \mathrm{O}^{*}(\mathrm{MeV} \pm \mathrm{keV})$	$J^{\pi} ; T$	l^{a}	l^{b}	S^{c}
0	$0^{+} ; 0$	1	1	3.1
6.05	$0^{+} ; 0$		1	d
6.13	$3^{-} ; 0$	2	2	
6.92	$2^{+} ; 0$	not direct	$1+3$	d
7.12	$1^{-} ; 0$	0	$0+2$	
8.87	$2^{-} ; 0$	2	2	0.72
9.59	$1^{-} ; 0$		0	d
9.84	$2^{+} ; 0$	1	not direct	d
10.36	$4^{+} ; 0$		3	d
10.96	$0^{-} ; 0$	0	0	0.76
11.08	$3^{+} ; 0$	3	3	0.18
11.26	$0^{+} ; 0$		broad	
12.44	$1^{-} ; 0$	0	0	0.40
12.53	$2^{-} ; 0$	2	2	0.72
12.80	$0^{-} ; 1$	0	0	0.44
12.97	$2^{-} ; 1$	2	2	0.40
13.09	$1^{-} ; 1$	(0)		0.58
			$2(+0)$	
13.13 e	$3^{-} ; 0$	(2)		0.32
13.26	$3^{-} ; 1$	2	2	0.46
17.14			obs.	
17.20	2^{+}		obs.	

${ }^{\text {b }}{ }^{15} \mathrm{~N}\left({ }^{3} \mathrm{He}, \mathrm{d}\right) ; E\left({ }^{3} \mathrm{He}\right)=11,16.0$ and 24.0 MeV ; see (1977AJ02).
c "Best" values from (d, n) and $\left({ }^{3} \mathrm{He}\right.$, d) data. See Table 16.22 in (1977AJ02) for a more complete display.
${ }^{\text {d }}$ Very small value of S : see (1977AJ02).
${ }^{\mathrm{e}} \Gamma=128 \mathrm{keV}$.

Table 16.25: Beta decay of the ground state of ${ }^{16} \mathrm{~N}$

Final State		Branch (\%)	$\log f t$
${ }^{16} \mathrm{O}^{*}(\mathrm{MeV})$	J^{π}		
0	0^{+}	$28.0 \pm 0.5^{\mathrm{a}}$	$9.077 \pm 0.005^{\mathrm{d}, \mathrm{e}}$
6.05	0^{+}	$(1.2 \pm 0.4) \times 10^{-2}$	$9.96 \pm 0.15^{\mathrm{d}}$
6.13	3^{-}	$66.2 \pm 0.6^{\mathrm{b}}$	4.48 ± 0.04
7.12	1^{-}	4.8 ± 0.4	5.11 ± 0.04
8.87	2^{-}	$1.06 \pm 0.07^{\mathrm{c}}$	$4.41 \pm 0.03^{\mathrm{c}}$
9.59	1^{-}	$(1.20 \pm 0.05) \times 10^{-3}$	$6.12 \pm 0.05^{\mathrm{f}}$
9.84	2^{+}	$(6.5 \pm 2.0) \times 10^{-7}$	$9.07 \pm 0.13^{\mathrm{d}}$

[^5]The ground state of ${ }^{16} \mathrm{~N}$ decays to seven states of ${ }^{16} \mathrm{O}$: reported branching ratios are listed in Table 16.25. The ground state transition has the unique first-forbidden shape corresponding to $\Delta J=2$, fixing J^{π} of ${ }^{16} \mathrm{~N}$ as 2^{-}: see (1959AJ76). The unique first-forbidden decay rates to the 0^{+} ground state and $6.06-\mathrm{MeV}$ level are well reproduced by a large-basis $(0+2+4) \hbar \omega$ shell-model calculation (1992WA25). The decays to odd-parity states (see Table 16.25) are well reproduced by recent calculations of Gamow-Teller matrix elements (1993CH06). For the β-decay of ${ }^{16} \mathrm{~N}^{*}(0.12)$, see Reaction 1 in ${ }^{16} \mathrm{~N}$.

The β-delayed α-decays of ${ }^{16} \mathrm{O}^{*}(8.87,9.59,9.84)$ have been observed: see (1971AJ02). The parity-forbidden α-decay from the 2^{-}state ${ }^{16} \mathrm{O}^{*}(8.87)$ has been reported: $\Gamma_{\alpha}=(1.03 \pm 0.28) \times$ $10^{-10} \mathrm{eV}\left[E_{\alpha}=1282 \pm 5 \mathrm{keV}\right]$: see (1977AJ02).

Transition energies derived from γ-ray measurements are: $E_{\mathrm{x}}=6130.40 \pm 0.04 \mathrm{keV}\left[E_{\gamma}=\right.$ $6129.142 \pm 0.032 \mathrm{keV}(1982 \mathrm{SH} 23)], E_{\mathrm{x}}=6130.379 \pm 0.04\left[E_{\gamma}=6129.119 \pm 0.04 \mathrm{keV}\right.$ (1986KE15)] and $E_{\mathrm{x}}=7116.85 \pm 0.14 \mathrm{keV}\left[E_{\gamma}=7115.15 \pm 0.14 \mathrm{keV}\right]$. See (1977AJ02). See also p. 16 in (1982OL01).

See (1990JI02) for an R-matrix analysis for the $9.59-\mathrm{MeV}$ level and discussion of its astrophysical significance and see astrophysical related work of (1991BA1K, 1991HU10).
40. (a) ${ }^{16} \mathrm{O}(\gamma, \mathrm{n}){ }^{15} \mathrm{O} \quad Q_{\mathrm{m}}=-15.6639$
(b) ${ }^{16} \mathrm{O}(\gamma, 2 \mathrm{n}){ }^{14} \mathrm{O} \quad Q_{\mathrm{m}}=-8.8863$
(c) ${ }^{16} \mathrm{O}(\gamma, \mathrm{pn})^{14} \mathrm{~N} \quad Q_{\mathrm{m}}=-22.9609$
(d) ${ }^{16} \mathrm{O}(\gamma, 2 \mathrm{p})^{14} \mathrm{C} \quad Q_{\mathrm{m}}=-22.178$
(e) ${ }^{16} \mathrm{O}(\gamma, 2 \mathrm{~d})^{12} \mathrm{C} \quad Q_{\mathrm{m}}=-31.0087$

The absorption cross section and the (γ, n) cross section are marked by a number of resonances. On the basis of monoenergetic photon data, excited states of ${ }^{16} \mathrm{O}$ are observed at $E_{\mathrm{x}}=17.3[\mathrm{u}]$, 19.3 [u] and 21.0 MeV [u=unresolved], followed by the giant resonance with its principal structures at 22.1 and 24.1 MeV , and with additional structures at 23 and 25 MeV : see (1986AJ04, 1988DI02). The integrated nuclear absorption cross section for $E_{\gamma}=10$ to 30 MeV is $182 \pm 16 \mathrm{MeV} \cdot \mathrm{mb}$ (1986AJ04). See also Reaction 42. The (γ, n) cross section has been measured for $E_{\gamma}=17$ to 33 MeV : in that energy interval the ($\gamma, 2 \mathrm{n}$) cross section is negligible. The cross section for formation of the GDR at 22.1 MeV is $10.0 \pm 0.4 \mathrm{mb}$ and the integrated cross section to 30 MeV is $54.8 \pm 5 \mathrm{MeV} \cdot \mathrm{mb}$. There is apparently significant single particle-hole excitation of ${ }^{16} \mathrm{O}$ near 28 MeV and significant collectivity of the GDR. A sharp rise is observed in the average E_{n} above 26 MeV . The cross section for $\left(\gamma, \mathrm{n}_{0}\right)$ decreases monotonically for $E_{\mathrm{x}}=25.5$ to 43.8 MeV . In the range $30-35 \mathrm{MeV}$ the E2 cross section exhausts about 4% of the isovector E2 EWSR. Over the range 25.5 to 43.8 MeV it exhausts $\sim 68 \%$ of the isovector E2 EWSR [see (1986AJ04) and references cited there]. M1, E1, and E2 strengths were studied by recent polarization and cross section measurements for $E_{\gamma}=17$ to 25 MeV (1991FI08). An atlas of photoneutron cross sections obtained with monoenergetic photons is presented in (1988DI02).

The absorption cross section has been measured with bremsstrahlung photons of energies from $E_{\mathrm{bs}}=10 \mathrm{MeV}$ to above the meson threshold: see (1982AJ01). The $(\gamma, \mathrm{n}),(\gamma, 2 \mathrm{n})$ and (γ, Tn) cross sections have been studied with monoenergetic photons for $E_{\gamma}=24$ to 133 MeV . Above 60 MeV , the main reaction mechanisms appear to be absorption of the photons by a correlated n-p pair in the nucleus: the integrated cross section from threshold to 140 MeV is $161 \pm 16 \mathrm{MeV} \cdot \mathrm{mb}$ (1986AJ04). Differential cross sections for $\left(\gamma, \mathrm{n}_{0}\right)$ have been measured at $E_{\gamma}=150$, 200, and 250 MeV at $\theta_{\text {lab }}=49^{\circ}, 59^{\circ}$, and 88° (1988BE20, 1989BE14). See also ${ }^{15}$ O in (1991AJ01). For reaction (b) and pion production see (1986AJ04). For reaction (c) measurements have been carried out with bremsstrahlung photons with $E_{\gamma} \leq 150 \mathrm{MeV}$ (1989VO19), and with tagged photons in the Δ (1232) resonance region (1987KA13). See also (1991VA1F). Measurements of reactions (d) and (e) were made with tagged photons of energies $80-131 \mathrm{MeV}$ (1991MA39). Measurements of the total cross section at $E_{\gamma}=90-400 \mathrm{MeV}$ are described in (1988AH04). Calculations which indicate that molecular effects are important in screening corrections to the cross section in the Δ resonance region are discussed. The hadron production cross section has been studied over the range 0.25 to 2.7 GeV see (1986AJ04).

Sum rules and transition densities for isoscalar dipole resonances are discussed in (1990AM06). For a calculation of monopole giant resonances see (1990AS06). Calculations relating to polarization effects are discussed in (1990BO31, 1990LO20). The contribution of six-quark configurations to the E1 sum rule has been considered (1989AR02), and upper bounds for the production probabilities of 6 q -clusters have been derived. The continuum self-consistent RPA-SK3 theory predicts
charge transition densities in ${ }^{16} \mathrm{O}$ for excitation of GDR (1988CA07). Neutron and proton decay is also indicated. See also (1991LI28, 1991LI29). A contiuum shell model description of (γ, n) and (γ, \mathfrak{p}) data at medium energies is reported in (1990BRZY). Radial dependence of charge densities depends on whether r-values correspond to the interior of the nucleus or to the surface (1988CA07). In (1985GO1A) (γ, n) and (γ, p) experimental results are compared with those of large-basis shell model calculations. Good results were obtained, but a new source of spreading is warranted. Ratios of (γ, n)-to- (γ, p) cross sections have been computed using R-matrix theory including configuration splitting, isospin splitting, and kinematics effects (1986IS09). Computations of the partial photonuclear cross sections have been performed (1987KI1C) using the continuum shell model. GDR and other giant multipole resonances are also considered. The authors of (1988RO1R) use the continuum shell model as a basis for their study of "self-organization". The role of the velocitydependent part of the N-N interaction is also examined. A method for solving the RPA equations, and an examination of the long-wavelength approximation is discussed in (1988RY03). Levinger's modified quasi-deuteron model is applied for $7 \leq A \leq 238$ and $E_{\gamma}=35-140 \mathrm{MeV}$ (1989TE06). The quantities $L=6.1 \pm 2.2$ and $D=0.72 A$ are also deduced. The role of distortion in (γ, np) reactions is explored in (1991BO29).
41. (a) ${ }^{16} \mathrm{O}(\gamma, \mathrm{p})^{15} \mathrm{~N}$
$Q_{\mathrm{m}}=-12.12776$
(b) ${ }^{16} \mathrm{O}(\gamma, \mathrm{d}){ }^{14} \mathrm{~N}$
$Q_{\mathrm{m}}=-20.7363$
(c) ${ }^{16} \mathrm{O}(\gamma, \alpha){ }^{12} \mathrm{C}$
$Q_{\mathrm{m}}=-7.16195$
(d) ${ }^{16} \mathrm{O}\left(\gamma, \pi^{0}\right)^{16} \mathrm{O}$
$Q_{\mathrm{m}}=-134.964$
(e) ${ }^{16} \mathrm{O}\left(\gamma, \pi^{+}\right)^{16} \mathrm{~N}$
$Q_{\mathrm{m}}=-149.986$
(f) ${ }^{16} \mathrm{O}\left(\gamma, \pi^{-}\right){ }^{16} \mathrm{~F}$
$Q_{\mathrm{m}}=-154.984$
(g) ${ }^{16} \mathrm{O}\left(\gamma, \pi^{-} \mathrm{p}\right){ }^{15} \mathrm{O}$
$Q_{\mathrm{m}}=-154.4485$

The $\left(\gamma, \mathrm{p}_{0}\right)$ cross section derived from the inverse capture reaction (reaction 34) confirms the giant resonance structure indicated above in Reaction 40, as do the direct (γ, p_{0}) measurements. For the earlier work see (1982AJ01). For results of measurements with linear polarized photons at $E_{\mathrm{bs}}=22$ and 30 MeV and for differential cross sections at $E_{\gamma}=101.5-382 \mathrm{MeV}$ and proton spectra at $E_{\gamma} \approx 360 \mathrm{MeV}$, see (1986AJ04). See also the reviews (1987BE1G, 1988KO1S), and see (1987MA1K). Angular distributions for (γ, p) reactions populating low-lying states of ${ }^{15} \mathrm{~N}$ were measured (1988AD07) with bremsstrahlung photons with $E_{\gamma}=196-361 \mathrm{MeV}$. Differential cross sections measurements with $E_{\gamma} \approx 300 \mathrm{MeV}$ tagged photons (1990VA07) were used to study the interaction mechanism. Proton spectra measured at 90° (1990VA07) showed evidence for an absorption process in which the photon interacts with a $T=1 \mathrm{np}$ pair. See also the comment (1992SI01) and reply on the interpretation of these data. A related calculation concerning quasideuteron behavior of np pairs is described in (1992RY02). See also (1987OL1A).

For reaction (b) see (1982AJ01). A study of the ${ }^{16} \mathrm{O}\left(\gamma, \alpha_{0}\right)$ reaction (c) at $\theta=45^{\circ}$ and 90° shows a 2^{+}resonance at $E_{\mathrm{x}}=18.2 \mathrm{MeV}$ with an E 2 strength which is spread out over
a wide energy interval. A strong resonance corresponding to an isospin-forbidden 1^{-}state at $E_{\mathrm{x}} \approx 21.1 \mathrm{MeV}$ is also observed (1986AJ04). The systematics of cross sections for reaction (d) are discussed in (1991BO26). For pion production reactions (e), pion angular distributions were measured for a mixed flux of real and virtual photons at $E_{\gamma}=320 \mathrm{MeV}$ (1987YA02). Double differential cross sections with tagged photons with $E_{\gamma}=220-450 \mathrm{MeV}$ are reported in (1991AR06). See also ${ }^{16} \mathrm{~N}$ and (1986AJ04). Exclusive cross sections for reaction (g) in the Δ resonance region are reported by (1992PH01).

Recent theoretical work includes calculations of sum rules and transition densities (1990AM06), monopole giant resonances (1990AS06), and polarization effects (1990BO31, 1990LO20). A scheme using fractional-parentage coefficients to separate the wavefunction into three fragments in arbitrary internal states has been proposed, and examples include ${ }^{7} \mathrm{Li}(\gamma, \mathrm{t}){ }^{4} \mathrm{He},{ }^{16} \mathrm{O}(\gamma, \mathrm{dd}){ }^{12} \mathrm{C}$ and ${ }^{12} \mathrm{C}(\gamma, \mathrm{pd}){ }^{9} \mathrm{Be}$ (1988BU06). A formula for cross sections for $A\left(\gamma, \mathrm{~d} \gamma^{\prime}\right) A-2$ reactions with $E_{\gamma}=2.23 \mathrm{MeV}$ has been derived (1988DU04). In a study of Dirac negative energy bound states, a relativistic shell model predicts $\gamma+{ }^{16} \mathrm{O} \rightarrow{ }_{\overline{\mathrm{p}}}^{15} \mathrm{~N}+\mathrm{p}$ has a threshold at 1.2 GeV and rises to about $5 \mu \mathrm{~b}$ by 1.6 GeV (1988YA08). (1988LO07) calculate ${ }^{16} \mathrm{O}(\gamma, \mathrm{p})^{15} \mathrm{~N}$ using Dirac phenomenology. Dirac spinors are used to describe the proton dynamics in a DWBA calculation, and results are compared to data. ${ }^{16} \mathrm{O}(\gamma, \mathrm{p}){ }^{15} \mathrm{~N}$ for $E_{\gamma}=50-400 \mathrm{MeV}$ has been calculated (1986LU1A) using a coupled-channels continuum shell-model technique. A single particle direct knock-out model is used by (1987RY03) to calculate (γ, π) cross sections for $E_{\gamma}=40-400 \mathrm{MeV}$. See also (1990BRZY, 1991IS1D). ${ }^{16} \mathrm{O}(\gamma, \mathrm{p})$ at intermediate energies has been calculated using both a single particle and a pion-exchange-current mechanism in a relativistic form of the nucleon current operator and four-component nucleon wave functions (1988MC03). See also the study of the effects of current conservation in these reactions (1991MA39) and of scaling (19910W01). An expression for the (γ, \mathbf{N}) cross section with incident circularly polarized photons and outgoing nucleon polarization being detected is given in (1986PO14). A direct-semidirect model calculation for ${ }^{16} \mathrm{O}\left(\gamma, \mathrm{N}_{0}\right)$ at 60 MeV is given as an example. A model, based on basic interactions between photons, pions, nucleons and isobars, providing an adequate description of the $\gamma \mathrm{N} \rightarrow \pi \mathrm{N}$ reaction is described in (1992CA04).
42. ${ }^{16} \mathrm{O}(\gamma, \gamma){ }^{16} \mathrm{O}$

Resonances have been reported (1970AH02) at $E_{\gamma}=22.5 \pm 0.3,25.2 \pm 0.3,31.8 \pm 0.6$ and $50 \pm 3 \mathrm{MeV}$: the dipole sum up to 80 MeV exceeds the classical value by a factor 1.4. Elastic photon scattering cross sections for $E_{\gamma}=25$ to 39 MeV have been measured. The E2 strength is $1.25_{-0.9}^{+1.3}$ times the total EWSR strength over that interval. The widths of ${ }^{16} \mathrm{O} *(6.92,7.12)$ are, respectively, 94 ± 4 and $54 \pm 4 \mathrm{meV}$ (1985MO10, 1986AJ04). Differential cross sections at angles of 135° and 45° for elastic scattering of tagged photons between 21.7 and 27.5 MeV in the giant dipole resonance region have been measured by (1987LE12). Differential cross sections for tagged photons with $E_{\gamma}=27-68 \mathrm{MeV}$ have been reported by (1990MEZV). Polarizabilities of nucleons imbedded in ${ }^{16} \mathrm{O}$ were measured via Compton scattering of 61 and 77 MeV photons by (1992LU01). See also Table 16.14.

A non-perturbative study of damping of dipole and quadrupole motion in ${ }^{16} \mathrm{O}$ is discussed in (1992DE06). (1987VE03) have used an extended isobar doorway model including open-shell configurations in both ground and excited states to calculate elastic and inelastic photon scattering in the Δ-region, and for linearly polarized photons.

Table 16.26: Excited states observed in ${ }^{16} \mathrm{O}\left(\mathrm{e}, \mathrm{e}^{\prime}\right)^{16} \mathrm{O}^{\text {a }}$

$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})$	$J^{\pi} ; T$	Mult.	$\Gamma_{\text {c.m. }}(\mathrm{keV})$	$\Gamma_{\gamma_{0}}(\mathrm{eV})$
6.05	0^{+}	E0		$3.55 \pm 0.21^{\text {c }}$
6.13	3^{-}	E3		$(2.60 \pm 0.13) \times 10^{-5}$
6.92	2^{+}	E2		0.105 ± 0.007
7.12	1^{-}	E1		$(4.6 \pm 2.3) \times 10^{-2}$
$8.87{ }^{\text {b }}$	2^{-}	M2		
9.84	2^{+}	E2		$(8.8 \pm 1.7) \times 10^{-} 3$
10.36	4^{+}	E4		$(5.6 \pm 2.0) \times 10^{-8}$
11.52	2^{+}	E2		0.61 ± 0.02
12.05	0^{+}	E0		$4.03 \pm 0.09^{\text {c }}$
$12.44{ }^{\text {b }}$	1^{-}	E1		
$12.53{ }^{\text {b }}$	2^{-}	M2		0.021 ± 0.006
$12.97{ }^{\text {b }}$	2^{-}	M2		0.071 ± 0.002
13.02	2^{+}	E2		0.89
13.10 ± 250	$1^{-} ; 1$	E1		$\leq 49 \pm 13$
$13.26{ }^{\text {b }}$	3^{-}	E3		
$13.87{ }^{\text {b }}$	4^{+}	E4		
$14.00 \pm 50^{\text {b }}$	0^{+}	E0	170 ± 50	$3.3 \pm 0.7^{\text {c }}$
$\approx 14.7{ }^{\text {b }}$			≈ 600	
$14.93{ }^{\text {b }}$	2^{+}	E2		
15.15 ± 150	2^{+}	E2	500 ± 200	1.0 ± 0.5
$15.20{ }^{\text {b }}$	2^{-}	M2		
$15.41{ }^{\text {b }}$	3^{-}	E3		
≈ 15.85			≈ 600	
$16.22 \pm 10{ }^{\text {b,d }}$	$1^{+} ; 1$	M1	18 ± 3	3.2 ± 0.3
$16.45 \pm 10^{\mathrm{b}, \mathrm{d}}$	2^{+}	E2	32 ± 4	0.18 ± 0.01
$16.82 \pm 10^{\mathrm{b}, \mathrm{d}}$	2^{-}	M2	30 ± 5	0.05 ± 0.01
$17.14 \pm 10^{\mathrm{b}, \mathrm{d}}$	$1^{+} ; 1$	M1	<25	6.1 ± 0.5

Table 16.26: Excited states observed in ${ }^{16} \mathrm{O}\left(\mathrm{e}, \mathrm{e}^{\prime}\right)^{16} \mathrm{O}^{\text {a }}$ (continued)

$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})$	$J^{\pi} ; T$	Mult.	$\Gamma_{\text {c.m. }}(\mathrm{keV})$	$\Gamma_{\gamma_{0}}(\mathrm{eV})$
$17.30 \pm 10^{\mathrm{b}, \mathrm{d}}$	1^{-}	E1	70 ± 10	3.4 ± 2.3
$17.774 \pm 17^{\mathrm{b}}$	$4^{-} ; 0$	M4		
$17.78 \pm 10^{\mathrm{d}, \mathrm{e}}$	2^{-}	M2		0.07 ± 0.01
$17.880 \pm 15^{\mathrm{f}}$	$\left(4^{+} ; 1\right)$	E4	20 ± 20	
$18.021 \pm 23^{\mathrm{b}}$	$3^{-} ; 1$			
$18.20 \pm 10^{\mathrm{d}}$	2^{+}	E2	280 ± 20	1.68 ± 0.22
$\approx 18.3^{\mathrm{f}}$			≈ 430	
$18.50 \pm 10^{\mathrm{b}, \mathrm{d}}$	2^{-}	M2	70 ± 5	0.38 ± 0.07
$18.635 \pm 20^{\mathrm{f}}$	$\left(4^{-} ; 1\right)$		35 ± 30	
$18.79 \pm 10^{\mathrm{d}}$	$1^{+} ; 1$	M1	120 ± 20	5.3 ± 0.3
$18.968 \pm 17^{\mathrm{b}, \mathrm{g}}$	$4^{-} ; 1$	M4		
$19.02 \pm 40^{\mathrm{d}, \mathrm{h}}$	$2^{-} ; 1$	M2	420 ± 50	2.52 ± 0.38
$19.206 \pm 12^{\mathrm{b}}$	$3^{-} ; 1$	E3		
$19.430 \pm 20^{\mathrm{f}}$			150 ± 15	
$20.185 \pm 40^{\mathrm{f}}$			400 ± 100	
$20.335 \pm 25^{\mathrm{f}}$			≈ 200	
$20.510 \pm 25^{\mathrm{f}}$	$\left(4^{-} ; 1\right)$		50 ± 30	
20.88^{b}			≈ 90	
20.95 ± 50	$1^{-} ; 1$	E1	270 ± 70	180 ± 50
$\approx 21.46^{\mathrm{b}}$			≈ 300	
$22.60 \pm 20^{\mathrm{b}}$			90 ± 40	
23.0				
23.7 ± 250	$\left(2^{-} ; 1\right)$			
24.2				
25.5 ± 250	$1^{-} ; 1$	E1		
44.5	1^{+}	M1		
49	$\left(1^{-} ; 1\right)$		$2000-3000$	

${ }^{\text {a }}$ See also Table 16.26 in (1971AJ02). For references see Table 16.24 in (1977AJ02). See also the text.
${ }^{\mathrm{b}}$ (1985HY1A: momentum transfer range 0.8 to $2.5 \mathrm{fm}^{-1}$). See (1986AJ04).
${ }^{\mathrm{c}}$ Monopole matrix element in fm^{2}.
d (1983KU14).
${ }^{\mathrm{e}}$ An unresolved complex of M1 strength has a centroid at $E_{\mathrm{x}} \approx 17.7 \mathrm{MeV}$: the total $\Gamma_{\gamma_{0}}$ is $7.4 \pm 1.9 \mathrm{eV}$ (1983KU14).
f (1987HY01).
${ }^{\mathrm{g}}$ See also (1986AJ04).
${ }^{\mathrm{h}}$ The total cross section ($E_{\mathrm{x}}=18.7-19.4 \mathrm{MeV}$) is $12 \% \mathrm{M} 1$ and $88 \% \mathrm{M} 2$, leading to $B(\mathrm{M} 1) \uparrow=0.13 \pm 0.03$
μ_{N}^{2} and $B(\mathrm{M} 2) \uparrow=341 \pm 51 \mu_{\mathrm{N}}^{2} \cdot \mathrm{fm}^{2}$: see (1986AJ04).
43. (a) ${ }^{16} \mathrm{O}(e, e)^{16} \mathrm{O}$
(b) ${ }^{16} \mathrm{O}\left(\mathrm{e}, \mathrm{e}^{\prime} \mathrm{p}\right){ }^{15} \mathrm{~N} \quad Q_{\mathrm{m}}=-12.12776$
(c) ${ }^{16} \mathrm{O}\left(\mathrm{e}, \mathrm{e}^{\prime} \alpha\right)^{12} \mathrm{C} \quad Q_{\mathrm{m}}=-7.161$

The ${ }^{16} \mathrm{O}$ charge radius $=2.710 \pm 0.015 \mathrm{fm}$ (1978KI01). Form factors for transitions to the ground and to excited states of ${ }^{16} \mathrm{O}$ have been reported in many earlier studies [see (1982AJ01, 1986AJ04)], and by (1987HY01); see Table 16.26. Table 16.26 lists the excited states observed from (e, e^{\prime}). The form factor for ${ }^{16} \mathrm{O}^{*}(9.84)$ indicates a transition density peaked in the interior (1986BU02). The energy-weighted M2 strength is nearly exhausted by the M2 states which have been observed. The isospin-forbidden (E1) excitation of ${ }^{16} \mathrm{O}^{*}(7.12)$ is reported: the isovector contribution interferes destructively with the isoscalar part and has a strength $\sim 1 \%$ of the $T=0$ amplitude. The 0^{+}states of ${ }^{16} \mathrm{O}^{*}(6.05,12.05,14.00)$ saturate $\sim 19 \%$ of an isoscalar monopole sum rule. In a recent measurement, the magnetic monopole $0^{+} \rightarrow 0^{-}$transition to ${ }^{16} \mathrm{O}^{*}(10.957)$ was observed (1991VO02). The E2 strength is distributed over a wide energy region: see Table 16.26, and (1982AJ01, 1986AJ04) for references. See also the compilation of nuclear charge density distribution parameters (1987DEZV), and the reviews of (1989DR1C, 1987HO1F).

A study of reaction (b) at 500 MeV shows separation energies of 12.2 and 18.5 MeV , corresponding to ${ }^{15} \mathrm{~N}^{*}(0,6.32)$. The momentum distribution of the recoiling nucleus has been measured. High precision data with $\sim 100 \mathrm{keV}$ resolution in the missing mass are reviewed in (1990DE16). The excitation of ${ }^{16} \mathrm{O}^{*}(11.52,12.05,22.3)$ and some other states is reported at $E_{\mathrm{e}}=112-130 \mathrm{MeV}$ in (e, é). The (e, e'p) and (e, e α) processes lead to the excitation of ${ }^{15} \mathrm{~N}^{*}(0,6.32)$ and of ${ }^{12} \mathrm{C}^{*}(0$, 4.44). (See (1982AJ01, 1986AJ04) for the references). In a recent measurement the nuclear response function R_{LT} for ${ }^{15} \mathrm{~N}^{*}(0,6.32)$ was determined in (e, ép) by (1991CH39). See also (1990MO1K). Coincidence experiments at $E_{\mathrm{e}}=130 \mathrm{MeV}$ are reported by (1987DM01). See also (1987RI1A). Non-spherical components in the ${ }^{16} \mathrm{O}$ ground state are indicated by the (e, ép) data of (1988LEZW). The inelastic cross section for 537 and 730 MeV electrons has been measured by (1987OC01), and the electromagnetic excitation of the Δ resonance was studied.

Angular correlation measurements for reaction (c) to determine isoscalar E2 strengths in ${ }^{16} \mathrm{O}$ are reported in (1992FR05).

Inelastic electron-nucleus interactions for ${ }^{16} \mathrm{O}$ at 5 GeV are reported in (1990DE1M).

In theoretical work on reactions (a) and (b), models for relativistic Coulomb sum rules are developed in (1989DO05). See also (1991LE14). A shell-model study of giant resonances and spectroscopic factors in ${ }^{16} \mathrm{O}$ is described in (1988HO10). See also (1990BO31). (1988AM03) studied an isoscalar dipole excitation in ${ }^{16} \mathrm{O}(7.12 \mathrm{MeV}$ state). Core polarization was used in their limited shell model treatment. Exchange amplitudes proved crucial in fitting (p, p') data. A relativistic Dirac-Hartree-Fock approach is shown to give a reasonably good account of binding energies, single-particle energies and charge, as well as proton and neutron densities of ${ }^{16} \mathrm{O}$ and other closed shell nuclei (1988BL1I). The application of Monte Carlo methods in light nuclei including ${ }^{16} \mathrm{O}$ is reviewed in (1991CA35). Non-locality of the nucleon-nucleus optical potential has been used (1987BO54) to evaluate the missing single particle strength observed in (e, e'p) data. (1988BO40) have studied the charge form factor by taking the one- and two-body isoscalar charge operands into account in the topological soliton model. Nuclear responses were calculated (1987CA16) using self-consistent HF and RPA theory with a SK3 interaction. Decay properties in (e, ép) and (e, én) for semidirect and knockout processes are also discussed. A self-consistent RPA with the SK3 interaction has been used by (1988CA10) to calculate ($\vec{e}, e^{\prime} x$) reactions. Polarization structure functions are also discussed. (1989CA13) use self-consistent RPA with SK3 interactions to calculate monopole excitations in (e, e^{\prime}) and ($\left.\vec{e}, e^{\prime} x\right)$ reactions. Evidence has been presented by (1989FR02) for a violation of Siegert's theorem, based on cross section measurements of the electro-excitation of the first 1^{-}level in ${ }^{16} \mathrm{O}$. Previous Hartree-Fock calculations were used by (1990CA34) to study Siegert's Theorem in E1 decay in ${ }^{16}$ O. Their results show that the previously claimed violation cannot be definitely asserted. A pole graph method is used by (1987CH10) to calculate production of hypernuclei in the continuum. Radial wave functions obtained from realistic nuclear potentials have been used to calculate electron scattering form factors for stretched configurations, which are compared to data (1988CL03). (1987CO24) exhibit and discuss DWBA structure functions for ($\left.\vec{e}, e^{\prime} x\right)$ cross sections. A numerical study of the decay of giant resonances of ${ }^{16} \mathrm{O}$ was also conducted. The ratio of transverse-to-longitudinal electromagnetic response in ($e, \mathrm{e}^{\prime} \mathrm{p}$) reactions has been examined in terms of relativistic dynamics and medium modifications (1987CO26). Electron scattering form factors have been calculated (1990DA14) using relativistic self-consistent RPA descriptions of discrete excitations. (1986GU05) derived an expression for the transition charge density in the Helm model, and (1988GU03) calculated charge density distributions using harmonic oscillator wave functions. Experimental values have been compared with calculated transition charge densities from various models in (1988GU14). (1988KU18) calculated binding energy, excitation spectra to $\sim 12 \mathrm{MeV}$, and e-scattering form factors using the mean-field approximation and the BZM boson image of the shell model Hamiltonian. Results appear superior to the standard shell model. The two-body pion exchange current contributions to the form factor of inelastic electron scattering has been calculated by (1986LA15) using the effective pion propagator approximation. Effects due to meson exchange currents and unbound wavefunctions for the valence nucleon were included in calculations of electron scattering form factors (1987LI30). Special attention was paid to $1 \hbar \omega$ stretched states. A Sum Rule formalism was used by (1989LI1G) to investigate giant resonances. Surface effects, non-Hermitian operators, and magnetic excitations were considered.

Normalized correlated wavefunctions were used by (1988MA29) to simplify a previously derived expression for the charge form factor in the non-unitary model operator approach, and compared to data. (1989MA06, 1990MA63) derived an approximate formula for the two-body term in the cluster expansion of the charge form factor, and discussed the correlation parameter. (1989MC05) used the Gelerkin approach to calculate a finite nucleus Dirac mean field spectrum, and then applied it to Dirac RPA response and the present results for 1^{-}and 3^{-}longitudinal form factors. A comprehensive study of a full set of 18 response functions relevant to the ($\vec{e}, e^{\prime} p$) reaction is presented by (1989PI07). (1988PR05) have studied the linear response of ${ }^{16} \mathrm{O}$ to external electroweak current in a relativistic model. Hartree-Fock-RPA quasi-elastic cross sections for ${ }^{16} \mathrm{O}\left(\mathrm{e}, \mathrm{e}^{\prime} \mathrm{p}\right)$ are calculated by (1989RY01), who also discuss final state interactions. Electromagnetic quasi-free proton knockout in a one-photon exchange approximation is studied in (1991BO10, 1991PA06). (1989RY06) performed self-consistent HF-RPA model calculations for (e, $e^{\prime} p$) and (e, e'n) using Skyrme interactions in parallel and perpendicular kinematics. A consistent extension of the QHD1 mean-field RPA theory including correlations induced by isoscalar σ and ω mesons of QHD1 is used by (1989SH27) to calculate (e, τ^{\prime}) form factors and transition charge and current densities. See also (1991ZH17). (1986TK01) calculated M1 resonances taking $1 \mathrm{p}-1 \mathrm{~h} \times$ phonon excitations into account. Comparisons were made with data. (1987YO04) studied $1 \hbar \omega$ stretched excitations in configuration mixing calculations based on first-order perturbation theory.
44. ${ }^{16} \mathrm{O}\left(\pi^{ \pm}, \pi^{ \pm}\right)^{16} \mathrm{O}$

Angular distributions of elastically scattered pions have been studied at $E_{\pi^{-}}=20$ to 240 MeV and at $1 \mathrm{GeV} / \mathrm{c}$ as well as at $E_{\pi^{ \pm}}=20$ to 315 MeV [see (1982AJ01, 1986AJ04)] and recently at $E_{\pi^{ \pm}}=100-250 \mathrm{MeV}$ at 175° (lab) (1987DH01), and at $E_{\pi^{-}}=30,50 \mathrm{MeV}$ (1990SE04). At $E_{\pi^{ \pm}}=164 \mathrm{MeV},{ }^{16} \mathrm{O}^{*}(0,6.1,6.9,7.1,11.5,17.8,19.0,19.8)$ are relatively strongly populated. The π^{+}and π^{-}cross sections to ${ }^{16} \mathrm{O}^{*}(17.8,19.8)\left[\mathrm{J}^{\pi}=4^{-} ; T=0\right]$ are substantially different while those to ${ }^{16} \mathrm{O}^{*}(19.0)\left[4^{-} ; 1\right]$ are equal. Isospin mixing is suggested with off-diagonal chargedependent mixing matrix elements of -147 ± 25 and $-99 \pm 17 \mathrm{keV}$ (1980HO13). [See also Reaction $67,{ }^{17} \mathrm{O}(\mathrm{d}, \mathrm{t})$]. The inelastic pion scattering is dominated by a single quasi-free pionnucleon interaction mechanism at $E_{\pi^{+}}=240 \mathrm{MeV}$ (1983IN02): this is not the case at energies below the Δ-resonance (114 and 163 MeV). For recent inelastic measurements see (1987BLZZ).

For a study of ($\pi^{+}, 2 \mathrm{p}$) and ($\pi^{ \pm}, \mathrm{pn}$) at $T_{\pi^{+}}=165 \mathrm{MeV}$ see (1986AL22), at $T_{\pi^{+}}=115 \mathrm{MeV}$ see (1992MA09). See also (1986KY1A, 1986KY1B). Pion absorption at $T_{\pi^{+}}=65 \mathrm{MeV}$ followed by multinucleon emission is reported by (1992BA31). For ($\pi^{+}, \pi^{0} \mathrm{p}$) at $T_{\pi^{+}}=165$ and 245 MeV see (1986GI15, 1988HO1L, 1991HO03). For $\left(\pi^{+}, \pi^{-}\right)$and (π^{-}, π^{+}) at $T_{\pi^{+}}=180,240 \mathrm{MeV}$ see (1989GR06). For $\left(\pi^{+}, \pi^{+} \pi^{-}\right)$at $T_{\pi^{+}}=280 \mathrm{MeV}$ see (1989GR05). See also (1987ME12, 1989ME10, 1990KO36).

A calculation of differential elastic cross sections in a local approximation to the delta-hole model is described in (1991GA07).

Optical-model calculations for pion scattering on ${ }^{16} \mathrm{O}$ are discussed in (1990CA09, 1990LI10).

Table 16.27: Excited states of ${ }^{16} \mathrm{O}$ from ${ }^{16} \mathrm{O}\left(\mathrm{p}, \mathrm{p}^{\prime}\right),\left(\mathrm{d}, \mathrm{d}^{\prime}\right),\left({ }^{3} \mathrm{He},{ }^{3} \mathrm{He}^{\prime}\right)$ and $\left(\alpha, \alpha^{\prime}\right){ }^{\mathrm{a}}$

No.	$\begin{gathered} E_{\mathrm{x}}^{\mathrm{b}} \\ (\mathrm{MeV} \pm \mathrm{keV}) \end{gathered}$	$L^{\text {b }}$	$\begin{gathered} E_{\mathrm{x}}^{\mathrm{c}} \\ (\mathrm{MeV}) \end{gathered}$	$\begin{gathered} E_{\mathrm{x}}{ }^{\mathrm{d}} \\ (\mathrm{MeV} \pm \mathrm{keV}) \end{gathered}$	$\begin{gathered} E_{\mathrm{x}} \mathrm{e} \\ (\mathrm{MeV} \pm \mathrm{keV}) \end{gathered}$	$L^{\text {e }}$	$\begin{gathered} \Gamma^{\mathrm{b}} \\ (\mathrm{keV}) \end{gathered}$	$J^{\pi} ; T^{\text {b }}$
1			6.05					
2	$6.13{ }^{\text {f }}$	3	6.13	$6.13{ }^{\text {i }}$	6.13	3		$3^{-} ; 0$
3	$6.92{ }^{\text {f }}$	2	6.92	$6.92{ }^{\text {d }}$	6.92	2		$2^{+} ; 0^{\text {f }}$
4	$7.12{ }^{\text {f }}$	1	7.12		7.12	1		$1^{-} ; 0$
5	$8.87{ }^{\text {g }}$		8.87	$8.87 \pm 30^{\text {d }}$	8.87	$3^{\text {a }}$		$2^{-} ; 0^{\text {g }}$
6	$9.84{ }^{\text {f }}$	2	9.85	9.84 ± 30	9.85	2		$2^{+} ; 0^{\text {d,f }}$
7	$10.35 \pm 20^{\text {f }}$	4	10.34	10.35 ± 30	10.35 ± 30	4		$4^{+} ; 0$
8	$10.95 \pm 30^{\mathrm{h}}$	1	10.95					$0^{-} ; 0$
9	$11.10 \pm 20^{\mathrm{f}}$	4	$11.1^{\text {i }}$	$11.09 \pm 30^{\text {i }}$	11.10 ± 30	4		$4^{+} ; 0$
10	$11.52 \pm 20^{\mathrm{f}}$	2	11.52	$11.52 \pm 30^{\text {d }}$	11.52 ± 30	2	74 ± 4	$2^{+} ; 0$
11	$12.05 \pm 20^{\mathrm{f}}$		12.05	12.04 ± 30	12.05 ± 30	(0)		$0^{+} ; 0^{-}$
12			12.44		12.44	1		$1^{-} ; 0$
13	$12.53 \pm 20^{\mathrm{g}}$	1	12.53		12.51 ± 30			$2^{-} ; 0^{\text {g }}$
14	$12.80{ }^{\text {h }}$							$0^{-} ; 1$
15	$12.97{ }^{\text {g }}$							$2^{-} ; 1$
16	13.02 ± 20	2	$13.1{ }^{\text {i }}$	13.11 ± 30	$13.07 \pm 20^{\text {i }}$	2		$2^{+} ; 0$
17	13.26 ± 30	3						$3^{-} ; 1$
18			13.66					
19	13.95 ± 50	$(0+4)$		13.97 ± 30	$13.95 \pm 50^{\text {i }}$	4		$4^{+} ; 0$
20	$14.0{ }^{\mathrm{g}, \mathrm{i}}$							$\left(1^{+} ; 1\right)$
21				14.94 ± 30	14.87 ± 100	6		6^{+}
22	15.26 ± 50	(3)		15.4				
23	$15.50 \pm 30^{\mathrm{f}}$	3			15.50 ± 50	3	200 ± 60	$3^{-} ; 0$
24	$16.22 \pm 10^{\mathrm{g}}$							$1^{+} ; 1$
25	16.52 ± 50	2		16.46 ± 30	16.40 ± 100		< 100	2^{+}
26	16.93 ± 50	(3)						
27	$17.14 \pm 10^{\mathrm{g}}$							$1^{+} ; 1$
28	$17.25 \pm 50^{\mathrm{f}}$			17.19 ± 30	17.25 ± 80	(2)	160 ± 60	$1^{+} ; 0^{\text {f }}$
29	17.79 ± 40	(3)		17.8	17.83 ± 100		150 ± 60	$4^{-} ; 0$
30	18.15 ± 50	(2)			18.0 ± 100	2	300 ± 50	$\left(2^{+}\right) ; 0$
31	18.40 ± 100	2		18.52 ± 30	18.5 ± 100	2	250 ± 50	$2^{+} ; 0$
32	18.60 ± 100				18.70 ± 100	(3)	$280 \pm 80^{\text {i }}$	
33	$18.77 \pm 10^{\mathrm{g}}$							$1^{+} ; 1$
34	18.98 ± 40	(3)		19.09 ± 30			< 100	$4^{-} ; 1$
35	19.35 ± 80	(1)						
36	$19.56 \pm 50^{\text {f }}$				19.50 ± 100	$(2,3)$	300 ± 50	$3^{-} ; 0$

Table 16.27: Excited states of ${ }^{16} \mathrm{O}$ from ${ }^{16} \mathrm{O}\left(\mathrm{p}, \mathrm{p}^{\prime}\right),\left(\mathrm{d}, \mathrm{d}^{\prime}\right),\left({ }^{3} \mathrm{He},{ }^{3} \mathrm{He}^{\prime}\right)$ and $\left(\alpha, \alpha^{\prime}\right){ }^{\text {a }}$ (continued)

No.	$\begin{gathered} E_{\mathrm{x}}{ }^{\mathrm{b}} \\ (\mathrm{MeV} \pm \mathrm{keV}) \end{gathered}$	$L^{\text {b }}$	$E_{\mathrm{x}}{ }^{\text {c }}$ (MeV)	$\begin{gathered} E_{\mathrm{x}} \mathrm{~d} \\ (\mathrm{MeV} \pm \mathrm{keV}) \end{gathered}$	$\begin{gathered} E_{\mathrm{x}} \mathrm{e} \\ (\mathrm{MeV} \pm \mathrm{keV}) \end{gathered}$	$L^{\text {e }}$	$\begin{gathered} \Gamma^{\mathrm{b}} \\ (\mathrm{keV}) \end{gathered}$	$J^{\pi} ; T^{\text {b }}$
37	19.80 ± 40	3					< 100	$4^{-} ; 0$
38				$20.2 \pm 200^{\text {i }}$	20.15 ± 100	2	350 ± 50	$2^{+} ; 0$
39	20.40 g , i							$2^{-} ; 1$
40	20.56 ± 80	$(1,2)$					370 ± 100	
41	$20.90{ }^{\text {g, }}$							$2^{-} ; 1$
42	21.05 ± 50	1			21.0 ± 100	2	320 ± 50	$\left(2^{+} ; 0\right)$
43				21.6 ± 200			1000 ± 300	2^{+}
44	21.80 ± 80	1			21.85 ± 100	2	400 ± 50	$\left(2^{+} ; 0\right)$
45	22.40 ± 80	$(1,2)$					420 ± 100	$1^{-} ; 1$
46					22.5 ± 100		400 ± 50	$\left(2^{+}, 3^{-}\right) ; 0$
47	23.20 ± 80	1					600 ± 200	$1^{-} ; 1$
48				23.50 ± 150	23.25 ± 100	2	400 ± 50	$2^{+} ; 0$
49					23.85 ± 100	(0)	400 ± 50	$\left(2^{+}, 0^{+}\right) ; 0$
50	24.00 ± 100	$(1,2)$					1200 ± 300	$1^{-} ; 1$
51					24.4 ± 100		400 ± 50	$\left(2^{+}, 3^{-}\right) ; 0$
52					25.15 ± 300		2800 ± 600	2^{+}
53	25.50 ± 150	(1)					1300 ± 300	$1^{-} ; 1$

${ }^{\text {a }}$ For references see Table 16.24 in (1982AJ01).
${ }^{\mathrm{b}}\left(\mathrm{p}, \mathrm{p}^{\prime}\right)$.
${ }^{c}\left(\mathrm{~d}, \mathrm{~d}^{\prime}\right)$. Energies are nominal (± 100 to $\pm 260 \mathrm{keV}$); angular distributions reported to all but last state.
${ }^{d}\left({ }^{3} \mathrm{He},{ }^{3} \mathrm{He}^{\prime}\right)$.
${ }^{\mathrm{e}}\left(\alpha, \alpha^{\prime}\right)$.
${ }^{\mathrm{f}}$ (1984AM04): $E_{\mathrm{p}}=135 \mathrm{MeV}$.
g (1987DJ01).
h (1984HO17); $E_{\overline{\mathrm{p}}}=65 \mathrm{MeV}$.
${ }^{i}$ Unresolved states.
45. ${ }^{16} \mathrm{O}\left(\mathrm{n}, \mathrm{n}^{\prime}\right)^{16} \mathrm{O}$

Angular distributions have been measured at E_{n} to 24 MeV [see (1982AJ01, 1986AJ04)] and recently at $E_{\mathrm{n}}=18$ to 26 MeV (1987IS04, 1988MEZX); n's were observed leading to ${ }^{16} \mathrm{O} *(6.05$, $6.13,6.92,7.12,9.85,10.35,11.0,11.52$). For small-angle measurements at $E_{\mathrm{n}}=14.8 \mathrm{MeV}$, see (1992QI02). Differential cross sections for (n, n) and ($\mathrm{n}, \mathrm{n}^{\prime}$) at $E_{\mathrm{n}}=21.6 \mathrm{MeV}$ are reported by
(19900L01). Polarization of gamma rays from ($\mathrm{n}, \mathrm{n}^{\prime}$) with polarized neutrons to ${ }^{16} \mathrm{O}^{*}(6.05,6.13)$ was studied by (1988LI34) [see also (1987PO11)]. See also the evaluation of $E_{\mathrm{n}}=10^{-5} \mathrm{eV}$ 20 MeV neutron data for ${ }^{16} \mathrm{O}$ in (1990SH1D).

The folding model has been used to calculate the nucleon- ${ }^{16} \mathrm{O}$ interaction potential, and the effect of different nucleon-nucleon forces has been discussed (1989HA24). See also the analysis with nonlocal potentials based on RGM formulations by (1992KA21) and the optical model study of (1992BO04). See also (1991KA19, 1991KA22, 1991SH08).
46. (a) ${ }^{16} \mathrm{O}\left(\mathrm{p}, \mathrm{p}^{\prime}\right)^{16} \mathrm{O}$
(b) ${ }^{16} \mathrm{O}(\mathrm{p}, 2 \mathrm{p})^{15} \mathrm{O}$
$Q_{\mathrm{m}}=-12.12776$
(c) ${ }^{16} \mathrm{O}(\mathrm{p}, \mathrm{pd}){ }^{14} \mathrm{~N}$
$Q_{\mathrm{m}}=-20.7363$
(d) ${ }^{16} \mathrm{O}(\mathrm{p}, \mathrm{pt})^{13} \mathrm{~N}$
$Q_{\mathrm{m}}=-25.0325$
(e) ${ }^{16} \mathrm{O}(\mathrm{p}, \mathrm{p} \alpha)^{12} \mathrm{C}$
$Q_{\mathrm{m}}=-7.16195$
(f) ${ }^{16} \mathrm{O}(\mathrm{p}, \mathrm{p}){ }^{16} \mathrm{O}$

Angular distributions of elastically and inelastically scattered protons have been measured at many energies up to $E_{\mathrm{p}}=1000 \mathrm{MeV}$ [see (1982AJ01, 1986AJ04)] and recently at $E_{\mathrm{p}}=$ 7.58 MeV (1987KR19; p to ${ }^{16} \mathrm{O}^{*}(6.05)$), $8.9-50 \mathrm{MeV}$, (1988LE08; p to ${ }^{16} \mathrm{O}^{*}(6.129)$), 35 MeV , (1990OH04); p to ${ }^{16} \mathrm{O}^{*}\left(E_{\mathrm{x}} \leq 12.97\right)$), $40-85 \mathrm{MeV}$, (1987LA11; p to ${ }^{16} \mathrm{O}^{*}(6.1299,8.8719)$), $22,35,42 \mathrm{MeV}$, (1988SA1B; p to ${ }^{16} \mathrm{O}^{*}(6.129)$), 135 MeV , (1986GA31; p to ${ }^{16} \mathrm{O}^{*}(6.044,7.117$, 12.043)), (1989KE03; p to ${ }^{16} \mathrm{O}^{*}(6.049,6.130,6.917,7.117,9.847,10.353,11.09)$), 180 MeV , (1990KE03; p to ${ }^{16} \mathrm{O}^{*}\left(E_{\mathrm{x}} \leq 12.1\right)$), 200 MeV , (1986KIZW; p to ${ }^{16} \mathrm{O}^{*}(10.957)$), (1989SAZZ; p to ${ }^{16} \mathrm{O}^{*}(10.957,12.797)$), 201 MeV . (1987DJ01; p to many states [see Table 16.27]), 320800 MeV (1988BL07), 318 and 500 MeV , (1988FEZX, 1989FEZV, 1991FL01, 1991KE02), 100 and 200 MeV (1988SEZU, 1990GL09), 200, 318 MeV , (1990FEZY), 400 MeV (1991KI08), and 1000 MeV (1988BE2B). Parameters of the observed groups are displayed in Table 16.27. See also (1990OP01) and the analysis of (1990ER09).

For reaction (b) see (1991CO13; 151 MeV$),(1986 \mathrm{MC10} ; 505 \mathrm{MeV})$ and the review of (1987VD1A). For reaction (c) see (1986BO1A; 50 MeV), (1986SA24; 76.1, 101.3 MeV). For reaction (p, p α) see (1986VD04; 50 MeV). See also the study with antiproton beams of (1986KO22).
(1987CO25) have performed calculations using the Dirac equation for p and n distortions for the ${ }^{16} \mathrm{O}\left(\overrightarrow{\mathrm{p}}, \mathrm{n} \pi^{+}\right)^{16} \mathrm{O}$ reaction. A coupled-channels calculation using Dirac phenomenology for inelastic scattering of 800 MeV protons from ${ }^{16} \mathrm{O}$ is presented in (1988DE35). (1988DE31) have studied the importance of a deformed spin-orbit potential in the calculations of (1988DE35). Approximate treatment of the nucleon-nucleus interaction in the resonating group method is discussed in (1991KA19). First order Kerman-McManus-Thaler optical potentials have been constructed from realistic meson-exchange models of N-N interaction including off-shell effects, and are found to be important for spin observables at $200-500 \mathrm{MeV}$ (1989EL02). Optical phase shifts have been calculated to fifth order by (1988FR06), taking into account cm correlations. The significance of higher-order corrections is assessed. (1989GU06) consider breakup reactions in high temperature
plasmas, including production of $6.129 \mathrm{MeV} \gamma$'s from ${ }^{16} \mathrm{O}$: mainly from $\mathrm{p}+{ }^{16} \mathrm{O} \rightarrow \mathrm{p}^{\prime}+{ }^{16} \mathrm{O}^{*}$, $\gamma+{ }^{16} \mathrm{O} \rightarrow \gamma^{\prime}+{ }^{16} \mathrm{O}^{*}$, and $\mathrm{p}+{ }^{20} \mathrm{Ne} \rightarrow \mathrm{X}+{ }^{16} \mathrm{O}^{*}$. (1988HA08) found Dirac optical potentials constrained by relativistic Hartree theory to give good agreement with elastic scattering data. See also (1990TJ01, 1991SH08). Spin observables have been calculated by (1988HO1K) for proton quasi-elastic scattering in the relativistic plane wave-impulse approximation, and compared to ($\mathrm{p}, \mathrm{p}^{\prime}$) data at 490 MeV . Isoscalar spin response functions are studied in (1990SH10). (1987KE1A) constructed a parametrization of medium modifications of the 2 N effective interaction to reproduce nuclear matter theory, and adjusted it to reproduce proton inelastic scattering data. They obtained good fits to cross section and analyzing power for nine states simultaneously. (1989KE05) performed similar calculations, and fitted 135 MeV proton cross section and analyzing power data with the effective interactions. (1986KU15) performed a DWIA calculation of $\sigma(\theta)$ and $\mathrm{A}_{\mathrm{y}}(\theta)$ for ${ }^{16} \mathrm{O}(\overrightarrow{\mathrm{p}}, 2 \mathrm{p})$ at 200 MeV including spin-orbit and off-shell effects. (1987LU02) performed a semi-relativistic multiple scattering model calculation of intermediate energy proton elastic scattering, and investigated target nucleon correletion contributions. Multiple diffraction scattering theory was used to calculate cross sections and polarization observables in (1988BE57, 1991BE1E, 1991BE45, 1992BE03). See also (1991CH28, 1991CR04, 1992CR05). A Skyrme force approach was explored in (1988CH08). A scalar-vector form of a second-order relativistic impulse approximation optical model including dispersion effects was used by (1988LU03) to calculate elastic proton scattering at 500 and 800 MeV . Evidence for a small imaginary potential or actual flux emission was presented (1988MA05) for nucleon scattering from ${ }^{16} \mathrm{O}$ at 30 MeV . As an alternate explanation of the (1988MA05) findings, (1988MA31) discuss the " ψ-potentials", related to projectile current. (1988MA1X) contains a review of relativistic theory of nuclear matter and finite nuclei. A relativistic microscopic optical potential derived from the relativistic Brueckner-Bethe-Goldstone equation is discussed in (1992CH1E). Polarization transfer measurements in ($\mathrm{p}, \mathrm{p}^{\prime}$) reactions have been examined by (1986OR03) with regard to correlations of tensor character. (1986OS08) used the T-matrix approximation with distorted waves to analyze knock-off nucleon (p, pN) and cluster ($\mathrm{p}, \mathrm{pX)}$ proton induced reactions from 30 to 100 MeV . The scattering of 500 MeV protons has been calculated by (1987OT02) using the Dirac equation with and without recoil corrections. Both cross section and spin observables are examined and compared to data. See also (1991KA22). (1988OT04) present systematics of Dirac impulse approximation for cross sections and spin observables in elastic p scattering at 200 , 500 , and 800 MeV . Results are compared to data. A mixed-density expansion of the off-diagonal density matrix is used by (1988PE09) to study the non-local knockout exchange amplitude for nucleon-nucleus scattering. (1987PI02) studied $0^{+} \rightarrow 0^{-}$transitions by medium energy protons using the relativistic impulse approximation. (1989PI01) considered corrections arising from the energy dependence of the NN interaction, especially for $0^{+}\left(\overrightarrow{\mathrm{p}}, \overrightarrow{\mathrm{p}}^{\prime}\right) 0^{-}$reactions. Relativistic and non-relativistic dynamical scattering models have been used by (1988RA02) to predict elastic scattering observables in the forward angle for $\mathrm{p}+{ }^{16} \mathrm{O}$ at 500 and 800 MeV . See also (1990CO19, 1990RA12). (1989RA02) have obtained the leading three-body anti-symmetrization correction to nucleon-nucleus elastic scattering calculations using multiple scattering theory. Small effects are found at intermediate energies. Folding model potentials are used by (1986YA16) to perform a systematic analysis of proton elastic scattering from 65-200 MeV. See also (1990AR11, 1990CR02, 1990EL01, 1991AR11, 1991AR1K).

Effects of short-range correlations on the self energy in the optical model of ${ }^{16} \mathrm{O}$ are studied in (1992BO04). See also (1992LI1D).
47. (a) ${ }^{16} \mathrm{O}\left(\mathrm{d}, \mathrm{d}^{\prime}\right)^{16} \mathrm{O}$
(b) ${ }^{16} \mathrm{O}(\mathrm{d}, \mathrm{n}){ }^{17} \mathrm{~F}$
$Q_{\mathrm{m}}=1.623$

Angular distribution studies have been carried out for E_{d} up to 700 MeV [see (1986AJ04)] and recently angular distributions and analyzing powers with polarized deuterons were measured at $19-24 \mathrm{MeV}$ (1991ER03) and at 200, 400, 700 MeV (1987NG01). Observed deuteron groups are displayed in Table 16.27. See also ${ }^{18} \mathrm{~F}$ in (1987AJ02), and see the analysis of (1990ER09).

Reaction (b) has been used for analysis of oxygen in Fluoride glasses (1990BA1M).
Coupled-channels variational formalism is discussed and applied to ${ }^{16} \mathrm{O}(\mathrm{d}, \mathrm{d})^{16} \mathrm{O}$ (1986KA1A). Coupling to the proton channel is significant at 11 MeV , but can be ignored at $\geq 40 \mathrm{MeV}$. Coupling to d-breakup channels decreases as E increases, but is still significant at 60 MeV . (1988IS02) use folding interactions to investigate polarized d-scattering at $E_{\mathrm{d}}=56 \mathrm{MeV}$. Breakup channels are important, as is the D-state admixture in the deuteron ground state - especially for tensor analyzing powers. (1988IS02) employed the continuum-discretized coupled-channels (CDCC) method, and obtained good agreement with data. (1987GR16) studied d-scattering at 400 MeV using the folding model, but failed to describe A_{yy} at relatively low momentum transfers. They attribute this failure to inadequacies in off-shell properties of N-N potentials. (1986MA32) analyzed elastic data at 56 MeV using an optical model potential containing a complex tensor term. The OM potential was compared with folding-model results. (1987MA09) evaluate the Pauli-blocking correction of the three-body Schrödinger equation for d-nucleus reactions.
48. ${ }^{16} \mathrm{O}(\mathrm{t}, \mathrm{t}){ }^{16} \mathrm{O}$

Angular distributions are reported for E_{t} to 20.01 MeV : see (1977AJ02) and recently at 36 MeV (1986PE13, 1987EN06). See also ${ }^{19} \mathrm{~F}$ in (1987AJ02), and see the analysis of (1990ER09).
(1989WA26) studied the spin-orbit potential for triton scattering to explain previous discrepancies with folding model predictions.
49. (a) ${ }^{16} \mathrm{O}\left({ }^{3} \mathrm{He},{ }^{3} \mathrm{He}\right){ }^{16} \mathrm{O}$
(b) ${ }^{16} \mathrm{O}\left({ }^{3} \mathrm{He}, \alpha\right)$

$$
Q_{\mathrm{m}}=4.915
$$

Angular distributions have been measured to $E\left({ }^{3} \mathrm{He}\right)=132 \mathrm{MeV}$ [see (1982AJ01, 1986AJ04)] and at $E\left({ }^{3} \mathrm{He}\right)=60 \mathrm{MeV}$ (1990ADZU). The matter radius $\left\langle r^{2}\right\rangle^{1 / 2}=2.46 \pm 0.12 \mathrm{fm}$ (1982VE13). Inelastic groups are shown in Table 16.27. See also the analysis of (1990ER09). Differential cross
sections for reaction (b) have been measured at $E\left({ }^{3} \mathrm{He}\right)=60 \mathrm{MeV}$ (1990ADZT). The reaction has also been used in thin film analysis (1990AB1G).
(1986WA1U) studied the spin-orbit potential for ${ }^{3} \mathrm{He}$ scattering to explain previous discrepancies with folding model predictions. The M3Y double folding model is used (1987CO07) to fit data at 33 MeV . No change in the spin-orbit strength is necessary. The three-parameter strong absorption model of Trahn and Venter is applied to data at 25 and 41 MeV . (1987RA36) obtain radii, diffusivities and quadrupole deformation parameters. (1987TR01) perform a simple optical model analysis of elastic ${ }^{3} \mathrm{He}$ scattering from 10 to 220 MeV .
50. (a) ${ }^{16} \mathrm{O}\left(\alpha, \alpha^{\prime}\right){ }^{16} \mathrm{O}$
(b) ${ }^{16} \mathrm{O}(\alpha, \alpha \mathrm{p})^{15} \mathrm{~N} \quad Q_{\mathrm{m}}=-12.127$
(c) ${ }^{16} \mathrm{O}(\alpha, 2 \alpha)^{12} \mathrm{C} \quad Q_{\mathrm{m}}=-7.16195$

Angular distributions and/or differential cross sections of α-particles have been measured up to $E_{\alpha}=146 \mathrm{MeV}$ [see (1982AJ01, 1986AJ04)] and recently at $E_{\alpha}=48.7,54.1 \mathrm{MeV}$ (1987AB03; $\left.\alpha_{0}\right)$: see ${ }^{20} \mathrm{Ne}$ in (1983AJ01, 1987AJ02). See also the work on $\left(\alpha, \alpha_{0}\right)$ resonances at $E_{\alpha}=2.0-$ 3.6 MeV (1985JA17, 1988BL1H). A search at $E_{\alpha}=10.2-18 \mathrm{MeV}$ for continuum levels in ${ }^{20} \mathrm{Ne}$ with a large $\left[{ }^{16} \mathrm{O}^{*}\left(0_{2}^{+}\right)+\alpha\right]$ parentage is described in (1992LA01). Reaction (a) has also been observed in astrophysical measurements (1989LA1G). Observed excited states are displayed in Table 16.27. See also the analysis of (1990ER09), and see (1990DA1Q, 1990IR01).

Reaction (b) has been studied at $E_{\alpha}=13.92 \mathrm{MeV}$ in a quasifree geometry (1987SA01). Angular correlations (reaction (c)) have been studied to ${ }^{12} \mathrm{C}_{\text {g.s. }}$ at $E_{\alpha}=23.0$ to 27.5 MeV to try to determine if a 3^{-}state exists near the 2^{+}state ${ }^{16} \mathrm{O}^{*}(9.84)$: the evidence is strong that this is not the case (1986AJ04). The isoscalar (E2, $T=0$) giant resonance decays predominantly via the α_{1} channel which contains $\sim 40 \%$ of the E2 EWSR, rather than via the α_{0} and p_{0} channels. For the $(\alpha, \alpha \mathrm{d}),(\alpha, \alpha \mathrm{t})$ and ($\alpha, \alpha^{3} \mathrm{He}$) reactions see references in (1986AJ04).

In a theoretical study of nucleus-nucleus potentials, (1987BA35) determine shallow potentials that are phase equivalent to deep ones. This method eliminates non-physical bound states encountered in some microscopically founded potentials. (1987BU06) calculate the probability of direct alpha-decay of the giant quadrupole resonance in ${ }^{16} \mathrm{O}$. They find direct and statistical mechanisms to be commensurate, and obtain good agreement with the data. The construction of a cranked cluster wave function for molecular-like states is discussed by (1986HO33). (1986MA35) study the radial shape and the energy dependence of the dispersive contribution to the real potential and apply it to alpha-particle scattering from ${ }^{16} \mathrm{O}$. (1989MI06) show that alpha-particle scattering from ${ }^{16} \mathrm{O}$ near the Coulomb barrier can be described if the interaction is angular momentum dependent and has a less diffuse surface than that used to describe scattering at higher energies. The potential separable expansion method based on Coulomb-Sturmian functions is presented (1988PA21) and the $l=3$ phase shift is calculated for $\alpha+{ }^{16} \mathrm{O}$ at $E=12 \mathrm{MeV}$. (1987SA55) show the one-channel orthogonality condition model provides results which agree with experiment for $E_{\alpha} \leq 7.5 \mathrm{MeV}$. (1987WA1B) compare a microscopic potential obtained from RGM calculations with the optical
model potential. They conclude that internucleus antisymmetrization is responsible for a large part of the energy dependence of the real part of OM potential. (1989YA15, 1991YA08) use the many body theory which takes the Pauli principle into account to calculate the $\alpha-{ }^{16} \mathrm{O}$ complex potential from a realistic effective two-nucleon interaction. The role of the Pauli principle is also examined in (1991OM03). Internucleus potentials in $\alpha+{ }^{16} \mathrm{O}$ systems are calculated with Skyrme-type forces in (1990WA01). Nuclear molecular resonances are discussed in the analyses of (1990AB10, 1992SA26). See also (1990KR16). A peripheral 3-body coupling model is applied to reaction (c) in (1992JA04).
51. (a) ${ }^{16} \mathrm{O}\left({ }^{6} \mathrm{Li},{ }^{6} \mathrm{Li}\right){ }^{16} \mathrm{O}$
(b) ${ }^{16} \mathrm{O}\left({ }^{7} \mathrm{Li},{ }^{7} \mathrm{Li}\right){ }^{16} \mathrm{O}$

Elastic angular distributions for reaction (a) have been measured at $E\left({ }^{6} \mathrm{Li}\right)=4.5$ to 75.4 MeV and $E\left({ }^{16} \mathrm{O}\right)=36$ to 94.2 MeV [see (1986AJ04) and Tables 16.25 in (1977AJ02) and 16.23 in (1982AJ01)] and recently at $E\left({ }^{6} \mathrm{Li}\right)=50 \mathrm{MeV}$ (1988TRZY). See also (1987GO1C). Vector analyzing power has been measured with polarized ${ }^{6} \mathrm{Li}$ beams at $E\left({ }^{6} \mathrm{Li}\right)=25.7 \mathrm{MeV}(1987 \mathrm{VAZY}$, 1989VA04). See also ${ }^{6} \mathrm{Li}$ in (1988AJ01). For studies of d- α angular correlations see ${ }^{20} \mathrm{Ne}$ in (1983AJ01, 1987AJ02). For a fusion cross section study see (1986MA19). Inelastic scattering to states in ${ }^{16} \mathrm{O}$ are reported at $E\left({ }^{6} \mathrm{Li}\right)=50 \mathrm{MeV}$ by (1990TR02).

Elastic distributions for reaction (b) have been studied at $E\left({ }^{7} \mathrm{Li}\right)=9.0$ to 68 MeV [see (1986AJ04) and Tables 16.25 in (1977AJ02) and 16.23 in (1982AJ01)] as well as at $E\left({ }^{7} \mathrm{Li}\right)=$ $10.3-22.40 \mathrm{MeV}$ (1988MA07). For fusion cross section studies see (1988SC14) and references in (1986AJ04). See also (1988KE07).

A generalized optical model within the method of orthogonal conditions (MOC) has been formulated by (1988GR32). Taking account of antisymmetrization improves the description of angular distribution data. See also (1990SA1O).

52. ${ }^{16} \mathrm{O}\left({ }^{9} \mathrm{Be},{ }^{9} \mathrm{Be}\right){ }^{16} \mathrm{O}$

Elastic angular distributions have been reported at $E\left({ }^{9} \mathrm{Be}\right)=20$ to 43 MeV and $E\left({ }^{16} \mathrm{O}\right)=$ 15 to 29.5 MeV [see (1986AJ04) and Table 16.23 in (1982AJ01)] and recently at $E_{\text {c.m. }}=7.2$, 8.4, 9.0, 9.6, 10.2 MeV (1989WE1I). Projectile decomposition measurements were reported at $E\left({ }^{16} \mathrm{O}\right)=32 \mathrm{MeV} /$ nucleon. For fusion cross sections see (1982AJ01, 1986AJ04, 1988HAZS). See also (1985BE1A).
53. (a) ${ }^{16} \mathrm{O}\left({ }^{10} \mathrm{~B},{ }^{10} \mathrm{~B}\right){ }^{16} \mathrm{O}$
(b) ${ }^{16} \mathrm{O}\left({ }^{11} \mathrm{~B},{ }^{11} \mathrm{~B}\right){ }^{16} \mathrm{O}$

Angular distributions have been reported at $E\left({ }^{10} \mathrm{~B}\right)=33.7$ to 100 MeV and at $E\left({ }^{11} \mathrm{~B}\right)=41.6$, 49.5 and 115 MeV [see (1986AJ04) and Table 16.23 in (1982AJ01)] and recently at $E_{\mathrm{c} . \mathrm{m} .}=14.17$, 16.15 , and 18.65 MeV (1989KO10). See also (1989KO2A). For fusion cross section measurements (reaction (a)) see (1982AJ01, 1986AJ04).
54. (a) ${ }^{16} \mathrm{O}\left({ }^{12} \mathrm{C},{ }^{12} \mathrm{C}\right){ }^{16} \mathrm{O}$
(b) ${ }^{16} \mathrm{O}\left({ }^{12} \mathrm{C}, \alpha^{12} \mathrm{C}\right){ }^{12} \mathrm{C} \quad Q_{\mathrm{m}}=-7.16195$

Angular distributions have been reported at many energies to $E\left({ }^{16} \mathrm{O}\right)=1503 \mathrm{MeV}$ [see (1982AJ01, 1986AJ04)] and recently at $E\left({ }^{16} \mathrm{O}\right)=49.14,48.14,48.06 \mathrm{MeV}$ (1986BA80). A peak in the excitation function at $E_{\text {c.m. }}=33.5 \mathrm{MeV}$ was observed by (1990KO1X). See also the review of (1986BA1D) and analyses of (1988BR04, 1988RO01, 1989VI09). Many of the studies of this reaction have involved yield and cross section measurements, as they apply to compound structures in ${ }^{28} \mathrm{Si}$, fusion cross sections and evaporation residues. See (1990SN1A). Some involve multinucleon transfer. Others involve fragmentation of the incident particle. See (1982AJ01, 1986AJ04) and (1986GA13, 1986IK03, 1986SU1G, 1987SU03, 1988KO17, 1988SZ02, 1990BO1X). See also (1986CH41, 1986DE40, 1986SN1B, 1986WU03, 1987HO1C, 1987NA1C, 1987YO1A, 1988BR1N, 1988CAZV, 1988KR11, 1988ME1H, 1989BEZC, 1989KRZX, 1989SU1I, 1989WE1E, 1990BA1Z).

At $E\left({ }^{16} \mathrm{O}\right)=100 \mathrm{MeV}$ members of the $K^{\pi}=0^{+}\left[{ }^{16} \mathrm{O}^{*}(6.05,6.92,10.35,16.3)\right]$ and $K^{\pi}=0^{-}$ bands $\left[{ }^{16} \mathrm{O} *(9.63,11.60,14.67)\right]$ are reported to be preferentially populated. In reaction (b), as well as in the scattering of $140 \mathrm{MeV}^{16} \mathrm{O}$ on ${ }^{13} \mathrm{C}$ and ${ }^{28} \mathrm{Si},{ }^{16} \mathrm{O}^{*}$ states $(9.83,10.33,11.04,11.47,11.98$, $12.38,13.81,14.75,15.33,17.76$), with $J^{\pi}=2^{+}, 4^{+}, 4^{+}, 2^{+}, 0^{+}, 1^{-}, 2^{+}, 4^{+}, 6^{+}, 3^{-}$, respectively, for the first ten states, are populated: the state at 11.5 MeV is preferentially populated [see references in (1982AJ01, 1986AJ04)]. For pion emission see (1986AJ04, 1988SA31, 1989LE12).
(1987BA50) have investigated the two-proton correlation function using the BUU (semiclassical transport equations) model with conserved total momentum. Experimental features of the correlation function are reproduced. (1988BA43) study the energy dependence of the real part of the nucleus-nucleus potential using a modified Seyler-Blanchard two-body effective interaction containing density and momentum dependence. (1987BRZW) perform an optical model analysis of ${ }^{12} \mathrm{C}-{ }^{12} \mathrm{C}$ and ${ }^{16} \mathrm{O}-{ }^{12} \mathrm{C}$ elastic scattering from $10-94 \mathrm{MeV}$; real part: double folding of a density dependent M3Y interaction - imaginary part: phenomenological.
(1988BR20) examine dips in the far-side cross sections which reduce or eliminate potential ambiguities from analyses as in (1987BRZW). (1988BR29) analyzed elastic data at 9 to 120 MeV per nucleon using a folded potential based on the density and energy-dependent DDM3Y interaction. (1987DA02) present a solution to the inversion problem (i.e., obtaining potentials from data) and apply it to ${ }^{16} \mathrm{O}+{ }^{12} \mathrm{C}$ at 1503 MeV with good results. A microscopic calculation of pion-production in heavy-ion collisions is applied (1986DE15) to coherent pion-production in ${ }^{16} \mathrm{O}+{ }^{12} \mathrm{C}$ collisions. Effects of Pauli blocking and a surface contribution to the optical potential are investigated by (1989EL01). Data require that a collective surface contribution be added to the volume part.
(1988FR14) resolve optical potential model ambiguities by using dips in far side cross section data along with other special features of the angular distributions of elastic scattering data.
(1986HA13) performed a barrier penetration calculation of heavy-ion fusion cross sections, valid both above and below the Coulomb barrier. (1986KA1B) survey projectile breakup processes using the method of coupled discretized continuum channels. An optical model potential containing a parity dependence which accounts for elastic α-particle transfer can explain the oscillations seen in the total fusion excitation function of ${ }^{16} \mathrm{O}$ on ${ }^{12} \mathrm{C}$ (1988KA13). (1988KO27) perform an optical model analysis of ${ }^{16} \mathrm{O}$ scattering data at $E / A=94 \mathrm{MeV}$. They explored potential shapes more general than folded or Woods-Saxon; no improvement in agreement with data. (1989LE23) analyzed reaction data using an eikonal approach. They input only the densities and transition densities of the nuclei and elementary nucleon-nucleon scattering amplitudes. Good agreement with data was obtained. The ${ }^{12} \mathrm{C}+{ }^{16} \mathrm{O}$ internucleus potential is calculated with the use of Skyrme type forces by (1990WA01).
(1989MI1K) calculate zero-degree and transverse energy for relativistic collisions. Results fit data very well. Low energy optical potentials are derived (1987PA24) from effective interactions using double-folding. Only the effective interaction of Satchler and Love give good results over a wide energy range. (1988RA1G) explores the relationship between clustering and shell effects, and find that this relationship is a close one. (1986SA1D) perform a microscopic coupled-channels calculation. Breakup and virtual breakup effects are found to be important. (1987SC34) present an expression for the real part of the nucleus-nucleus potential (energy dependent) which arises in the framework of the elastic model for heavy-ion fusion. This model is applied to sub-barrier fusion. (1988WU1A) propose a non-compact group model to describe quasi-molecular nuclei.
55. (a) ${ }^{16} \mathrm{O}\left({ }^{13} \mathrm{C},{ }^{13} \mathrm{C}\right){ }^{16} \mathrm{O}$
(b) ${ }^{16} \mathrm{O}\left({ }^{14} \mathrm{C},{ }^{14} \mathrm{C}\right){ }^{16} \mathrm{O}$

For elastic scattering studies see Table 16.23 in (1982AJ01), and see the more recent work at $E_{\text {c.m. }}=48.06,48.48,49.14 \mathrm{MeV}$ (1986BA80), and $E_{\text {c.m. }}=19-30 \mathrm{MeV}$ (1989FR04). For fusion cross sections see (1986AJ04) and recent work at $E_{\text {c.m. }}=7.8-14.6 \mathrm{MeV}$ (1986PA10). See also the review of (1986ST1A). For the excitation of a number of states in ${ }^{16} \mathrm{O}$ in reaction (a) see (1986AJ04). Cross sections for different exit channels of ${ }^{16} \mathrm{O}+{ }^{13} \mathrm{C}$ at $E_{\text {c.m. }}=4.8-9.8 \mathrm{MeV}$ were measured by (1991DA05). Emission ratios for pn to d and α pn to $\alpha \mathrm{d}$ were studied in (1986GA13). Competition between p 2 n , dn, and t emission was studied at $E_{\text {c.m. }}=10-16 \mathrm{MeV}$ (1990XE01). For reaction (b) a search for resonances in elastic scattering at $E_{\text {lab }}=38-54 \mathrm{MeV}$ is reported in (1990AB07).
(1987DA34) performed a six-parameter optical model analysis of ${ }^{13} \mathrm{C}\left({ }^{16} \mathrm{O},{ }^{16} \mathrm{O}\right){ }^{13} \mathrm{C}$. A twocenter shell model is applied (1987NU02) to the ${ }^{13} \mathrm{C}+{ }^{16} \mathrm{O}$ system. Parity dependence of collisions between p- and sd-shell nuclei is studied (1986BA69) microscopically in the two-center harmonic oscillator model.
56. (a) ${ }^{16} \mathrm{O}\left({ }^{14} \mathrm{~N},{ }^{14} \mathrm{~N}\right){ }^{16} \mathrm{O}$
(b) ${ }^{16} \mathrm{O}\left({ }^{15} \mathrm{~N},{ }^{15} \mathrm{~N}\right){ }^{16} \mathrm{O}$

For elastic scattering studies see (1986AJ04) and Table 16.23 in (1982AJ01) and (1977AJ02). Recent measurements on reaction (b) at $E_{\text {lab }}=30-70 \mathrm{MeV}$ were reported in (1986HA1F). For yield and total fusion cross-section measurements see (1982AJ01, 1986AJ04). See also (1986BA69).
57. ${ }^{16} \mathrm{O}\left({ }^{16} \mathrm{O},{ }^{16} \mathrm{O}\right){ }^{16} \mathrm{O}$

The angular distributions for elastic scattering have been measured with $E\left({ }^{16} \mathrm{O}\right)$ up to 140.4 MeV [see (1982AJ01, 1986AJ04)] and recently at $E_{\text {c.m. }}=17 \mathrm{MeV}$ (1987TI01), $E\left({ }^{16} \mathrm{O}\right)=350 \mathrm{MeV}$ (1989ST08) and $E\left({ }^{16} \mathrm{O}\right)=38 \mathrm{MeV} /$ nucleon (1986BR25). Inelastic scattering studies involving ${ }^{16} \mathrm{O}^{*}(6.05)\left[J^{\pi}=0^{+}\right](1989 Z \mathrm{ZZZ})$ are reported at $E\left({ }^{16} \mathrm{O}\right)=51.0$ to 76.0 MeV , and similar studies involving ${ }^{16} \mathrm{O} *(6.13)\left[J^{\pi}=3^{-}\right]$(1988PAZZ) are reported at $E_{\text {c.m. }}=26.5-43.0 \mathrm{MeV}$. Coupled channels effects are important at energies a few times the Coulomb barrier (1977AJ02, 1986AJ04). Intermediate and compound structure studies are described in (1986GA10, 1986GA24).

For yield and fusion cross sections see (1982AJ01, 1986AJ04) and more recent work (1986IK03, 1986TH1A, 1987GO30, 1987KU02, 1988AU03). At $E\left({ }^{16} \mathrm{O}\right)=72 \mathrm{MeV}$, (1988AU1A) see no evidence for a low- ℓ fusion window. At $E\left({ }^{16} \mathrm{O}\right)=70-130 \mathrm{MeV}$ measurements of evaporation residues by (1986IK03) find no evidence for a low- ℓ cutoff. For a study of α-transfer at near-barrier energies see (1986CA24). Light-particle emission at $E\left({ }^{16} \mathrm{O}\right)=25 \mathrm{MeV} /$ nucleon was studied by (1986CH27). Related work includes an investigation of the role of isospin in the statistical decay of the GDR by (1986HA30) and the review of hot nuclear matter (1989SU1I). See also (1989FE1F, 1989SC1I).
(1988AS03) evaluate the influence of the Uehling potential on subbarrier fusion. (1987GO19) report a calculation of the fusion cross section using a classical microscopic equations of motion approach. (1987LO01) study the effect of elastic transfer process on sub-barrier fusion reactions between similar nuclei. (1987 OH 08) show that internal and barrier waves based on a semiclassical picture can account for the oscillations seen in fusion excitation functions. (1987RA28) use statistical theory to study the behavior of high spin states formed in fusion reactions. (1987SP11) calculate the fusion excitation function using the one-body wall friction.
(1987TO10) investigate the influence of nucleon-nucleon collisions in the low angular momentum limit for fusion predicted by TDHF. A relativistic mean-field model consisting of nucleons coupled to scalar and vector mesons is used to solve the time-dependent mean-field equations. A relativistic Vlasov equation derived from mean field theory is applied in (1990JI1C). An extended TDHF theory has been used (1989GO1F) to study mass fluctuations in deep-inelastic collisions. Results show differences from conventional TDHF calculations (1987BA10). (1988RE1A) performed TDHF calculations of ${ }^{16} \mathrm{O}+{ }^{16} \mathrm{O}$ using various Skyrme forces. (1986TO14) calculate subthreshold pion-production using the TDHF formalism, and compare their findings with data. (1986UM02) study fusion of ${ }^{16} \mathrm{O}+{ }^{16} \mathrm{O}$ using TDHF and Skyrme forces. See also the study of (1990SL01).
(1986CH44) perform an optical model analysis of elastic scattering data using a calculated real part of the potential. The potentials are constructed in the energy density formalism with nuclear density distributions obtained in the framework of the method of hyperspherical functions.
(1989DA1C) develop a simple theory of a heavy-ion optical model potential. Colliding ions are described as two slabs of nuclear matter, with energy densities from properties of nuclear matter. (1986FA1A) extend and refine the calculation of the real and imaginary parts of the optical model potential in the $20-100 \mathrm{MeV} /$ nucleon range. Techniques for choosing a unique potential are discussed in (1990KO18). See also (1990RE1E). (1988NA10) calculate microscopic nucleusnucleus potentials using the energy-density formalism. See also (1991MA29). (1987PA24) derive real parts of the low-energy optical potential using the double-folding model. Pauli exchange effects within this model are studied in (1991KH08). A semiclassical method for calculating elastic scattering cross sections was used in (1991SA20).
(1989HU1C) combine the concepts from a partition temperature model and the wounded nucleon model to describe high-energy nucleus-nucleus collisions. (1988IT03) have applied coupled equations which treat the relative motion and internal excitation simultaneously to the case of ${ }^{16} \mathrm{O}+{ }^{16} \mathrm{O}$ at intermediate energies. (1987KA04) study subthreshold pion production mechanisms for ${ }^{16} \mathrm{O}+{ }^{16} \mathrm{O}$ at 40 and $80 \mathrm{MeV} /$ nucleon. A quantum transport equation with two-body collisions included via a relaxation-time method is applied to ${ }^{16} \mathrm{O}-{ }^{16} \mathrm{O}$ collisions between 40 and $200 \mathrm{MeV} /$ nucleon (1988KO02). (1988KO09) compare predictions of momentum dependence of nucleus-nucleus interactions deduced from various models. (1989KO23) describe resonant phenomena in ${ }^{16} \mathrm{O}+{ }^{16} \mathrm{O}$ in terms of an ion-ion potential. (1988MA1O) solve the inverse scattering problem for fixed angular momentum using E-dependent phases and a Povzner-Levian representation of the wave function. Adiabatic bound and Gamow states have been calculated (1986MI22) in a realistic two-center potential. Specific results for a neutron in a ${ }^{16} \mathrm{O}+{ }^{16} \mathrm{O}$ potential are presented. (1985SH1A) develop a microscopic approach to describe elastic and inelastic cross sections. They employ the quasiparticle phonon model for heavy ions and resolve the "fusion-window-anomaly". The resonating group method is used by (1988WA31) to investigate constituent components of the ${ }^{16} \mathrm{O}-{ }^{16} \mathrm{O}$ exchange potential. A two-center shell model description is discussed in (1990KH04).
58. (a) ${ }^{16} \mathrm{O}\left({ }^{17} \mathrm{O},{ }^{17} \mathrm{O}\right)^{16} \mathrm{O}$
(b) ${ }^{16} \mathrm{O}\left({ }^{18} \mathrm{O},{ }^{18} \mathrm{O}\right){ }^{16} \mathrm{O}$

Angular distributions of elastically scattered ions have been studied at $E\left({ }^{16} \mathrm{O}\right)=24,28$ and 32 MeV and $E\left({ }^{17} \mathrm{O}\right)=53.0$ to $66 \mathrm{MeV}, E\left({ }^{17} \mathrm{O}\right)=22 \mathrm{MeV}$ (reaction (a)) and at $E\left({ }^{16} \mathrm{O}\right)=24$ to 54.8 MeV and $E\left({ }^{18} \mathrm{O}\right)=35$ to 89.3 MeV (reaction (b)) [see (1982AJ01, 1986AJ04)]. Yields and fusion cross sections are reported in (1982AJ01, 1986AJ04). See also the studies on light-particle emission ratios in these reactions (1986GA13, 1990XE01).
(1987IMZZ) have studied the effects of rotational couplings by using the rotating molecular orbitals model. (1987IM1C) develop and use a formalism for dynamical treatment of the molecular orbitals of valence nucleons in nucleus-nucleus collisions. (1988IM02) consider the role of rotational coupling interactions in the transition between nucleon molecular orbitals. (1987MA22) use the semiclassical approach including both one- and two-step contributions to calculate the twoparticle elastic transfer reaction, while (1988KA39) calculate differential cross sections for transfer
of two neutrons taking Coulomb effects into account in a four-body model. (1986MI22) use a realistic two-center potential to show that a substantial fraction of the particle emission comes from sequential decay of the excited fragments after separation, and (1986VI08) consider two-particle exchange reactions using a parity-dependent optical potential.
59. (a) ${ }^{16} \mathrm{O}\left({ }^{19} \mathrm{~F},{ }^{19} \mathrm{~F}\right){ }^{16} \mathrm{O}$
(b) ${ }^{16} \mathrm{O}\left({ }^{20} \mathrm{Ne},{ }^{20} \mathrm{Ne}\right){ }^{16} \mathrm{O}$

Elastic scattering angular distributions have been studied at $E\left({ }^{16} \mathrm{O}\right)=21.4$ and 25.8 MeV and at $E\left({ }^{19} \mathrm{~F}\right)=33$ and 36 MeV : see (1977AJ02). Angular distributions in reaction (b) have been measured at $E\left({ }^{16} \mathrm{O}\right)=40.7$ to $94.8 \mathrm{MeV}, 25.6$ to $44.5 \mathrm{MeV}, 44.1$ to 63.9 MeV [see (1986AJ04)], 6080 MeV (1986FUZV), and at $E\left({ }^{20} \mathrm{Ne}\right)=50 \mathrm{MeV}$ (1986AJ04). Recent excitation functions were measured for reaction (b) at $E_{\text {c.m. }}=21.5-31.2 \mathrm{MeV}$ (1988HE06). See also (1989SA14). For yield and fusion cross section measurements see (1986AJ04). Projectile breakup studies are reported at 3.6 GeV/nucleon. See also (1987AN1C). Hyperon production is investigated in (1986FUZV, 1988BO46). See also (1986HE1A, 1988BE2A).
(1986FU1C) discuss ways of accounting for the phase anomaly between elastic and inelastic scattering of ${ }^{19} \mathrm{~F}+{ }^{16} \mathrm{O}$. (1989GA05) derive a parity-dependent potential for ${ }^{16} \mathrm{O}+{ }^{20} \mathrm{Ne}$.
60. (a) ${ }^{16} \mathrm{O}\left({ }^{23} \mathrm{Na},{ }^{23} \mathrm{Na}\right){ }^{16} \mathrm{O}$
(b) ${ }^{16} \mathrm{O}\left({ }^{24} \mathrm{Mg},{ }^{24} \mathrm{Mg}\right)^{16} \mathrm{O}$
(c) ${ }^{16} \mathrm{O}\left({ }^{25} \mathrm{Mg},{ }^{25} \mathrm{Mg}\right){ }^{16} \mathrm{O}$
(d) ${ }^{16} \mathrm{O}\left({ }^{26} \mathrm{Mg},{ }^{26} \mathrm{Mg}\right){ }^{16} \mathrm{O}$

Elastic angular distributions are reported at $E\left({ }^{16} \mathrm{O}\right)=35$ to 60.7 MeV (reaction (b)) and 27.4 to 50 MeV (reaction (d)) [see (1982AJ01)] and $E\left({ }^{16} \mathrm{O}\right)=150 \mathrm{MeV}$ (1986AJ04; reaction (b); elastic). More recent work on reaction (b) includes elastic scattering excitation function measurements at $E_{\text {c.m. }}=31.6-45.2 \mathrm{MeV}(1986 \mathrm{DR} 11,1986 \mathrm{DR} 1 \mathrm{~B})$ and inelastic measurements at $E_{\text {c.m. }}=33.6-$ 49.2 MeV (1986NU01, 1986NU1A) and at $E_{\text {c.m. }}=64-88 \mathrm{MeV}$ (1986PE1G). Orbiting cross sections for reaction (b) are reported in (1989BLZZ). For yield, evaporation residue and fusion measurements, see references in (1982AJ01, 1986AJ04).
(1988AL06) show that algebraic scattering theory provides a simple yet detailed description of the complex coupled channels problem $\left({ }^{16} \mathrm{O}+{ }^{24} \mathrm{Mg}\right)$. (1989FI03) calculate the effect of the dynamic α-transfer potential on several channels of the ${ }^{24} \mathrm{Mg}+{ }^{16} \mathrm{O}$ systems. (1987NA13) obtain an energy and angular momentum-dependent polarization potential from a compound nucleus level density dependent imaginary potential. They find that the elastic and fusion cross sections of ${ }^{16} \mathrm{O}+{ }^{24} \mathrm{Mg}$ are hardly affected by this potential.
61. ${ }^{16} \mathrm{O}\left({ }^{27} \mathrm{Al},{ }^{27} \mathrm{Al}\right){ }^{16} \mathrm{O}$

An elastic angular distribution has been measured at $E\left({ }^{16} \mathrm{O}\right)=46.5 \mathrm{MeV}$: see (1982AJ01). For yield, fusion and evaporation residue studies see (1982AJ01, 1986AJ04) and (1987IK01, 1988KO01, 1989CA14, 1989DE02, 1990KR1D). See also (1986BR26, 1987DEZV). For fragmentation studies see (1986AJ04) and (1986SH1F, 1987SH1C, 1987SH23, 1988AI1C, 1988BR1N, 1988SH1H, 1989CA14, 1989YI1A, 1990PAZW). For work on deeply inelastic collisions see (1986AJ04) and (1987SH21). For pion production see (1986AJ04) and (1987HU1C, 1988BA21, 1988JU02, 1989FO07). For total reaction cross sections see (1987KO12). Angular correlations have been studied at $E\left({ }^{16} \mathrm{O}\right)=65-65.6 \mathrm{MeV}$ (1986AJ04) and at $E\left({ }^{16} \mathrm{O}\right)=82.7 \mathrm{MeV}$ (1988SH1H), at 215 MeV (1990KR14), at $E_{\text {c.m. }}=80-250 \mathrm{MeV}$ (1988DE1A, 1989DE02), and at $E\left({ }^{16} \mathrm{O}\right)=4-5 \mathrm{MeV} /$ nucleon (1987CA1E). The sequential decay of ${ }^{16} \mathrm{O}^{*}(10,11.6,13.2,15.2$, $16.2,21$) is reported via α_{0} [see (1986AJ04)].
(1987BA01) evaluate the energy dependence of the real part of the nucleus-nucleus potential using two-body effective interactions, calculate ${ }^{16} \mathrm{O}+{ }^{27} \mathrm{Al}$, and compare to data. (1989CA11) introduce "pre-equilibrium" temperature to describe the thermodynamics of nuclear systems prior to equilibrium. (1988DA11) modify the coalescence model for complex-particle emission by correcting for the Coulomb barrier and the ejectile's binding energy.
62. (a) ${ }^{16} \mathrm{O}\left({ }^{28} \mathrm{Si},{ }^{28} \mathrm{Si}\right)^{16} \mathrm{O}$
(b) ${ }^{16} \mathrm{O}\left({ }^{29} \mathrm{Si},{ }^{29} \mathrm{Si}\right){ }^{16} \mathrm{O}$
(c) ${ }^{16} \mathrm{O}\left({ }^{30} \mathrm{Si},{ }^{30} \mathrm{Si}\right){ }^{16} \mathrm{O}$
(d) ${ }^{16} \mathrm{O}\left({ }^{31} \mathrm{P},{ }^{31} \mathrm{P}\right)^{16} \mathrm{O}$

Angular distributions for reaction (a) have been reported at $E\left({ }^{16} \mathrm{O}\right)=29.3$ to 215.2 MeV [see (1982AJ01, 1986AJ04)], and recently at $E\left({ }^{16} \mathrm{O}\right)=94 \mathrm{MeV} /$ nucleon (1987RO04). Elastic angular distributions for reactions (b) and (c) are reported at $E\left({ }^{16} \mathrm{O}\right)=60 \mathrm{MeV}$ (1986AJ04). For yield, fusion cross section and evaporation residue measurements see (1982AJ01, 1986AJ04). See also (1986BL08). For a crystal-blocking measurement of time delays in reaction (a) see (1989MA23). For pion production see (1986AJ04).
(1988AL08) obtain expressions for the elastic S-matrix which include effects of the coupling to α-transfer channels to all orders. They study ${ }^{16} \mathrm{O}+{ }^{28} \mathrm{Si}$ at 180°. (1988AS03) evaluate the influences of the Uehling potential on sub-barrier fusion and obtain noticeable modifications of the barrier penetrability. (1986BR11) study the E-dependence of an optical potential which fits all ${ }^{16} \mathrm{O}+{ }^{28} \mathrm{Si}$ elastic data for $E=54.7-215.2 \mathrm{MeV}$. (1986HO18) employ a fixed energy potential inversion method to generate an optical model potential which fits ${ }^{16} \mathrm{O}+{ }^{28}$ Si elastic scattering data at 34.8 MeV . (1986BR19) create a deformed optical potential consistent with calculations based on nuclear structure information which fits ${ }^{16} \mathrm{O}+{ }^{28} \mathrm{Si}$ scattering and fusion data. (1986BR23) use an optical model with repulsive core and coupled channels method to describe ${ }^{16} \mathrm{O}+{ }^{28} \mathrm{Si}$ scattering data at large angles for $E=29-35 \mathrm{MeV}$. (1988CH28) use a Monte Carlo simulation to calculate the
nucleon transfer part of the imaginary optical-model potential. (1987HU11) find good agreement with back angle elastic data in ${ }^{16} \mathrm{O}+{ }^{28} \mathrm{Si}$ by including a derived α-transfer polarization potential. (1990DE35) employ a multistep α-transfer treatment to study back angle scattering of ${ }^{16} \mathrm{O}+{ }^{28} \mathrm{Si}$. (1985KH10) use a conventional optical model potential for $E_{\text {lab }}=33.16-55 \mathrm{MeV}$. They parameterize the S-matrix in terms of Regge poles and look at semiclassical features. (1985KR1A) show that existing data do not allow one to draw conclusions about the relevance of Regge poles in ${ }^{16} \mathrm{O}+{ }^{28} \mathrm{Si}$. (1989MA08) use elastic phase shifts obtained by the algebraic approach to scattering theory in a fixed energy inversion procedure. Results point to an underlying nonlocal interaction. (1987NA13) show that the elastic and fusion cross sections are hardly affected by a strongly attractive real-polarization-potential. (1987VA03) have applied a fast algorithm-based method for performing unconstrained phase-shift analyses to ${ }^{16} \mathrm{O}+{ }^{28} \mathrm{Si}$ at 21.1 MeV ($E_{\text {c.m. }}$). (1987XI01) formulate a molecular orbit theory for the 3α-transfer process and apply it to ${ }^{16} \mathrm{O}+{ }^{28} \mathrm{Si}$ for $E=18.67-34.80 \mathrm{MeV}$, and compare it to data.
63. (a) ${ }^{16} \mathrm{O}\left({ }^{40} \mathrm{Ca},{ }^{40} \mathrm{Ca}\right){ }^{16} \mathrm{O}$
(b) ${ }^{16} \mathrm{O}\left({ }^{42} \mathrm{Ca},{ }^{42} \mathrm{Ca}\right){ }^{16} \mathrm{O}$
(c) ${ }^{16} \mathrm{O}\left({ }^{44} \mathrm{Ca},{ }^{44} \mathrm{Ca}\right)^{16} \mathrm{O}$
(d) ${ }^{16} \mathrm{O}\left({ }^{48} \mathrm{Ca},{ }^{48} \mathrm{Ca}\right)^{16} \mathrm{O}$
(e) ${ }^{16} \mathrm{O}\left({ }^{48} \mathrm{Ti},{ }^{48} \mathrm{Ti}\right){ }^{16} \mathrm{O}$

Elastic angular distributions are reported on ${ }^{40} \mathrm{Ca}$ at $E\left({ }^{16} \mathrm{O}\right)=50$ to 214.1 MeV [see (1982AJ01, 1986AJ04) and recently at $E\left({ }^{16} \mathrm{O}\right)=94 \mathrm{MeV} /$ nucleon (1988RO01). Elastic angular distributions were reported at $E\left({ }^{16} \mathrm{O}\right)=60 \mathrm{MeV}\left({ }^{42,44} \mathrm{Ca}\right.$; also inelastic distributions) and 150 MeV [see (1986AJ04)]. Similar measurements have been reported for ${ }^{48} \mathrm{Ca}$ at $E\left({ }^{16} \mathrm{O}\right)=60 \mathrm{MeV}$ [see (1982AJ01)] and at 56 MeV (1986AJ04; also ${ }^{48} \mathrm{Ca}^{*}$) and 158.2 MeV (1986AJ04; also ${ }^{48} \mathrm{Ca}^{*}$). Yield, fusion cross section and evaporation residue measurements are reported in (1982AJ01, 1986AJ04) and by (1986SA25, 1987BEZY, 1987BR20, 1987HI10, 1988KO1U, 1989BE17). See also (1986GU1C). For a measurement of the total non-fusion reaction cross section at $E\left({ }^{16} \mathrm{O}\right)=$ 158.2 MeV (reaction (d)) see (1986AJ04). For a study of deep inelastic collisions at 142 MeV (reaction (d)) and for reaction (e) see (1986AJ04).

A microscopic study of the ${ }^{16} \mathrm{O}+{ }^{40} \mathrm{Ca}$ potential is discussed in (1986WAZM). (1986AN18) calculate angular distributions for elastic scattering using a simple prescription for the part of the imaginary potential arising from inelastic processes and a folding expression for the real part of the potential, and fit it to the data. (1986CH20) perform a microscopic optical model analysis using folding and realistic NN interactions (direct and exchange terms). They compare their results to data. (1986CH38) calculate the real part of the optical model potential in a folding approximation using the density dependent M3Y interaction in factorized form. They also compare their results to data. (1989DA1C) describe colliding nuclei as two slabs of nuclear matter. Energy density is derived from properties of nuclear matter. (1989ES07) obtain good agreement with elastic and inelastic data using a coupled-channels treatment. (1987GR04) study peripheral reactions. Neutrons
and protons behave separately in an effective mean field. They find a transition between incomplete deep inelastic processes and fragmentation reactions near $35 \mathrm{MeV} /$ nucleon. (1986HA13) calculate barrier penetrations with Coulomb included. They obtain good agreement with data in the above and sub-barrier fusion regions. (1989HO10) calculated heavy-ion fusion reactions with a macroscopic model proposed by Bertsch. They give a good account of the fusion cross section up to very high energies. (1987DA23) develop a semi-microscopic model of elastic and inelastic scattering with a full finite range NN interaction. They also study the role of NN exchange correlations. The real and imaginary potentials have been derived (1987VI04) in a model which includes a large set of non-elastic channels. (1988PA20) calculate the particle transfer flux between two scattering nuclei from the time-dependent single-particle wave functions in the field of two moving potential pockets. They deduce the absorptive potentials which compare well with phenomenological ones. (1989SU05) study the excitation of the GDR within the framework of the Landau-Vlasov equation. They analyze the GDR excited in peripheral ${ }^{16} \mathrm{O}+{ }^{40} \mathrm{Ca}$ reactions at $E=5 \mathrm{MeV} /$ nucleon.
64. ${ }^{17} \mathrm{Ne}\left(\beta^{+}\right){ }^{17} \mathrm{~F}^{*} \rightarrow{ }^{16} \mathrm{O}+\mathrm{p} \quad Q_{\mathrm{m}}=13.93$

The beta-delayed proton emission in the ${ }^{17} \mathrm{Ne}$ decay has been studied by (1988BO39). See Tables 17.16 and 17.27. The half life is measured to be $T_{1 / 2}=109.3 \pm 0.6 \mathrm{~ms}$.
65. ${ }^{17} \mathrm{O}(\gamma, \mathrm{n}){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=-4.1436$

See (1986AJ04, 1989OR07, 1990MC06) and ${ }^{17} \mathrm{O}$.
66. ${ }^{17} \mathrm{O}(\mathrm{p}, \mathrm{d}){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=-1.9191$

Angular distributions for the ground state deuteron group have been studied at $E_{\mathrm{p}}=8.62$ to 11.44 MeV. At $E_{\mathrm{p}}=31 \mathrm{MeV}$, angular distributions are reported for the deuterons corresponding to ${ }^{16} \mathrm{O}^{*}(0,6.05+6.13,7.12,8.87,10.36,12.97,13.26)$. States at $E_{\mathrm{x}}=15.22$ and 15.42 MeV were also observed. Spectroscopic factors were obtained from a DWBA analysis: see (1977AJ02, 1986AJ04). See also (1989DE1P, 1989OB1B).
67. ${ }^{17} \mathrm{O}(\mathrm{d}, \mathrm{t}){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=-2.1136$

Differential cross sections and analyzing powers for the reaction were measured at $E_{\mathrm{d}}=$ 89 MeV by (1990SA27) and summarized in Table 16.28. Earlier information obtained at $E_{\mathrm{d}}=$ 52 MeV is displayed in Table 16.20 of (1986AJ04). As discussed there, comparison of the (d, t)
and $\left(\mathrm{d},{ }^{3} \mathrm{He}\right)$ reactions leads to assignments of analog states in ${ }^{16} \mathrm{~N}$ and in ${ }^{16} \mathrm{O}$ [see Table 16.10 in (1982AJ01)]. A study of this reaction, the ($\mathrm{d},{ }^{3} \mathrm{He}$) reaction, and reaction $67\left[{ }^{17} \mathrm{O}\left({ }^{3} \mathrm{He}, \alpha\right){ }^{16} \mathrm{O}\right]$ below, suggests that there is more than 17% isospin mixing of the 2^{-}states in ${ }^{16} \mathrm{O} *(12.97,12.53)$: the corresponding mixing matrix element is $\geq 155 \pm 30 \mathrm{keV}$. An isospin mixing matrix element of $110 \pm 10 \mathrm{keV}$ for the 4^{-}states of ${ }^{16} \mathrm{O}^{*}(17.79,18.98,19.80)$ is compatible with the results from this reaction and with pion scattering (1986AJ04). See also reaction $44\left[{ }^{16} \mathrm{O}\left(\pi^{ \pm}, \pi^{ \pm}\right){ }^{16} \mathrm{O}\right]$.
68. ${ }^{17} \mathrm{O}\left({ }^{3} \mathrm{He}, \alpha\right){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=16.4341$

Angular distributions have been reported at $E\left({ }^{3} \mathrm{He}\right)=11 \mathrm{MeV}$ [see (1977AJ02)], at $E\left({ }^{3} \mathrm{He}\right)=$ $14 \mathrm{MeV}\left(\alpha_{0}\right)$ and at $E\left({ }^{3} \mathrm{He}\right)=33 \mathrm{MeV}$ (to many states of ${ }^{16} \mathrm{O}$) [see (1986AJ04)]. Table 16.28 displays some of the information derived from this reaction. For polarization measurements see (1986AJ04) and ${ }^{20} \mathrm{Ne}$ in (1983AJ01, 1987AJ02). See also (1982AJ01).
69. ${ }^{18} \mathrm{O}\left(\pi^{+}, \mathrm{d}\right){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=130.3863$

See (1986AJ04).
70. ${ }^{18} \mathrm{O}(\mathrm{p}, \mathrm{t})^{16} \mathrm{O} \quad Q_{\mathrm{m}}=-3.7061$

Angular distributions of tritons have been measured for $E_{\mathrm{p}}=43.7 \mathrm{MeV}$ [see (1982AJ01)] and at $E_{\mathrm{p}}=90 \mathrm{MeV}(1986 \mathrm{VO} 10)$ (to ${ }^{16} \mathrm{O}^{*}(6.1,6.92,7.12,9.84,13.26,16.35)$): see also (1985BLZY). It is noted in (1986 VO 10) that the 16.35 MeV state may be the $\left(0^{+}, 1^{-}, 2^{+}\right)$multiplet at $E_{\mathrm{x}}=16.35$ and 16.144 MeV (1982AJ01). The population of ${ }^{16} \mathrm{O}^{*}(22.7,24.5)$ is consistent with $L=0$ and 2 , respectively, and with assignments of $T=2, J^{\pi}=0^{+}$and 2^{+}. The decay of ${ }^{16} \mathrm{O}^{*}(22.7), J^{\pi}$; $T=0^{+} ; 2$, is via α_{0}, α_{1} and $\alpha_{2}\left[{ }^{12} \mathrm{C}^{*}(0,4.4,7.7)\right]$ with $(1.6 \pm 0.7),(1.9 \pm 0.7)$ and $(14 \pm 2) \%$ branches and $\Gamma_{\mathrm{i}}(\mathrm{eV})=190 \pm 100,230 \pm 110$ and $1680 \pm 550 \mathrm{eV}$, respectively; via $\mathrm{p}_{0}, \mathrm{p}_{1+2}, \mathrm{p}_{3}$ with $(7 \pm 2),(11 \pm 2)$ and $(5 \pm 2) \%$ branches and $\Gamma_{\mathrm{i}}(\mathrm{eV})=840 \pm 343,1320 \pm 454$ and $600 \pm 300 \mathrm{eV}$; and via n_{1+2} with a $(23 \pm 15) \%$ branch $\left[\Gamma_{\mathrm{n}}=2760 \pm 1970 \mathrm{eV}\right.$] (the n_{0} branch is $<15 \%$) [Γ_{i} are based on a total width of $12 \pm 3.5 \mathrm{keV}$]. See (1986AJ04). See also (1982AJ01) and ${ }^{19} \mathrm{~F}$ in (1987AJ02).
71. ${ }^{18} \mathrm{O}\left(\alpha,{ }^{6} \mathrm{He}\right){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=-11.213$

Angular distributions have been measured at $E_{\alpha}=58 \mathrm{MeV}$ to ${ }^{16} \mathrm{O}^{*}(0,6.1,6.92,7.12)$. Groups at $E_{\mathrm{x}}=10.4,13.3 \pm 0.1$ and $16.3 \pm 0.1 \mathrm{MeV}$ were also observed: see (1977AJ02, 1986AJ04).

Table 16.28: States in ${ }^{16} \mathrm{O}$ from ${ }^{17} \mathrm{O}(\mathrm{d}, \mathrm{t})$ and ${ }^{17} \mathrm{O}\left({ }^{3} \mathrm{He}, \alpha\right)$

$E_{\text {x }}{ }^{\text {a }}(\mathrm{MeV} \pm \mathrm{keV})$	$J^{\pi} ; T$	$l^{\text {a }}$	$j^{\text {a }}$	$C^{2} S^{\text {a }}$	$(d \sigma / d \Omega)_{\text {max }}{ }^{\text {a }} \mu \mathrm{b} / \mathrm{sr}$	$l^{\text {c }}$	$S^{\text {c }}$
0.000	$0^{+} ; 0$	2	$\frac{5}{2}$	1.034 ± 0.084	1736 ± 21.9	2	0.88
6.045 ± 8	$0^{+} ; 0$	2	$\frac{5}{2}$	0.016 ± 0.004	17.9 ± 2.2	2	0.009
6.131 ± 3	$3^{-} ; 0$	1	$\frac{1}{2}$ $\frac{3}{2}$	$\begin{aligned} & 0.578 \pm 0.137 \\ & 0.373 \pm 0.081 \end{aligned}$	527 ± 21.9	$1{ }^{\text {d }}$	0.37
6.913 ± 4	$2^{+} ; 0$	(2)	($\frac{5}{2}$)	(0.030 $\pm 0.004)$	78.9 ± 11.9	$(2+0)$	0.022
7.115 ± 3	$1^{-} ; 0$	1	$\frac{3}{2}$	0.055 ± 0.006	39.2 ± 3.2	$(3+1)$	0.007
8.870 ± 3	$2^{-} ; 0$	1	$\frac{1}{2}$ $\frac{3}{2}$	$\begin{aligned} & 0.335 \pm 0.086 \\ & 0.137 \pm 0.048 \end{aligned}$	289 ± 24.0	$1{ }^{\text {d }}$	0.26
9.841 ± 6	$2^{+} ; 0$	2	$\frac{5}{2}$	0.007 ± 0.003	12.9 ± 2.7	2	0.025
10.354 ± 3	$4^{+} ; 0$	(2)	($\frac{5}{2}$)	(0.016 ± 0.004)	19.9 ± 3.5	2	0.025
10.955 ± 9	$0^{-} ; 0$				6.7 ± 3.4	$(3+1)$	0.008
$11.08{ }^{\text {b }}$	$3^{+} ; 0$					2	0.044 or 0.086
11.095 ± 6	$4^{+} ; 0$				26.1 ± 5.3		
11.525 ± 9	$2^{+} ; 0$				20.0 ± 18.5		
12.528 ± 6	$2^{-} ; 0$	1	$\frac{1}{2}$ $\frac{3}{2}$	$\begin{aligned} & 0.234 \pm 0.046 \\ & 0.036 \pm 0.015 \end{aligned}$	53.5 ± 22.3		
12.782 ± 23	$0^{-} ; 1$				29.8 ± 5.0		
12.971 ± 3	$2^{-} ; 1$	1	$\frac{1}{2}$	0.396 ± 0.101	356 ± 22.2	$1{ }^{\text {d }}$	0.38
$13.09{ }^{\text {b }}$	$1^{-} ; 1$					1	0.1
13.148 ± 14	$3^{-} ; 0$	1	$\frac{1}{2}$ $\frac{3}{2}$	$\begin{aligned} & 0.058 \pm 0.019 \\ & 0.019 \pm 0.012 \end{aligned}$	62.1 ± 17.0		
13.256 ± 3	$3^{-} ; 1^{\text {b }}$	1	$\frac{1}{2}$	0.562 ± 0.106	335 ± 21.9	$1{ }^{\text {d }}$	0.34
13.857 ± 30	$4^{+} ; 0$	(2)	($\frac{5}{2}$)	(0.015 $\pm 0.003)$	10.3 ± 4.6		
13.979 ± 17	2^{-}	1	$\frac{3}{2}$	0.016 ± 0.004	11.9 ± 4.7		
14.313 ± 18	$4^{(-)}$				24.1 ± 9.2		
14.409 ± 11	5^{+}				7.8 ± 6.2		
15.195 ± 32	$2^{-} ; 0$	1	$\frac{3}{2}$	0.106 ± 0.030	38.4 ± 16.8	d	
15.414 ± 6	$3^{-} ; 0$	1	$\frac{3}{2}$	0.242 ± 0.038	76.3 ± 16.7	d	
16.808 ± 11	$3^{+} ; 1$	(2)	($\frac{5}{2}$)	(0.015 ± 0.005)	72 ± 4.3		
17.776 ± 11	$4^{-} ; 0$	1	$\frac{3}{2}$	0.089 ± 0.045	48.3 ± 13.2	d	$(\Gamma<50 \mathrm{keV})^{\mathrm{b}}$
18.027 ± 7	$3^{(-)} ; 1$	1	$\frac{3}{2}$	0.102 ± 0.023	76.1 ± 20.8		
18.483 ± 17	$1^{-} ; 1$	1	$\frac{3}{2}$	0.129 ± 0.028	94.6 ± 26.0	d	
18.978 ± 7	$4^{-} ; 1$	1	$\frac{3}{2}$	0.706 ± 0.065	502 ± 11.2	d	
19.210 ± 14	$3^{-} ; 1$	1	$\frac{3}{2}$	0.338 ± 0.036	227 ± 9.9	d	$\Gamma=68 \pm 10 \mathrm{keV}^{\mathrm{b}}$
19.806 ± 11	$4^{-} ; 0$	1	- ${ }^{3}$	0.423 ± 0.116	281 ± 127	d	$\Gamma=36 \pm 5 \mathrm{keV}^{\mathrm{b}}$
20.481 ± 8	$2^{-} ; 1$	1	$\frac{1}{2}$	0.015 ± 0.018	65.3 ± 10.0	d	
20.481 ± 8	2,1	1	$\frac{3}{2}$	0.144 ± 0.029	65.3 ± 10.0		
20.922 ± 30	$1^{-} ; 1$	1	$\frac{3}{2}$	0.032 ± 0.009	15.6 ± 5.6		
22.857 ± 60	$1^{-} ; 1$	1	$\frac{3}{2}$	0.109 ± 0.023	50.0 ± 12.4		

${ }^{\text {a }}{ }^{17} \mathrm{O}(\mathrm{d}, \mathrm{t}) ; E_{\mathrm{d}}=89 \mathrm{MeV}$ (1990SA27).
${ }^{\mathrm{b}}$ See Table 16.20 (1986AJ04).
${ }^{\text {c }}{ }^{17} \mathrm{O}\left({ }^{3} \mathrm{He}, \alpha\right) ; E\left({ }^{3} \mathrm{He}\right)=11 \mathrm{MeV}(1971 \mathrm{BO} 02)$.
${ }^{d}{ }^{17} \mathrm{O}\left({ }^{3} \mathrm{He}, \alpha\right) ; E\left({ }^{3} \mathrm{He}\right)=33 \mathrm{MeV}(1982 \mathrm{KA12})$.
72. ${ }^{18} \mathrm{O}\left({ }^{18} \mathrm{O},{ }^{20} \mathrm{O}\right){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=-0.624$

Angular distributions involving ${ }^{16} \mathrm{O}_{\text {g.s. }}$ and ${ }^{20} \mathrm{O}$ states are reported at $E\left({ }^{18} \mathrm{O}\right)=24$ to 36 MeV and at 52 MeV : see (1982AJ01, 1986AJ04).
73. ${ }^{19} \mathrm{~F}(\mathrm{p}, \alpha){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=8.1137$

Angular distributions have been measured at many energies up to $E_{\mathrm{p}}=44.5 \mathrm{MeV}$ [see (1982AJ01)] and $E_{\mathrm{p}}=1.55$ to $2.03 \mathrm{MeV}\left(\alpha_{0}, \alpha_{1}\right), 1.66$ to $1.86 \mathrm{MeV}\left(\alpha_{0}\right), 10.0$ to 11.4 MeV $\left({ }^{16} \mathrm{O}^{*}(0,6.05,6.13,6.92,7.13,8.87,9.84,10.36,10.96,11.08+11.10)\right)$ [see (1986AJ04)]. See also Table 16.31 in (1971AJ02). For a DWBA analysis of data for incident energies below the Coulomb barrier see (1991HE16). A recent measurement of the absolute differential cross section at $E_{\mathrm{p}}=2-3.4 \mathrm{MeV}$ is reported in (1986OU01). Measurements at $E_{\mathrm{p}}=1.55-1.64 \mathrm{MeV}$ by (1990AZZY) were used to study resonances corresponding to states in ${ }^{20} \mathrm{Ne}$. Absolute yields, angular distributions and resonance widths of the $6.13,6.92$, and 7.12 MeV photons from the 340.5 keV resonance are reported in (1991CR06). See also (1991MC08) for a study of resonanceyield deconvolution techniques.

The internal conversion to pair production ratio of the E0 transition ${ }^{16} \mathrm{O}^{*}(6.05 \rightarrow$ g.s. $)\left[0^{+} \rightarrow\right.$ $\left.0^{+}\right]$is $(4.00 \pm 0.46) \times 10^{-5}$. The ratio of double γ-emission to pair production $\Gamma_{\mathrm{E} 1 \mathrm{El}} / \Gamma_{\mathrm{E} 0(\pi)}=$ $(2.5 \pm 1.1) \times 10^{-4} . \tau_{\mathrm{m}}$ for ${ }^{16} \mathrm{O}^{*}(6.05,6.13)$ are $96 \pm 7 \mathrm{psec}$ and $26.6 \pm 0.7 \mathrm{psec}$, respectively. See (1982AJ01) for references. $|\mathrm{g}|$ for ${ }^{16} \mathrm{O}^{*}(6.13)=0.556 \pm 0.004$ (1984AS03, 1986AJ04). For γ-ray branching ratios and mixing ratios see Table 16.14 and (1986AJ04).

See also ${ }^{20}$ Ne in (1983AJ01, 1987AJ02), and see (1986KH1A, 1987KH1A, 1988GN1A, 1988UM1A; applied) and (1988CA26; astrophysics).
74. ${ }^{19} \mathrm{~F}\left(\mathrm{t},{ }^{6} \mathrm{He}\right){ }^{16} \mathrm{O}$

$$
Q_{\mathrm{m}}=0.248
$$

Differential cross section measurements at $E_{\mathrm{t}}=38 \mathrm{MeV}$ are reported in (1992CL04).
75. ${ }^{19} \mathrm{~F}\left({ }^{3} \mathrm{He},{ }^{6} \mathrm{Li}\right){ }^{16} \mathrm{O}$

$$
Q_{\mathrm{m}}=4.0954
$$

See (1977AJ02).
76. ${ }^{19} \mathrm{~F}\left(\alpha,{ }^{7} \mathrm{Li}\right){ }^{16} \mathrm{O}$

$$
Q_{\mathrm{m}}=-9.233
$$

See (1988SH1E).
77. (a) ${ }^{20} \mathrm{Ne}(\gamma, \alpha)^{16} \mathrm{O} \quad Q_{\mathrm{m}}=-4.734$
(b) ${ }^{20} \mathrm{Ne}(\mathrm{p}, \mathrm{p} \alpha)^{16} \mathrm{O} \quad Q_{\mathrm{m}}=-4.734$

See (1982AJ01, 1986AJ04) and ${ }^{20} \mathrm{Ne}$ in (1983AJ01, 1987AJ02). See also (1989TH1C).
78. ${ }^{20} \mathrm{Ne}(\alpha, 2 \alpha)^{16} \mathrm{O} \quad Q_{\mathrm{m}}=-4.734$

See (1988SH05) for a DWBA analysis of differential cross section data at $E_{\alpha}=140 \mathrm{MeV}$.
79. ${ }^{20} \mathrm{Ne}\left(\mathrm{d},{ }^{6} \mathrm{Li}\right){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=3.2589$

Angular distributions have been studied at E_{d} to 80 MeV : see (1982AJ01). At $E_{\mathrm{d}}=55 \mathrm{MeV}$ ${ }^{16} \mathrm{O}^{*}(0,6.05,6.13,6.92,9.8,11.10)$ are strongly populated (1986AJ04).
80. ${ }^{23} \mathrm{Na}\left(\mathrm{d},{ }^{9} \mathrm{Be}\right){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=-3.006$

The angular distribution to ${ }^{16} \mathrm{O}_{\text {g.s. }}$. has been measured at $E_{\mathrm{d}}=13.6 \mathrm{MeV}$ (1986AJ04).
81. ${ }^{24} \mathrm{Mg}\left(\alpha,{ }^{12} \mathrm{C}\right){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=-6.7712$

Angular distributions have been reported at $E_{\alpha}=22.8$ to 25.4 MeV and at 90.3 MeV , the latter to ${ }^{16} \mathrm{O}^{*}(0,6.1,7.0,8.8,9.8,10.3)$ [see (1982AJ01)] and at $E_{\alpha}=25.1$ to 27.8 MeV (1986AJ04). Excitation functions measured for $E_{\alpha}=26-37 \mathrm{MeV}$ at $\theta_{\text {lab }}=30^{\circ}, 40^{\circ}, 60^{\circ}$ have been reported (1986ESZV, 1989ES06). See also (1987SH1B, 1988SH1F).
82. ${ }^{24} \mathrm{Mg}\left({ }^{12} \mathrm{C},{ }^{20} \mathrm{Ne}\right){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=-2.150$

The ground state angular distribution has been studied at $E\left({ }^{12} \mathrm{C}\right)=40 \mathrm{MeV}$ [see (1986AJ04)]. ${ }^{16} \mathrm{O}+{ }^{8} \mathrm{Be}$ breakup of ${ }^{24} \mathrm{Mg}$ following inelastic scattering of ${ }^{24} \mathrm{Mg}$ projectiles on ${ }^{12} \mathrm{C}$ has been reported (1989FU10).
83. ${ }^{28} \operatorname{Si}\left({ }^{12} \mathrm{C},{ }^{24} \mathrm{Mg}\right){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=-2.822$

Forward-angle yields of ${ }^{16} \mathrm{O}$ measured at $E\left({ }^{28} \mathrm{Si}\right)=100-170 \mathrm{MeV}$ have been reported (1986SH25).
84. ${ }^{28} \operatorname{Si}\left({ }^{14} \mathrm{~N},{ }^{16} \mathrm{O}\right){ }^{26} \mathrm{Al} \quad Q_{\mathrm{m}}=-1.682$

Forward-angle yields of ${ }^{16} \mathrm{O}$ measured at $E\left({ }^{28} \mathrm{Si}\right)=100-170 \mathrm{MeV}$ have been reported (1986SH25).
${ }^{16} \mathrm{~F}$
(Figs. 4 and 5)
GENERAL: See Table 16.29.

1. (a) ${ }^{14} \mathrm{~N}\left({ }^{3} \mathrm{He}, \mathrm{n}\right)^{16} \mathrm{~F}$
$Q_{\mathrm{m}}=-0.957$
(b) ${ }^{14} \mathrm{~N}\left({ }^{3} \mathrm{He}, \mathrm{np}\right){ }^{15} \mathrm{O}$
$Q_{\mathrm{m}}=-0.421$

Observed neutron groups from reaction (a) and results from reaction (b) are displayed in Table 16.31. A recent measurement of n-p angular correlations from ${ }^{14} \mathrm{~N}\left({ }^{3} \mathrm{He}, \mathrm{n}\right)^{16} \mathrm{~F}(\mathrm{p})^{15} \mathrm{O}$ is reported in (1986RYZZ).
2. ${ }^{15} \mathrm{~N}\left(\mathrm{p}, \pi^{-}\right){ }^{16} \mathrm{~F} \quad Q_{\mathrm{m}}=-142.3475$

Measurements of pion spectra with polarized protons at $E_{\mathrm{p}}=200 \mathrm{MeV}$ are reported in (1987AZZY). Levels in ${ }^{16}$ F at $0.39\left(2^{-}\right), 0.72\left(3^{-}\right), 5.40,6.37\left(4^{-}\right), 7.85$, and 11.52 MeV are observed.
3. ${ }^{16} \mathrm{O}\left(\gamma, \pi^{-}\right)^{16} \mathrm{~F} \quad Q_{\mathrm{m}}=-154.984$

Angular distributions and photoproduction cross sections vs. energy have been measured for $E_{\mathrm{p}}=200-350 \mathrm{MeV}$ (1987JE02). See also (1986AJ04).
4. ${ }^{16} \mathrm{O}(\mathrm{p}, \mathrm{n})^{16} \mathrm{~F}$
$Q_{\mathrm{m}}=-16.199$

Observed neutron groups are displayed in Table 16.31. Angular distributions of cross sections and/or polarization observables have been studied at $E_{\mathrm{p}}=35-135.2 \mathrm{MeV}$ (1986AJ04) and recently at $E_{\mathrm{p}}=35$ and 40 MeV (1987OH04) and at $E_{\mathrm{p}}=135 \mathrm{MeV}$ (1989WAZZ). See also (1983WA29). For a comparison of (p, n) cross sections with B(M1) see (1986AJ04). A study of Gamow-Teller strengths is described in (1988MA53). An investigation of $0^{+} \rightarrow 0^{-}$transitions is discussed in (1986GA31). See also (1989GA26) and the reviews of (1986AN1E, 1986BA78).
5. ${ }^{16} \mathrm{O}\left({ }^{3} \mathrm{He}, \mathrm{t}\right)^{16} \mathrm{~F} \quad Q_{\mathrm{m}}=-15.436$

Fig. 4: Energy levels of ${ }^{16}$ F. For notation see Fig. 2.

Table 16.29: ${ }^{16} \mathrm{~F}$ \& ${ }^{16} \mathrm{Ne}-$ General
Reference Description

General

Reviews:
1986AN07 Predicted masses \& excitation energies in higher isospin multiplets for $9 \leq A \leq 60$
1986BA1C Pion-nucleus double charge exchange: review of LAMPF workshop
1987GI1C Pion-nucleus interactions
1988CO15 Thomas-Ehrman shift; charge-symmetric mass relationship calcs. for proton-rich nuclei
Other Articles:
1986CH39 $\pi \Delta$ interaction mechanism comp. with double charge exchange exp. data on $N=Z$ nuclei
1986GI13 Nuclear-structure aspects of nonanalog pion double charge exchange
1987KA39 Delta-hole approach to pion double charge exchange
1987LE1B Strong interaction studies via meson-nucleus reactions
1988GO21 Neutron-excessive nuclei \& two-proton radioactivity
1988MA27 Non-analog dbl. chrg. exchng. transition: ${ }^{16} \mathrm{O}\left(\pi^{+}, \pi^{-}\right){ }^{16} \mathrm{Ne}$ (g.s.) \& ${ }^{12} \mathrm{C}\left(\pi^{+}, \pi^{-}\right){ }^{12} \mathrm{O}$ (g.s.)
1989WI24 Hot proton-proton chains in low-metallicity objects
1990LO11 Self-consistent calculations of light nuclei: binding energies \& radii
1990 PO04 Determining masses of light nuclides \& quantum characteristics of corresponding nucl.

Table 16.30: Energy levels of ${ }^{16} \mathrm{~F}^{\text {a }}$

$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})$	$J^{\pi} ; T$	$\Gamma_{\text {c.m. }}(\mathrm{keV})$	Decay	Reactions
0	$0^{-} ; 1$	$40 \pm 20^{\text {b }}$	p	1, 2, 3, 4, 5, 6, 7
0.193 ± 6	1^{-}	$<40^{\text {b }}$	p	1, 4, 5, 7
0.424 ± 5	2^{-}	40 ± 30	p	1, 4, 5, 7
0.721 ± 4	3^{-}	<15	p	1, 4, 5, 7
3.758 ± 6	1^{+}	<40	p	1, 4, 5, 7
3.870 ± 6	2^{+}	<20	p	1, 4, 5, 7
4.372 ± 6	3^{+}	50 ± 20	p	1, 4, 5, 7
4.654 ± 6	1^{+}	60 ± 20	p	1, 4, 5, 7
(4.71 $\pm 20)$				7
4.977 ± 8	$\left(2^{+}\right)$	60 ± 40	p	1, 5, 7
5.272 ± 8	$\left(1^{-}\right)$		p	1, 4, 5
5.404 ± 10	4		p	1,5,7
5.449 ± 14			p	1
5.524 ± 9	$\pi=+$		p	1,5,7
(5.57 ± 20)			p	1
5.856 ± 10	2^{-}		p	1, 4, 5
(6.05 $\pm 20)$				7
6.224 ± 14				1,4
6.372 ± 9	4^{-}			1, 4, 5
6.559 ± 10 ($\left(3^{-}+1^{-}\right)$		p	
6.679 ± 8 \}	$(3+1)$	≤ 45		$1,5,7$
(6.93 ± 20)				7
7.110 ± 20				1
7.50 ± 30	2^{-}	950 ± 100	p	4, 5
7.90 ± 15		< 100		1,4,5
9.50 ± 30	$1^{-}\left(+2^{-}\right)$	1050 ± 100	p	4, 5
9.60 ± 20		250 ± 50		5
11.50 ± 50	$1^{-}\left(+2^{-}\right)$	1900 ± 500	p	4, 5

[^6]Table 16.31: ${ }^{16} \mathrm{~F}$ levels from ${ }^{14} \mathrm{~N}\left({ }^{3} \mathrm{He}, \mathrm{n}\right),{ }^{16} \mathrm{O}(\mathrm{p}, \mathrm{n}),{ }^{16} \mathrm{O}\left({ }^{3} \mathrm{He}, \mathrm{t}\right)$ and ${ }^{19} \mathrm{~F}\left({ }^{3} \mathrm{He},{ }^{6} \mathrm{He}\right){ }^{\text {a }}$

	$\begin{gathered} { }^{16} \mathrm{~F}^{*} \mathrm{~b} \\ (\mathrm{MeV} \pm \mathrm{keV}) \end{gathered}$	$L^{\text {b }}$	$\begin{gathered} { }^{16} \mathrm{~F}^{* \mathrm{c}} \\ (\mathrm{MeV} \pm \mathrm{keV}) \end{gathered}$	$J^{\pi \mathrm{d}}$	$\begin{gathered} { }^{16} \mathrm{~F}^{*} \mathrm{e} \\ (\mathrm{MeV} \pm \mathrm{keV}) \end{gathered}$	$\Delta l^{\text {f }}$	$\begin{gathered} { }^{16} \mathrm{~F}^{* g} \\ (\mathrm{MeV} \pm \mathrm{keV}) \end{gathered}$	$\begin{gathered} { }^{16} \mathrm{~F}^{* h} \\ (\mathrm{MeV} \pm \mathrm{keV}) \end{gathered}$	$\begin{gathered} \Gamma_{\mathrm{c} . \mathrm{m} .}{ }^{\mathrm{i}} \\ (\mathrm{keV}) \end{gathered}$	$J^{\pi}{ }^{\text {j }}$
	0	1	0	(1-)	0		0	0	40 ± 20	0^{-}
	0.192 ± 15	1	0.190 ± 20	$\left(0^{-}\right)$	0.197 ± 12		0.19 ± 20	0.192 ± 10	< 40	1^{-}
	0.425 ± 15	3	0.425 ± 10	(≥ 2)	0.424 ± 5	1	0.425 ± 20	0.424	40 ± 30	2^{-}
	0.722 ± 10	(3)	0.725 ± 10	(≥ 2)	0.720 ± 6	3	0.72 ± 20	0.722 ± 10	<15	3^{-}
	3.751 ± 10	0	$3.775 \pm 10^{\mathrm{k}}$	(1)	3.76	0	3.75 ± 20	$3.740 \pm 15^{\text {n }}$	<40	1^{+}
	3.861 ± 10	2	$3.880 \pm 10^{\mathrm{k}}$	≥ 1			3.86 ± 20	$3.873 \pm 15^{\mathrm{n}}$	<20	2^{+}
	4.370 ± 10		$4.375 \pm 10^{\mathrm{k}}$	(≥ 2)	4.37	2	4.37 ± 20	$4.372{ }^{\text {n }}$	50 ± 20	3^{+}
	4.646 ± 10	0	$4.661 \pm 10^{\mathrm{k}}$	≥ 1	4.65	0	$\begin{aligned} & 4.66 \pm 20 \\ & 4.71 \pm 200^{\mathrm{m}} \end{aligned}$	$4.652 \pm 10^{\text {n }}$	60 ± 20	1^{+}
	4.973 ± 10	2	4.97 ± 20^{1}	≥ 2			4.97 ± 20	5.007 ± 20	60 ± 40	$\left(2^{+}\right)$
	5.264 ± 20		5.27 ± 20^{1}		5.27	1		$5.274 \pm 10^{\mathrm{n}}$		$\left(1^{-}\right)$
	5.390 ± 20	2	5.40 ± 20^{1}				5.39 ± 20	5.414 ± 15		4
	5.448 ± 20		5.45 ± 20^{1}							
	5.528 ± 20	2	$\begin{aligned} 5.52 & \pm 20^{1} \\ (5.57 & \pm 20)^{1} \end{aligned}$				5.53 ± 20	5.521 ± 15		$\pi=+$
$\stackrel{\rightharpoonup}{\infty}$	5.840 ± 40				5.86	3		$5.858 \pm 10^{\text {n }}$		2^{-}
							$6.05 \pm 20 \mathrm{~m}$			
	6.230 ± 50				6.22	0		6.224 ± 15		
	6.371 ± 20				6.37	3		6.372 ± 10		4^{-}
								$6.559 \pm 10^{\text {n }}$		
	6.678 ± 10		6.68 ± 20^{1}	≥ 1			$\begin{aligned} & 6.68 \pm 20 \\ & 6.93 \pm 20^{\mathrm{m}} \end{aligned}$		≤ 45	$\left(3^{-}+1^{-}\right)$
	7.110 ± 20									
					≈ 7.5	1		$7.50 \pm 30^{\mathrm{n}, \mathrm{o}}$	950 ± 100	2^{-}
	7.730 ± 40							7.90 ± 15	< 100	
					≈ 9.5	1		$9.50 \pm 30^{\mathrm{n}, \mathrm{o}}$	1050 ± 100	$1^{-}+\left(2^{-}\right)$
								9.60 ± 20	250 ± 50	
					≈ 11.5	1		$11.50 \pm 50^{\mathrm{n}, \mathrm{o}}$	1900 ± 500	$1^{-}+\left(2^{-}\right)$

${ }^{\text {a }}$ See also Tables 16.33 in (1971AJ02) and 16.26 in (1982AJ01) for earlier work and for references.
b ${ }^{14} \mathrm{~N}\left({ }^{3} \mathrm{He}, \mathrm{n}\right){ }^{16} \mathrm{~F}$.
${ }^{c}{ }^{14} \mathrm{~N}\left({ }^{3} \mathrm{He}, \mathrm{np}\right){ }^{15} \mathrm{O}$.
${ }^{\mathrm{d}}$ From angular correlation studies.
${ }^{\mathrm{e}}{ }^{16} \mathrm{O}(\mathrm{p}, \mathrm{n}){ }^{16} \mathrm{~F}$. E_{x} shown without uncertainties are from Table 16.30.
f (1982FA06; $E_{\mathrm{p}}=99.1$ and 135.2 MeV$)$.
g ${ }^{16} \mathrm{O}\left({ }^{3} \mathrm{He}, \mathrm{t}\right)$ and ${ }^{19} \mathrm{~F}\left({ }^{3} \mathrm{He},{ }^{6} \mathrm{He}\right){ }^{16} \mathrm{~F}$.
${ }^{\text {h }}{ }^{16} \mathrm{O}\left({ }^{3} \mathrm{He}, \mathrm{t}\right):\left(1984 \mathrm{ST} 10 ; E\left({ }^{3} \mathrm{He}\right)=81 \mathrm{MeV}\right)$. See $(1986 \mathrm{AJ} 04)$.
${ }^{i}$ From (a) and (1984ST10, 1985HA01).
${ }^{j}$ From (a) and (1984ST10).
${ }^{\mathrm{k}}$ See also (1985HA01).
${ }^{1}$ (1985HA01).
${ }^{\mathrm{m}}$ Observed only in ${ }^{19} \mathrm{~F}\left({ }^{3} \mathrm{He},{ }^{6} \mathrm{He}\right)$.
${ }^{\mathrm{n}}$ Decays to ${ }^{15} \mathrm{O}_{\text {g.s. }}$ by proton emission (1984ST10).
${ }^{\circ}$ Decays to ${ }^{15} \mathrm{O}^{*}(6.18)$ (1984ST10).

Observed triton groups are shown in Table 16.31. Angular distributions at $E\left({ }^{3} \mathrm{He}\right)=81 \mathrm{MeV}$, analyzed by DWBA, and angular correlation measurements [mainly involving protons to ${ }^{15} \mathrm{O} *(0$, 6.18)], together with information from reactions 1 and 4, lead to the J^{π} values shown in the table. The analog of the giant dipole resonance $\left[E_{\mathrm{x}} \approx 9.5 \mathrm{MeV}\right]$ is strongly excited. The magnetic quadrupole strength has two strong components in ${ }^{16} \mathrm{~F}^{*}(0.42,7.5)$. The 4^{-}state at 6.4 MeV and the GDR have also been observed at $E\left({ }^{3} \mathrm{He}\right)=170 \mathrm{MeV}$ [see (1982AJ01, 1986AJ04). A recent measurement of differential cross sections at $E\left({ }^{3} \mathrm{He}\right)=66-90 \mathrm{MeV}$ and DWBA analysis is reported in (1989VA09). See also (1985VA1A, 1990VA08).
6. (a) ${ }^{16} \mathrm{O}\left({ }^{6} \mathrm{Li},{ }^{6} \mathrm{He}\right){ }^{16} \mathrm{~F}$
$Q_{\mathrm{m}}=-8.924$
(b) ${ }^{16} \mathrm{O}\left({ }^{7} \mathrm{Li},{ }^{7} \mathrm{He}\right){ }^{16} \mathrm{~F}$
$Q_{\mathrm{m}}=-26.62$

Measurements have been reported at $E\left({ }^{6} \mathrm{Li}\right)=93 \mathrm{MeV}, E\left({ }^{7} \mathrm{Li}\right)=78 \mathrm{MeV}$ [see (1986AJ04)]. See also (1989GA26).
7. ${ }^{19} \mathrm{~F}\left({ }^{3} \mathrm{He},{ }^{6} \mathrm{He}\right){ }^{16} \mathrm{~F} \quad Q_{\mathrm{m}}=-4.828$

See Table 16.31 and (1982AJ01, 1986AJ04).

${ }^{16} \mathrm{Ne}$

(Fig. 5)

GENERAL: See Table 16.29.
Mass of ${ }^{16} \mathrm{Ne}$: The Q-values of the ${ }^{20} \mathrm{Ne}\left(\alpha,{ }^{8} \mathrm{He}\right)$ and ${ }^{16} \mathrm{O}\left(\pi^{+}, \pi^{-}\right)$reactions lead to atomic mass excesses of $23.93 \pm 0.08 \mathrm{MeV}$ (1978KE06), $23.978 \pm 0.024 \mathrm{MeV}$ (1983WO01) and $24.048 \pm$ 0.045 MeV (1980BU15) [recalculated using the (1985WA02) masses for ${ }^{8} \mathrm{He},{ }^{16} \mathrm{O}$ and ${ }^{20} \mathrm{Ne}$]. The weighted mean is $23.989 \pm 0.020 \mathrm{MeV}$, which is also the (1985WA02) value. ${ }^{16} \mathrm{Ne}$ is then bound with respect to decay into ${ }^{15} \mathrm{~F}+\mathrm{p}$ by 0.07 MeV and unbound with respect to ${ }^{14} \mathrm{O}+2 \mathrm{p}$ by 1.40 MeV (1986AJ04).

$$
\text { 1. }{ }^{16} \mathrm{O}\left(\pi^{+}, \pi^{-}\right)^{16} \mathrm{Ne} \quad Q_{\mathrm{m}}=-24.77
$$

For ground state cross sections and analyses for $E_{\pi^{+}}=80$ to 292 MeV see (1982AJ01, 1986AJ04). A recent measurement at $\theta_{\text {lab }}=5^{\circ}$ for $E_{\pi^{+}}=140-292 \mathrm{MeV}$ has been reported (1990SE11).

Table 16.32: Energy levels of ${ }^{16} \mathrm{Ne}$

$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})$	$J^{\pi} ; T$	$\Gamma_{\text {c.m. }}(\mathrm{keV})$	Decay	Reactions
0	$0^{+} ; 2$	122 ± 37	p	1,2
1.69 ± 0.07	$\left(2^{+}\right) ; 2$		(p)	2

2. ${ }^{20} \mathrm{Ne}\left(\alpha,{ }^{8} \mathrm{He}\right){ }^{16} \mathrm{Ne} \quad Q_{\mathrm{m}}=-60.21$

At $E_{\alpha} \approx 117.5 \mathrm{MeV},{ }^{16} \mathrm{Ne}^{*}(0,1.69 \pm 0.07)$ are populated, the former with a differential cross section of $5 \pm 3 \mathrm{nb} / \mathrm{sr}$ at $8^{\circ}(\mathrm{lab})$. The $\Gamma_{\text {c.m. }}$. for the ground state group is $200 \pm 100 \mathrm{keV}$; applying penetrability corrections leads to a total decay width of $5-100 \mathrm{keV}$. The di-proton branching ratio is $10-90 \%$, with the most probable value being 20%. The cubic term, d , in the IMME (Isobaric Multiplet Mass Equation) is $8 \pm 5 \mathrm{keV}, 15 \pm 6 \mathrm{keV}$ based, respectively, on the masses of ${ }^{16} \mathrm{Ne}^{*}(0$, 1.69). The first $T=2$ states in ${ }^{16} \mathrm{~F}\left[0^{+}, 2^{+}\right]$are predicted to lie at $E_{\mathrm{x}}=10.08 \pm 0.02$ and $11.87 \pm$ 0.03 MeV (1978KE06). At $E_{\alpha}=129 \mathrm{MeV}$ (1983WO01) find $\Gamma_{\text {c.m. }}$ for ${ }^{16} \mathrm{Ne}_{\text {g.s. }}=110 \pm 40 \mathrm{keV}$ and the d and e coefficients in the IMME are both $4 \pm 3 \mathrm{keV}$.
${ }^{16} \mathrm{Na},{ }^{16} \mathrm{Mg},{ }^{16} \mathrm{Al},{ }^{16} \mathrm{Si}$
(not observed)
See (1986AN07).

Fig. 5: Isobar diagram, $A=16$. The diagrams for individual isobars have been shifted vertically to eliminate the neutron-proton mass difference and the Coulomb energy, taken as $E_{\mathrm{C}}=0.60 Z(Z-1) / A^{1 / 3}$. Energies in square brackets represent the (approximate) nuclear energy, $E_{\mathrm{N}}=M(Z, A)-Z M(\mathrm{H})-N M(\mathrm{n})-E_{\mathrm{C}}$, minus the corresponding quantity for ${ }^{16} \mathrm{O}$: here M represents the atomic mass excess in MeV . Levels which are presumed to be isospin multiplets are connected by dashed lines.

References

(Closed 31 December 1992)

1959AJ76 F. Ajzenberg and T. Lauritsen, Nucl. Phys. 11 (1959) 1
1970 AD01 E.G. Adelberger, A.V. Nero and A.B. McDonald, Nucl. Phys. A143 (1970) 97
1970AH02 J. Ahrens, H. Borchert, K.-H. Czock, D. Mehlig and B. Ziegler, Phys. Lett. B31 (1970) 570

1970DU04 J.R. Duray and C.P. Browne, Phys. Rev. C1 (1970) 776
1971 AJ02 F. Ajzenberg-Selove, Nucl. Phys. A166 (1971) 1
1971 BO02 W. Bohne, H. Homeyer, H. Lettau, H. Morgenstern, J. Scheer and F. Sichelschmidt, Nucl. Phys. A160 (1971) 257

1974 TH01 C. Thibault and R. Klapisch, Phys. Rev. C9 (1974) 793
1976 AL02 D.E. Alburger and D.H. Wilkinson, Phys. Rev. C13 (1976) 835
1977AJ02 Ajzenberg-Selove, Nucl. Phys. A281 (1977) 1
1977CH16 S.H. Chew, Nucl. Phys. A283 (1977) 445
1977 CH19 S.H. Chew, J. Lowe, J.M. Nelson and A.R. Barnett, Nucl. Phys. A286 (1977) 451
1977MA1B Martz et al, in Tokyo, Contrib. Papers (1977) 177
1978 CH09 S.H. Chew, J. Lowe, J.M. Nelson and A.R. Barnett, Nucl. Phys. A298 (1978) 19
1978 CH19 S.H. Chew and J. Lowe, Nucl. Phys. A306 (1978) 125
1978 FO19 H.T. Fortune, R. Middleton and O.M. Bilaniuk, J. Phys. (London) G4 (1978) L181
1978 FO27 H.T. Fortune, R. Middleton and O.M. Bilaniuk, Phys. Rev. C18 (1978) 1920
$1978 G U 05$ P. Guichon, M. Giffon, J. Joseph, R. Laverriere and C. Samour, Z. Phys. A285 (1978) 183
$1978 G U 07$ P.A.M. Guichon, M. Giffon and C. Samour, Phys. Lett. B74 (1978) 15
1978 KE06 G.J. KeKelis, M.S. Zisman, D.K. Scott, R. Jahn, D.J. Vieira, J. Cerny and F. Ajzenberg-Selove, Phys. Rev. C17 (1978) 1929
1978 KI01 J.C. Kim, R.S. Hicks, R. Yen, I.P. Auer, H.S. Caplan and J.C. Bergstrom, Nucl. Phys. A297 (1978) 301
1978KU1A K. Kubodera, J. Delorme and M. Rho, Phy. Rev, Lett. 40 (1978) 755
1978OC01 W.J. O’Connell and S.S. Hanna, Phys. Rev. C17 (1978) 892
1979 CL10 P.D. Clark, A. Johnston and T.R. Ophel, Aust. J. Phys. 32 (1979) 283
1979GU06 P. Guichon, B. Bihoreau, M. Giffon, A. Goncalves, J. Julien, L. Roussel and C. Samour, Phys. Rev. C19 (1979) 987

1979 KO26 L. Koester, K. Knopf and W. Waschkowski, Z. Phys. A292 (1979) 95
1979 SA29 S.J. Sanders, L.M. Martz, P.D. Parker, Phys. Rev. C20 (1979) 1743
1979 VE02 E. Ventura, J.R. Calarco, C.C. Chang, E.M. Diener, D.G. Mavis, S.S. Hanna and G.A. Fisher, Phys. Rev. C19 (1979) 1705
1980 BU15 G.R. Burleson, G.S. Blanpied, G.H. Daw, A.J. Viescas, C.L. Morris, H.A. Thiessen, S.J. Greene, W.J. Braithwaite, W.B. Cottingame, D.B. Holtkamp et al, Phys. Rev. C22 (1980) 1180

1980 CU08 A. Cunsolo, A. Foti, G. Imme, G. Pappalardo, G. Raciti and N. Saunier, Phys. Rev. C21 (1980) 2345

1980HO13 D.R. Holtkamp, W.J. Braithwaite, W. Cottingame, S.J. Greene, R.J. Joseph, C.F. Moore, C.L. Morris, J. Piffaretti, E.R. Siciliano, H.A. Thiessen et al, Phys. Rev. Lett. 45 (1980) 420

1981 LI23 P.W. Lisowski, R.C. Byrd, G. Mack, W. Tornow, R.L. Walter, T.B. Clegg and F.D. Santos, Phys. Rev. C24 (1981) 1852
1981MUZQ S.F. Mughabghab, M. Divadeenam and N.E. Holden, Neutron Cross Sections 1A (1981) $\mathrm{Z}=1-60$

1981 OV02 D. Overway, J. Janecke, F.D. Becchetti, C.E. Thorn and G. Kekelis, Nucl. Phys. A366 (1981) 299

1981 SA07 A.M. Sandorfi, M.T. Collins, D.J. Millener, A.M. Nathan and S.F. LeBrun, Phys. Rev. Lett. 46 (1981) 884

1981 TO16 I.S. Towner and F.C. Khanna, Nucl. Phys. A372 (1981) 331
1982AJ01 F. Ajzenberg-Selove, Nucl. Phys. A375 (1982) 1
1982 AR20 K.P. Artemov, V.Z. Goldberg, I.P. Petrov, V.P. Rudakov, I.N. Serikov and V.A. Timofeev, Yad. Fiz. 36 (1982) 1345; Sov. J. Nucl. Phys. 36 (1982) 779
1982AV1A Averyanoy, Golubev and Sadovi, Yad. Fiz. 35 (1982) 833; Sov. J. Nucl. Phys. 35 (1982) 484

1982 FA06 A. Fazely, B.D. Anderson, M. Ahmad, A.R. Baldwin, A.M. Kalenda, R.J. McCarthy, J.W. Watson, R. Madey, W. Bertozzi, T.N. Buti et al, Phys. Rev. C25 (1982) 1760; Erratum Phys. Rev. C26 (1982) 746
1982KA12 O. Karban, A.K. Basak, P.M. Lewis and S. Roman, Phys. Lett. B112 (1982) 433
1982KA30 K.V. Karadzhev, V.I. Manko, A.N. Nersesyan, L.V. Chulkov, M. Petrascu, K. Borcha, A. Butsa and M. Petrovici, Yad. Fiz. 36 (1982) 308

1982 MA25 G. Mairle, G.J. Wagner, P. Grabmayr, K.T. Knopfle, Liu Ken Pao, H. Riedesel, K. Schindler, V. Bechtold, L. Friedrich and P. Ziegler, Nucl. Phys. A382 (1982) 173
1982 NE04 G.A. Needham, F.P. Brady, D.H. Fitzgerald, J.L. Romero, J.L. Ullmann, J.W. Watson, C. Zanelli, N.S.P. King and G.R. Satchler, Nucl. Phys. A385 (1982) 349

1982OL01 J.W. Olness, E.K. Warburton, D.E. Alburger, C.J. Lister and D.J. Millener, Nucl. Phys. A373 (1982) 13
1982 RE06 A. Redder, H.W. Becker, H. Lorenz-Wirzba, C. Rolfs, P. Schmalbrock, H.P. Trautvetter, Z. Phys. A305 (1982) 325
1982 SH23 E.B. Shera, Phys. Rev. C26 (1982) 2321
1982VE04 W.J. Vermeer and A.R. Poletti, J. Phys. (London) G8 (1982) 743
1982 VE13 J. Vernotte, G. Berrier-Ronsin, J. Kalifa and R. Tamisier, Nucl. Phys. A390 (1982) 285
1982 WE16 D. West and A.C. Sherwood, Ann. Nucl. Energy 9 (1982) 551
1983 AJ01 F. Ajzenberg-Selove, Nucl. Phys. A392 (1983) 1; Errata Nucl. Phys. A413 (1984) 168
1983ANZQ Y. Ando, M. Uno and M. Yamada, JAERI-M-83-025 (1983)
1983 AR12 K.P. Artemov, V.Z. Goldberg, B.I. Islamov, I.P. Petrov, V.P. Rudakov, I.N. Serikov and V.A. Timofeev, Yad. Fiz. 37 (1983) 1086; Sov. J. Nucl. Phys. 37 (1983) 643
1983 BY03 R.C. Byrd, W. Tornow, P.W. Lisowski, K. Murphy and R.l. Walter, Nucl. Phys. A410 (1983) 29
$1983 G A 03$ C.A. Gagliardi, G.T. Garvey, N. Jarmie and R.G.H. Robertson, Phys. Rev. C27 (1983) 1353
$1983 G A 18$ C.A. Gagliardi, G.T. Garvey, J.R. Wrobel and S.J. Freedman, Phys. Rev. C28 (1983) 2423

1983 IN02 C.H.Q. Ingram, P.A.M. Gram, J. Jansen, R.E. Mischke, J. Zichy, J. Bolger, E.T. Boschitz, G. Probstle and J. Arvieux, Phys. Rev. C27 (1983) 1578
1983 KE06 K.W. Kemper, G.G. Shute, C.H. Atwood, L.K. Fifield and T.R. Ophel, Nucl. Phys. A405 (1983) 348
1983KOZD S.N. Kondratev, I.Yu. Lobach, Yu.N. Lobach, S.B. Rakitin, V.D. Sklyarenko and V.V. Tokarevsky, in Moscow (1983) 326
1983KU14 G. Kuchler, A. Richter, E. Spamer, W. Steffen and W. Knupfer, Nucl. Phys. A406 (1983) 473
$1983 L E 25$ R. Leavitt, H.C. Evans, G.T. Ewan, H.-B. Mak, R.E. Azuma, C. Rolfs and K.P. Jackson, Nucl. Phys. A410 (1983) 93
1983SCZR L.A. Schaller, P. Bergem, M. Boschung, T.Q. Phan, G. Piller, A. Ruetschi, L. Schellenberg and H. Schneuwly, Bull. Amer. Phys. Soc. 28 (1983) 997, EC11
1983 SN03 K.A. Snover, E.G. Adelberger, P.G. Ikossi and B.A. Brown, Phys. Rev. C27 (1983) 1837

1983WA29 J.W. Watson, B.D. Anderson, A.R. Baldwin, C. Lebo, B. Flanders, W. Pairsuwan, R. Madey and C.C. Foster, Nucl. Instr. Meth. 215 (1983) 413
1983WO01 C.J. Woodward, R.E. Tribble and D.M. Tanner, Phys. Rev. C27 (1983) 27

1984AM04 K. Amos, W. Bauhoff, I. Morrison, S.F. Collins, R.S. Henderson, B.M. Spicer, G.G. Shute, V.C. Officer, D.W. Devins, D.L. Friesel et al, Nucl. Phys. A413 (1984) 255
1984 AS03 J. Asher, D.W. Bennett, H.A. Doubt, M.A. Grace, T.J. Moorhouse and B.J. Murphy, J. Phys. G10 (1984) 1079

1984 BI03 J. Billowes, E.G. Adelberger, O. Avila, N.A. Jelley and W.R. Kolbl, Nucl. Phys. A413 (1984) 503

1984 BR03 F.P. Brady, G.A. Needham, J.L. Ullmann, C.M. Castaneda, T.D. Ford, N.S.P. King, J.L. Romero, M.L. Webb, V.R. Brown and C.H. Poppe, J. Phys. G10 (1984) 363

1984 DA18 S.E. Darden, S. Sen, G. Murillo, M. Fernandez, J. Ramirez, A. Galindo, P.L. Jolivette and B.P. Hichwa, Nucl. Phys. A429 (1984) 218
1984 DE53 P. De Bievre, M. Gallet, N.E. Holden and I.L. Barnes, J. Phys. Chem. Ref. Data 13 (1984) 809

1984GA1A Garvey, Proc. Int. Symp. at. Osaka (1984) 193
1984 HO17 K. Hosono, M. Fujiwara, K. Hatanaka, H. Ikegami, M. Kondo, N. Matsuoka, T. Saito, S. Matsuki, K. Ogino and S. Kato, Phys. Rev. C30 (1984) 746

1984 ST10 W.A. Sterrenburg, S. Brandenburg, J.H. Van Dijk, A.G. Drentje, M.B. Greenfield, M.N. Harakeh, H. Riezebos, H. Sakai, W. Segeth, S.Y. Van Der Werf et al, Nucl. Phys. A420 (1984) 257
1984VA06 A.G.M. van Hees and P.W.M. Glaudemans, Z. Phys. A315 (1984) 223
1984 WA07 E.K. Warburton, D.E. Alburger and D.J. Millener, Phys. Rev. C29 (1984) 2281
1985AD1A Adelberger and Haxton, Ann. Rev. Nucl. Part. Sci. 35 (1985) 501
1985BE1A Beckerman, Phys. Rep. 129 (1985) 145
1985BE31 R. Bertini, P. Birien, K. Braune, W. Bruckner, G. Bruge, H. Catz, A. Chaumeaux, J. Ciborowski, H. Dobbeling, J.M. Durand et al, Phys. Lett. B158 (1985) 19
1985BLZY L.C. Bland, P.H. Kutt, H.T. Fortune, R.T. Kouzes and R. Sherr, Bull. Amer. Phys. Soc. 30 (1985) 1163, GX22b
1985CA41 G.R. Caughlan, W. A. Fowler, M.J. Harris and B.A. Zimmerman, At. Data Nucl. Data Tables 32 (1985) 197
1985GO1A Goncharova, Kissener and Eramzhyan, Sov. J. Part. Nucl. 16 (1985) 337
1985GR1A Grenacs, Ann. Rev. Nucl. Part. Sci. 35 (1985) 455
1985HA01 N.H. Hamann. Nucl. Phys. A433 (1985) 198
1985HA22 L.A. Hamel, L. Lessard, H. Jeremie and J. Chauvin, Z. Phys. A321 (1985) 439
$1985 H E 08$ A.R. Heath and G.T. Garvey, Phys. Rev. C31 (1985) 2190
1985HY1A Hyde-Wright, Ph.D. Thesis (1985) 1
$1985 J A 17$ R.A. Jarjis. Nucl. Instr.Meth. Phys. Res. B12 (1985) 331

1985KH10 H.M. Khalil, M.M. Shalaby and M. Abd El-Keriem, Fizika (Zagreb) 17 (1985) 465
1985KR1A Krappe and Rossner, Proc. Int. Wkshp. in Berlin (1985) 215
1985 LA03 M. Langevin, E. Quiniou, M. Bernas, J. Galin, J.C. Jacmart, F. Naulin, F. Pougheon, R. Anne, C. Detraz, D. Guerreau, D. Guillemaud-Mueller and A.C. Mueller, Phys. Lett. B150 (1985) 71

1985MO10 R. Moreh, W.C. Sellyey, D. Sutton and R. Vodhanel, Phys. Rev. C31 (1985) 2314
1985 PO10 N.A.F.M. Poppelier, L.D. Wood and P.W.M. Glaudemans, Phys. Lett. B157 (1985) 120

1985SH1A K.V. Shitikova, Fiz. Elem. Chastits At. Yadra 16 (1985) 824; Sov. J. Part. Nucl. 16 (1985) 364

1985TA1A Taam, Ann. Rev. Nucl. Part. Sci. 35 (1985) 1
1985VA1A van der Werf, Harakeh and Sterrenburg, KVI-582 (1985)
1985WA02 A.H. Wapstra and G. Audi, Nucl. Phys. A432 (1985) 1
1986 AB06 A.Y. Abul-Magd, W.A. Friedman and J. Hufner, Phys. Rev. C34 (1986) 113
1986AJ01 F. Ajzenberg-Selove, Nucl. Phys. A449 (1986) 1
1986AJ04 F. Ajzenberg-Selove, Nucl. Phys. A460 (1986) 1
1986 AL22 A. Altman, D. Ashery, E. Piasetzky, J. Lichtenstadt, A.I. Yavin, W. Bertl, L. Felawka, H.K. Walter, R.J. Powers, R.G. Winter et al, Phys. Rev. C34 (1986) 1757

1986AL25 K. Aleklett, W. Loveland, T.T. Sugihara, A.N. Behkami, D.J. Morrissey, Li Wenxin, Wing Kot and G.T. Seaborg, Phys. Scr. 34 (1986) 489
1986ALZN S.C. Allcock, W.D.M. Rae, P.R. Keeling, S. Marsh, A.E. Smith, B.R. Fulton and D.W. Banes, Proc. Intern. Nucl. Phys. Conf., Harrogate, U.K. (1986) 46; B20
1986AN07 M.S. Antony, J. Britz and A. Pape, At. Data Nucl. Data Tables 34 (1986) 279
1986AN08 A.N. Antonov, Chr.V. Christov and I.Zh. Petkov, Nuovo Cim. A91 (1986) 119
1986AN18 M.V. Andres, M. Lozano, M. Barranco, M. Pi, X. Vinas and K.A. Gridnev, Nucl. Phys. A455 (1986) 561
1986AN1E B.D. Anerson, J.W. Watson and R. Madey, AIP Conf. Proc. 142 (1986) 155
1986AN30 P.R. Andrews, G.G. Shute, B.M. Spicer, S.F. Collins, V.C. Officer, J.M. Wastell, H. Nann, D.W. Devins, Q. Li, W.P. Jones et al, Nucl. Phys. A459 (1986) 317

1986ANZM G.S. Anagnostatos, Proc. Int. Nucl. Phys. Conf., Harrogate, U.K. (1986) 357; C170
1986 AR04 K.P. Artemov, M.S. Golovkov, V.Z. Goldberg, I.P. Petrov, V.P. Rudakov, I.N. Serikov and V.A. Timofeev, Yad. Fiz. 43 (1986) 529; Sov. J. Nucl. Phys. 43 (1986) 335

1986AR1A Artemov et al, in Kharkov (1986) 376

1986AV1A V.V. Avdeichikov, A.I. Bogdanov, V.A. Budilov, N.K. Zhidkov, N.L. Gorshkova, A. Kotus, Yu.A. Murin, V.A. Nikitin, P.V. Nomokonov and M.D. Traikova, Yad. Fiz. 44 (1986) 440; Sov. J. Nucl. Phys. 44 (1986) 282
$1986 A Y 01$ N.Y. Ayoub, J. Phys. (London) G12 (1986) 859
1986BA1C Baer and Miller, Comments Nucl. and Part. Phys. 15 (1986) 269
1986BA1D Barrette, J. Phys. (France) 47 (1986) C4
1986BA1E Baur and Bertulani, Phys. Rev. C34 (1986) 1654
1986BA1H Bando, Czech. J. Phys. 36 (1986) 915
1986 BA50 G. Baur, C.A. Bertulani and H. Rebel, Nucl. Phys. A458 (1986) 188
1986BA69 D. Baye, Nucl. Phys. A460 (1986) 581
1986 BA78 J. Bang, F.A. Gareev, N.I. Pyatov, S.N. Ershov and S.A. Fayans, Phys. Scr. 34 (1986) 541

1986 BA80 A. Barbadoro, D. Consolaro, F. Pellegrini, L. Taffara, D. Trivisonno, M. Bruno and I. Gabrielli, Nuovo Cim. 95A (1986) 197

1986BE1F Berge and Amos, Proc. 11th Ainse Nucl. Phys. Conf. at Melbourne (1986) 19
1986BE22 O. Benhar and F. Cleri, Phys. Rev. C34 (1986) 1134
1986BE23 O. Benhar, C. Ciofi Degliatti, S. Liuti and G. Salme, Phys. Lett. B177 (1986) 135
1986 BE35 A.V. Belozyorov, C. Borcea, Z. Dlouhy, A.M. Kalinin, R. Kalpakchieva, Nguyen Hoai Chau, Yu.Ts. Oganessian and Yu.E. Penionzhkevich, Nucl. Phys. A460 (1986) 352

1986BE42 Ya.A. Berdnikov, B.A. Likhachev, V.I. Ostroumov, G.N. Smirnov and Yu.V. Trebukhovsky, Yad. Fiz. 44 (1986) 872; Sov. J. Nucl. Phys. 44 (1986) 562

1986BI1A Bimbot et al, J. Phys. (France) 47 (1986) C4-241
1986BL04 R. Blumel and K. Dietrich, Nucl. Phys. A454 (1986) 691
1986 BL08 K. Blatt, K. Becker, B. Heck, H. Jansch, H. Leucker, D. Fick, R. Caplar, R. Butsch, D. Kramer, K.-H. Mobius et al, Phys. Rev. Lett. 57 (1986) 819

1986BO1A Boikova et al, Sov. J. Nucl. Phys. 43 (1986) 173
1986BO1B Bogdanov et al, JETP Lett. 44 (1986) 391
1986BR11 V.N. Bragin and R. Donangelo, Nucl. Phys. A454 (1986) 409
1986 BR19 V.N. Bragin, G. Pollarolo and A. Winther, Nucl. Phys. A456 (1986) 475
1986BR23 V.N. Bragin, Yad. Fiz. 44 (1986) 96; Sov. J. Nucl. Phys. 44 (1986) 61
1986BR25 M.E. Brandan, A. Menchaca-Rocha, M. Buenerd, J. Chauvin, P. DeSaintignon, G. Duhamel, D. Lebrun, P. Martin, G. Perrin and J.Y. Hostachy, Phys. Rev. C34 (1986) 1484

1986BR26 M.E. Brandan, A. Menchaca-Rocha, A. Szanto de Toledo, N. Carlin Filho, E.M. Szanto and M.M. Coimbra, J. Phys. G12 (1986) 391
1986BU02 T.N. Buti, J. Kelly, W. Bertozzi, J.M. Finn, F.W. Hersman, C. Hyde-Wright, M.V. Hynes, M.A. Kovash, S. Kowalski, R.W. Lourie et al, Phys. Rev. C33 (1986) 755

1986CA19 W.N. Catford, D.M. Pringle, D.G. Lewis, A.E. Smith, E.F. Garman, I.F. Wright and J. Lukasiak, Nucl. Instr.Meth. Phys. Res. A247 (1986) 367

1986CA24 B.O. Carragher, J. Carter, R.G. Clarkson, V. Hnizdo and J.P.F. Sellschop, Nucl. Phys. A460 (1986) 341

1986 CE04 C. Cernigoi, N. Grion, G. Pauli, R. Rui and R. Cherubini, Nucl. Phys. A456 (1986) 599

1986CH1I R.E. Chrien, AIP Conf. Proc. 150 (1986) 325
1986 CH20 A.K. Chaudhuri and B. Sinha, Nucl. Phys. A455 (1986) 169
1986CH27 C.B. Chitwood, D.J. Fields, C.K. Gelbke, D.R. Klesch, W.G. Lynch, M.B. Tsang, T.C. Awes, R.L. Ferguson, F.E. Obenshain, F. Plasil et al, Phys. Rev. C34 (1986) 858

1986CH38 A.K. Chaudhuri, Nucl. Phys. A459 (1986) 417
1986CH39 C.R. Ching, T.E.O. Ericson, T.H. Ho and W.Q. Zhao, Nucl. Phys. A459 (1986) 488
1986CH41 T. Chapuran, D.P. Balamuth, W.K. Wells, C.M. Laymon and D.P. Bybell, Phys. Rev. C34 (1986) 2358

1986CH44 Chr.V. Christov, I.I. Delchev and K.V. Shitikova, Bulg. J. Phys. 13 (1986) 26; Phys. Abs. 98405 (1986)
1986CL03 N.M. Clarke and J. Cook, Nucl. Phys. A458 (1986) 137
1986 CO15 S.G. Cooper, J. Phys. (London) G12 (1986) 371
1986CO1B Cohen, Price and Walker, in Harrogate (1986) D5
1986 DE11 B. Desplanques and S. Noguera, Phys. Lett. B173 (1986) 23
1986 DE15 P.A. Deutchman, J.W. Norbury and L.W. Townsend, Nucl. Phys. A454 (1986) 733
1986DE1E Desplanques and Noguera, in Heidelberg (1986) 344; Phys. Abs. 49226 (1987)
1986DE33 E.J.V. de Passos and M.M.B.M. de Oliveira, Phys. Rev. C34 (1986) 2298
1986DE40 J. Deng and X. Chen, Chin. J. Nucl. Phys. 8 (1986) 207; Phys. Abs. 109206 (1987)
1986 DI07 F. Di Marzio and K. Amos, Aust. J. Phys. 39 (1986) 203
1986DO06 M. Dobeli, M. Doser, L. van Elmbt, M. Schaad, P. Truol, A. Bay, J.P. Perroud and J. Imazato, Czech. J. Phys. B36 (1986) 386
1986DO1B Dover, in Harrogate (1986) 99
1986DR03 P.V. Drumm, O. Karban, A.K. Basak, P.M. Lewis, S. Roman and G.C. Morrison, Nucl. Phys. A448 (1986) 93

1986DR11 P.V. Drumm, D.F. Hebbard, T.R. Ophel, J. Nurzynski, Y. Kondo, B.A. Robson and R. Smith, Aust. J. Phys. 39 (1986) 369
1986DR1B Drumm et al, Proc. 11th Ainse Nucl. Phys. Conf. at Melbourne (1986) 44; Phys. Abs. 79304 (1986)
1986DU10 O. Dumbrajs, H. Heiselberg, A.S. Jensen, A. Miranda, G.C. Oades and J.M. Richard, Nucl. Phys. A457 (1986) 491
1986DU15 L.V. Dubar, V.S. Zaritsky, V.A. Zybin, D.Sh. Eleukenov, O.F. Nemets, L.I. Slyusarenko, V.A. Stepanenko, V.V. Tokarevsky and N.P. Yurkuts, Izv. Akad. Nauk SSSR Ser.Fiz. 50 (1986) 2034; Bull. Acad. Sci. USSR Phys. Ser. 50 (1986) 160

1986EK1A Ekuni et al, Rep. Joint Seminar on Heavy-Ion Nucl. Phys. and Nucl. Chem., JAERI (1986) 48; Phys. Abs. 35932 (1987)

1986ESZV M.A. Eswaran, Suresh Kumar, N.L. Ragoowansi and E.T. Mirgule, Proc. Int. Nucl. Phys. Conf., Harrogate, U.K., (1986) 271

1986FA1A Faessler et al, J. Phys. (France) 47 (1986) C4-111
1986FI15 Filippone, Ann. Rev. Nucl. Part. Sci. 36 (1986) 717
1986FI1A Filimonov, Czech. J. Phys. 36 (1986) 431
1986 FR10 E. Friedman and J. Lichtenstadt, Nucl. Phys. A455 (1986) 573
1986FR20 E. Friedman, G. Kalbermann and C.J. Batty, Phys. Rev. C34 (1986) 2244
1986FU1B Furnstahl, AIP Conf. Proc. 142 (1986) 376
1986FU1C Fujita et al, Rep. Joint Seminar on Heavy-Ion Nucl. Phys. and Nucl. Chem. JAERI (1986) 63; Phys. Abs. 36046 (1987)

1986FUZV H. Fujita, N. Kato, T. Tachikawa, T. Sugimitsu, K. Kimura, Y. Ikeda, H. Yamaguchi, Y. Nakajima, Y. Sugiyama, Y. Tomita et al, Proc. Int. Nucl. Phys. Conf., Harrogate, UK (1986) 317
$1986 G A 10$ G. Gaul and W. Bickel,Phys. Rev. C34 (1986) 326
1986GA13 E.N. Gazis, C.T. Papadopoulos, R. Vlastou and A.C. Xenoulis, Phys. Rev. C34 (1986) 872

1986GA14 A. Gal and L. Klieb, Phys. Rev. C34 (1986) 956
1986GA1H Gal, AIP Conf. Proc. 150 (19860 127
1986GA1P Gaarde, in Harrogate (1986) 173
1986GA24 D.L. Gay, L.C. Dennis and N.R. Fletcher, Phys. Rev. C34 (1986) 2144
1986GA31 F.A. Gareev, M. Gmitro, S.A. Goncharov, S.N. Ershov and P.P. Korovin, Izv. Akad. Nauk SSSR Ser. Fiz. 50 (1986) 865; Bull. Acad. Sci. USSR Phys. Ser. 50 (1986) 32
1986GI13 R. Gilman, H.T. Fortune, M.B. Johnson, E.R. Siciliano, H. Toki, A. Wirzba and B.A. Brown, Phys. Rev. C34 (1986) 1895

1986 GI15 S. Gilad, S. Hoibraten, W.J. Burger, G.W. Dodson, D.L. Pham, R.P. Redwine, E. Piasetzky, H.W. Baer, J.D. Bowman, F.H. Cverna et al, Phys. Rev. Lett. 57 (1986) 2637

1986GL1A Glaudemans, AIP Conf. Proc. 142 (1986) 316
1986 GM02 M. Gmitro and A.A. Ovchinnikova, Czech. J. Phys. B36 (1986) 390
$1986 G O 16$ V.Yu. Gonchar, E.V. Inopin, V.E. Mitroshin and V.N. Tarasov, Yad. Fiz. 43 (1986)1409; Sov. J. Nucl. Phys. 43 (1986) 907

1986GU05 I.S. Gulkarov and R.Kh. Vakil, Yad. Fiz. 43 (1986) 809; Sov. J. Nucl. Phys. 43 (1986) 515

1986GU1C Gupta, Malik and Sultana, in Heidelberg (1986) 55; Phys. Abs. 49468 (1987)
1986HA13 Q. Haider and F.B. Malik, J. Phys. G12 (1986) 537
1986HA1B Harvey, J. Phys. 47 (1986) C4-29
1986HA1E Harney, Richter and Weidenmuller, Rev. Mod. Phys. 58 (1986) 607
1986HA1F Haas et al, in Harrogate (1986) C184
1986HA26 R. Hausmann and W. Weise, Z. Phys. A324 (1986) 355
1986HA30 M.N. Harakeh, D.H. Dowell, G. Feldman, E.F. Garman, R. Loveman, J.L. Osborne and K.A. Snover, Phys. Lett. 176B (1986) 297
1986HA39 D. Halderson, P. Ning and R.J. Philpott, Nucl. Phys. A458 (1986) 605
1986HE1A He et al, in Harrogate (1986) C51
1986 HE26 E.F. Hefter and I.A. Mitropolsky, Nuovo Cim. A95 (1986) 63
1986 HI07 M. Hino, J. Phys. (London) G12 (1986) L255
1986HO18 R.J.W. Hodgson, Can. J. Phys. 64 (1986) 653
1986HO33 H. Horiuchi, T. Wada, K. Yabana, Prog. Theor. Phys. (Kyoto) 76 (1986) 837
1986 K003 H. Ikezoe, N. Shikazono, Y. Tomita, K. Ideno, Y. Sugiyama, E. Takekoshi, T. Tachikawa and T. Nomura, Nucl. Phys. A456 (1986) 298
1986 IS04 Y. Iseri and M. Kawai, Phys. Rev. C34 (1986) 38
1986 IS09 B.S. Ishkhanov, I.M. Kapitonov and V.I. Mokeev, Izv. Akad. Nauk SSSR Ser. Fiz. 50 (1986) 1974; Bull. Acad. Sci. USSR Phys. Ser. 50 (1986) 101

1986KA1A Kawai, Kamimura and Takesako, Prog. Theor. Phys. Suppl. 89 (1986) 118
1986KA1B M. Kamimura, M. Yahiro, Y. Iseri, Y. Sakuragi, H. Kameyama and M. Kawai, Prog. Theor. Phys. Suppl. 89 (1986) 1
1986 KE15 T.J. Kennett, W.V. Prestwich and J.S. Tsai, Nucl. Instr. Meth. Phys. Res. A247 (1986) 420

1986KH1A Khubeis, Bull. Amer. Phys. Soc. 31 (1986) 1285

1986 KI05 M. Kirchbach, Czech. J. Phys. B36 (1986) 372
1986KI1C Kim, Phys. Rev. Lett. 57 (1986) 2508
1986KI1D Kishimoto, AIP Conf. Proc. 150 (1986) 921
1986KIZW J.D. King, D. Frekers, R.E. Azuma, L. Buchmann, C. Chan, T.E. Drake, L. Lee, R. Schubank, S.S.M. Wong, X. Zhu et al, Bull. Amer. Phys. Soc. 31 (1986) 1207, AC4

1986KL06 P. Kleinwachter and I. Rotter, J. Phys. G12 (1986) 821
1986KO1E H. Koch, AIP Conf. Proc. 150 (1986) 490
1986 KO22 Th. Kohler, P. Blum, G. Buche, A.D. Hancock, H. Koch, A. Kreissl, H. Poth, U. Raich, D. Rohmann, G. Backenstoss et al, Phys. Lett. B176 (1986) 327

1986KU11 Y. Kurihara, S. Date, A. Nakamura, H. Sato, H. Sumiyoshi, K. Yoshinada, Prog. Theor. Phys. (Kyoto) 75 (1986) 1196
1986 KU15 Y. Kudo and K. Miyazaki, Phys. Rev. C34 (1986) 1192
1986KY1A Kyle et al, Bull. Amer. Phys. Soc. 31 (1986) 1204
1986KY1B Kyle et al, Phys. Rev. Lett. 52 (1986) 974
1986LA15 A.M. Lallena, J.S. Dehesa and S. Krewald, Phys. Rev. C34 (1986) 332
1986LA1C Lambert et al, Astrophys. J. Suppl. 62 (1986) 373
1986 LE16 S.-J. Lee, J. Fink, A.B. Balantekin, M.R. Strayer, A.S. Umar, P.-G. Reinhard, J.A. Maruhn and W. Greiner, Phys. Rev. Lett. 57 (1986) 2916; Erratum Phys. Rev. Lett. 59 (1987) 1171

1986LE1A Leitner et al, in Harrogate (1986) C119
1986LE22 H. Leeb and E.W. Schmid, Few-Body Systems 1 (1986) 203
1986LI13 L.C. Liu and Q. Haider, Phys. Rev. C34 (1986) 1845
1986LI1B Liu and Haider, AIP Conf. Proc. 150 (1986) 930
1986LI1C Lindgren et al, AIP Conf. Proc. 142 (1986) 133
1986LU1A Ludeking and Cotanch, AIP Conf. Proc. 150 (1986) 542
1986MA13 J.F. Mateja, A.D. Frawley, R.A. Parker and K. Sartor, Phys. Rev. C33 (1986) 1307
1986MA16 C.J. Martoff, D. Pocanic, L.W. Whitlow, S.S. Hanna, H. Ullrich, S. Cierjacks, M. Furic, T. Petkovic and H.J. Weyer, Czech. J. Phys. B36 (1986) 378

1986MA19 J.F. Mateja, A.D. Frawley, L.C. Dennis and K. Sartor, Phys. Rev. C33 (1986) 1649
1986MA1C L. Majling, J. Zofka, V.N. Fetisov and R.A. Eramzhyan, Nucl. Phys. A450 (1986) 189c

1986MA1E Matteucci, Astrophys. J. 305 (1986) L81
1986MA1J Majling et al, Czech. J. Phys. 36 (1986) 446

1986MA32 N. Matsuoka, H. Sakai, T. Saito, K. Hosono, M. Kondo, H. Ito, K. Hatanaka, T. Ichihara, A. Okihana, K. Imai et al, Nucl. Phys. A455 (1986) 413
1986MA35 C. Mahaux, H. Ngo and G.R. Satchler, Nucl. Phys. A456 (1986) 134
1986MA46 J. Mahalanabis, Nucl. Phys. A457 (1986) 477
1986MAZE H.A. Mavromatis, Proc. Int. Nucl. Phys. Conf., Harrogate, U.K., (1986) 191
1986MC10 W.J. McDonald, R.N. MacDonald, W.C. Olsen, R. Dymarz, F. Khanna, L. Antonuk, J.M. Cameron, P. Kitching, G.C. Neilson, D.M. Sheppard et al, Nucl. Phys. A456 (1986) 577

1986ME06 M.C. Mermaz, T. Suomijarvi, R. Lucas, B. Berthier, J. Matuszek, J.P. Coffin, G. Guillaume, B. Heusch, F. Jundt and F. Rami, Nucl. Phys. A456 (1986) 186
1986ME1A Melenevskii et al, in Kharkov (1986) 535
1986MEZX O. Meirav, A. Altman, E. Friedman, D.R. Gill and R.R. Johnson, Proc. Intern. Nuclear Physics Conference, Harrogate, U.K. (1986) 4

1986MI22 B. Milek and R. Reif, Nucl. Phys. A458 (1986) 354
1986MI24 K. Mikulas, K.A. Gridnev, E.F. Hefter, V.M. Semjonov and V.B. Subbotin, Nuovo Cim. A93 (1986) 135

1986MO1A Motoba, Czech. J. Phys. 36 (1986) 435
1986MO27 T. Motobayashi, H. Sakai, N. Matsuoka, T. Saito, K. Hosono, A. Okihana, M. Ishihara, S. Shimoura and A. Sakaguchi, Phys. Rev. C34 (1986) 2365

1986MU1A Musket, Bull. Amer. Phys. Soc. 31 (1986) 1294
1986NA14 J. Navarro and H. Krivine, Nucl. Phys. A457 (1986) 731
1986NA1B Namboodiri et al, J. Phys. (France) 47 (1986) C4-101
1986 NO04 S. Nozawa, K. Kubodera and H. Ohtsubo, Nucl. Phys. A453 (1986) 645
1986NU01 J. Nurzynski, D.F. Hebbard, T.R. Ophel, Y. Kondo, B.A. Robson and R. Smith, J. Phys. (London) G12 (1986) 383

1986NU1A J. Nurzynski, D.F. Hebbard, T.R. Ophel, Y. Kondo, B.A. Robson and R. Smith, Proc. 11th Ainse Nucl. Phys. Conf. at Melbourne (1986) 26; Phys. Abs. 79302 (1986)
1986 OR03 G. Orlandini, M. Traini and M. Ericson, Phys. Lett. B179 (1986) 201
1986OR1A O'reilly and Thompson, Proc. 11th Ainse Nucl. Phys. Conf. at Melbourne (1986) 56; Phys. Abs. 79251 (1986)
19860R1C Oryu, Few-Body Syst. Suppl. 1 (1986) 198
1986 OS03 E. Oset and M.J. Vicente-Vacas, Nucl. Phys. A454 (1986) 637
1986OS08 V.I. Ostroumov, I.I. Loshchakov and A.I. Vdovin, Izv. Akad. Nauk SSSR, Ser. Fiz. 50, (1986) 916; Bull. Acad. Sci. USSR, Phys. Ser. 50 (1986) 83

1986 OU01 S. Ouichaoui, H. Beaumevielle, N. Bendjaballah and A. Genoux-Lubain, Nuovo Cim. A94 (1986) 133

1986 PA10 C.T. Papadopoulos, R. Vlastou, E.N. Gazis, P.A. Assimakopoulos, C.A. Kalfas, S. Kossionides and A.C. Xenoulis, Phys. Rev. C34 (1986) 196

1986 PA 23 A. Passoja, Phys. Scr. 34 (1986) 634
1986 PE13 K.I. Pearce, N.M. Clarke, R.J. Griffiths, P.J. Simmonds, A.C. Dodd, D. Barker, J.B.A. England, M.C. Mannion and C.A. Ogilvie, J. Phys. G12 (1986) 979

1986PE1E Prtrovich, Carr and McManus, Ann. Rev. Nucl. Part. Sci. 36 (1986) 29
1986PE1G Petrascu et al, Stud. and Cercet. Fiz. 38 (1986) 825; Phys. Abs. 15221 (1987)
1986 PE22 R.J. Perry, Phys. Lett. B182 (1986) 269
1986 PL02 R. Planeta, P. Belery, J. Brzychczyk, P. Cohilis, Y. El Masri, Gh. Gregoire, K. Grotowski, Z. Majka, S. Micek, M. Szczodrak et al, Phys. Rev. C34 (1986) 512

1986 PO06 D.N. Poenaru, W. Greiner, K. Depta, M. Ivascu, D. Mazilu and A. Sandulescu, At. Data Nucl. Data Tables 34 (1986) 423
1986 PO14 M. Potokar and A. Ramsak, Phys. Rev. C34 (1986) 2338
1986QU1A Qiu, Zhang and Huang, Sci. Sin. A29 (1986) 1283; Phys. Abs. 56627 (1987)
1986RAZI W.D.M. Rae, P.R. Keeling and S.C. Allcock, Proc. Int. Nucl. Phys. Conf., Harrogate, U.K., (1986) 227

1986RO1C Rondon et al, in Santa Fe (1985) 763
1986 RO23 D. Rohmann, H. Barth, A.D. Hancock, H. Koch, Th. Kohler, A. Kreissl, H. Poth, U. Raich, A. Wolf, L. Tauscher et al, Z. Phys. A325 (1986) 261
1986 RO26 I. Rotter, J. Phys. G12 (1986) 1407
1986RYZZ L.J. Rybarcyk, E. Sugarbaker, T.C. Rinckel and D.G. Marchlenski, Bull. Amer. Phys. Soc. 31 (1986) 1209, AD4

1986SA1D Sakuragi, Yahiro and Kamimura, Prog. Theor. Phys. Suppl. 89 (1986) 136
1986SA24 C. Samanta, N.S. Chant, P.G. Roos, A. Nadasen, J. Wesick and A.A. Cowley, Phys. Rev. C34 (1986) 1610

1986 SA25 S.J. Sanders, R.R. Betts, I. Ahmad, K.T. Lesko, S. Saini, B.D. Wilkins, F. Videbaek and B.K. Dichter, Phys. Rev. C34 (1986) 1746

1986 SA30 H. Sato and Y. Okuhara, Phys. Rev. C34 (1986) 2171
1986SC28 C.J.S. Scholz, L. Ricken and E. Kuhlmann, Z. Phys. A325 (1986) 203
1986SC29 H.R. Schmidt, S.B. Gazes, Y. Chan, R. Kamermans and R.G. Stokstad, Phys. Lett. B180 (1986) 9

1986SCZX R.A. Schumacher, P. Amaudruz, Q. Ingram, U. Sennhauser, H. Breuer, N.S. Chant, A. Feldman, B.S. Flanders, F. Khazaie, D.J. Mack et al, Bull. Amer. Phys. Soc. 31 (1986) 1220, CC1

1986 SH10 S. Shimoura, A. Sakaguchi, T. Shimoda, T. Fukuda, K. Ogura, K. Katori and H. Ogata, Nucl. Phys. A452 (1986) 123

1986SH1F Shen et al, Chin. Phys. 6 (1986) 80
1986 SH25 B. Shivakumar, D. Shapira, P.H. Stelson, M. Beckerman, B.A. Harmon, K. Teh and D.A. Bromley, Phys. Rev. Lett. 57 (1986) 1211

1986SHZY B. Shivakumar, D. Shapira, P.H. Stelson, M. Beckerman, B.A. Harmon, K. Teh and D.A. Bromley, Bull. Amer. Phys. Soc. 31 (1986) 1111, DZ3

1986 SI11 E.R. Siciliano, M.D. Cooper, M.B. Johnson and M.J. Leitch, Phys. Rev. C34 (1986) 267
1986SM1A Smith and Lambert, Astrophys. J. 311 (1986) 843
1986SN1B Snover, Ann Rev. Nucl. Part. Sci. 36 (1986) 545
1986 SO10 L.G. Sobotka, D.G. Sarantites, H. Puchta, F.A. Dilmanian, M. Jaaskelainen, M.L. Halbert, J.H. Barker, J.R. Beene, R.L. Ferguson, D.C. Hensley et al, Phys. Rev. C34 (1986) 917

1986 ST13 M.V. Stoitsov, I.Zh. Petkov and S.S. Dimitrova, Izv. Akad. Nauk SSSR Ser. Fiz. 50 (1986) 2071

1986ST1A Steadman and Rhoades-Brown, Ann. Rev. Nucl. Part. Sci. 36 (1986) 649
1986 SU06 Y. Suzuki and K.T. Hecht, Nucl. Phys. A455 (1986) 315
1986 SU13 K. Suzuki and R. Okamoto, Prog. Theor. Phys. (Kyoto) 75 (1986) 1388
1986 SU16 K. Suzuki and R. Okamoto, Prog. Theor. Phys. (Kyoto) 76 (1986) 127
1986SU1G Sugimitsu et al, JAERI (1986) 74
1986TH1A Thomas et al, 11th Ainse Nucl. Phys. Conf. at Melbourne (1986) 41; Phys. Abs. 79303 (1986)

1986 TK01 V.N. Tkachev, Izv. Akad. Nauk SSSR Ser. Fiz. 50 (1986) 1949; Bull. Acad. Sci. USSR Phys. Ser. 50 (1986) 77
1986 TO14 M. Tohyama and U. Mosel, Nucl. Phys. A459 (1986) 711
1986 TO16 F. Tondeur, D. Berdichevsky and M. Farine, Z. Phys. A325 (1986) 405
1986TO1A Towner, Czech. J. Phys. 36 (1986) 360
1986TO1D Towner, Ann. Rev. Nucl. Part. Sci. 36 (1986) 115
1986TOZQ I.S. Towner, in Harrogate (1986) 456
1986TR1C Truran and Livio, Astrophys. J. 308 (1986) 721
1986UM02 A.S. Umar, M.R. Strayer and P.-G. Reinhard, Phys. Rev. Lett. 56 (1986) 2793

1986 VA18 C.P.M. van Engelen, E.A. Bakkum, R.J. Meijer and R. Kamermans, Z. Phys. A324 (1986) 121

1986VA23 C.P.M. van Engelen, E.A. Bakkum, R.J. Meijer and R. Kamermans, Nucl. Phys. A457 (1986) 375

1986 VD04 A.I. Vdovin, I.G. Golikov, A.V. Golovin, M.N. Zhukov and I.I. Loshchakov, Izv. Akad. Nauk SSSR, Ser. Fiz. 50 (1986) 936; Bull. Acad. Sci. USSR, Phys. Ser. 50 (1986) 103

1986VI08 A. Vitturi and C.H. Dasso, Nucl. Phys. A458 (1986) 157
1986 VO07 N.A. Voinova-Elseeva and I.A. Mitropolsky, Izv. Akad. Nauk SSSR, Ser. Fiz. 50 (1986) 14; Bull. Acad. Sci. USSR, Phys. Ser. 50 (1986) 12

1986 VO10 K.F. von Reden, W.W. Daehnick, S.A. Dytman, R.D. Rosa, J.D. Brown, C.C. Foster, W.W. Jacobs and J.R.Comfort, Phys. Rev. C34 (1986) 375

1986WA1U Wada and Horiuchi, J. Phys. Soc. Jpn. Suppl. 55 (1986) 736
1986WAZM T. Wada, in Harrogate (1986) p. 376
1986WH03 C.S. Whisnant, Phys. Rev. C34 (1986) 262
1986WO1A S.E. Woosley and T.A. Weaver, Ann. Rev. Astron. Astrophys. 24 (1986) 205
1986WU03 Huachuan Wu, Chin. J. Nucl. Phys. 8 (1986) 147
1986 YA16 N. Yamaguchi, S. Nagata and J. Michiyama, Prog. Theor. Phys. 76 (1986) 1289
1986YE1A Ye et al, Chin. Phys. 6 (1986) 139
1986ZA06 V.P. Zavarzina and A.V. Stepanov, Yad. Fiz. 43 (1986) 854; Sov. J. Nucl. Phys. 43 (1986) 543

1986ZA1A Zaikov et al, Nucl. Instr. Meth. Phys. Res. B17 (1986) 97
1986ZE1B Zelenskaya et al, in Kharkov (1986) 335
1986ZI08 F. Zijderhand and C. van der Leun, Nucl. Phys. A460 (1986) 181
1987 AB03 H. Abele, H.J. Hauser, A. Korber, W. Leitner, R. Neu, H. Plappert, T. Rohwer, G. Staudt, M. Strasser, S. Welte et al, Z. Phys. A326 (1987) 373
1987 AB21 A. Abzouzi, M.S. Antony and V.B. Ndocko Ndongue, Nuovo Cim. A97 (1987) 753
1987AD04 S. Adachi and H.V. von Geramb, Nucl. Phys. A470 (1987) 461
1987AD1A Adams and Tylka, Bull. Amer. Phys. Soc. 32 (1987) 1066
1987AG1A Agakishiev et al, Sov. J. Nucl. Phys. 45 (1987) 852
1987AJ02 F. Ajzenberg-Selove, Nucl. Phys. A475 (1987) 1
1987AL1B Altas, Astrophys. Space Sci. 134 (1987) 85
1987AM1A Amandruz et al, SIN Newsl. 19 (1987) 45

1987AN1A R. Anne, D. Bazin, A.C. Mueller, J.C. Jacmart and M. Langevin, Nucl. Instrum. Meth. Phys. Res. A257 (1987) 215
1987AN1C Antonchik et al, Sov. J. Nucl. Phys. 46 (1987) 790
1987AN20 M Kh. Anikina, A.U. Abdurakhimov, S.A. Avramenko, V.D. Aksinenko, G.L. Vardenga, V.D. Volodin, N.S. Glagoleva, A.I. Golokhvastov, A.G. Grachev, E.A. Dement'ev et al, the Dubna-Bucharest-Warsaw-Tbilisi-Alma-Ata-Moscow Collaboration SKM-200, Sov. J. Nucl. Phys. 45 (1987) 1040; Yad. Fiz. 45 (1987) 1680

1987AR1C Arnould, Phil. Trans. Roy. Soc. (London) 323 (1987) 251
1987 AR 28 K.P. Artemov, M.S. Golovkov, V.Z. Goldberg, V.P. Rudakov, I.N. Serikov and V.A. Timofeev, Yad. Fiz. 46 (1987) 1331; Sov. J. Nucl. Phys. 46 (1987) 782

1987AS05 H.J. Assenbaum, K. Langanke and C. Rolfs, Z. Phys. A327 (1987) 461
1987 AV08 I.K. Averyanov and A.I. Golubev, Yad. Fiz. 46 (1987) 1403; Sov. J. Nucl. Phys. 46 (1987) 828

1987AZZY S.M. Aziz, G.T. Emery, L.C. Bland, W.W. Jacobs, E. Korkmaz, H. Nann, P.W. Park, J. Templon and J.D. Brown, Bull. Amer. Phys. Soc. 32 (1987) 1578

1987AZZZ S.M. Aziz, A.D. Bacher, L.C. Bland, G.T. Emery, W.W. Jacobs, E. Korkmaz, H. Nann, P.W. Park, J. Templon, P.L. Walden et al, Bull. Amer. Phys. Soc. 32 (1987) 1602

1987BA01 D. Bandyopadhyay, S.R. Samaddar, K. Krishan and J.N. De, Nucl. Phys. A462 (1987) 587

1987BA02 H.W. Barz, J.P. Bondorf and H. Schulz, Nucl. Phys. A462 (1987) 742
1987 BA10 J.J. Bai, R.Y. Cusson, J. Wu, P.-G. Reinhard, H. Stocker, W. Greiner and M.R. Strayer, Z. Phys. A326 (1987) 269

1987BA18 C.J. Batty, Phys. Lett. B189 (1987) 393
1987BA1T Bachelier et al, in Panic (1987) 268
1987BA21 C.J. Batty, M. Fidecaro and H.B. Prosper, Nucl. Phys. A466 (1987) 473
1987BA31 H.W. Barz, J.P. Bondorf, R. Donangelo, H. Schulz and K. Sneppen, Phys. Lett. B191B (1987) 232

1987 BA35 D. Baye, Phys. Rev. Lett. 58 (1987) 2738
1987BA38 G.J. Balster, P.C.N. Crouzen, P.B. Goldhoorn, R.H. Siemssen and H.W. Wilschut, Nucl. Phys. A468 (1987) 93

1987BA50 W. Bauer, Nucl. Phys. A471 (1987) 604
1987BA53 F.C. Barker, Aust. J. Phys. 40 (1987) 25
1987 BA71 D.P. Balamuth, K.D. Brown, T. Chapuran and C.M. Laymon, Phys. Rev. C36 (1987) 2235

1987BA83 O.Yu. Balashova, N.S. Zelenskaya, A.A. Ovchinnikova and I.B. Teplov, Izv. Akad. Nauk SSSR, Ser. Fiz. 51 (1987) 1992; Bull. Acad. Sci. USSR, Phys. Ser. 51 (1987) 106

1987BE1C Belyaeva and Zelenskaya, in Jurmala (1987) 464
1987BE1D Bertsch and Esbensen, Rep. Prog. Phys. 50 (1987) 607
1987BE1G Berg and Kneissl, Ann. Rev. Nucl. Part. Sci. 37 (1987) 33
1987BE1H B. Bezard, J.P. Baluteau, A. Marten and N. Coron, ICARUS 72 (1987) 623
1987BE26 G. Bendiscioli, A. Rotondi, P. Salvini and A. Zenoni, Nucl. Phys. A469 (1987) 669
1987 BE58 B. Berthier, R. Boisgard, J. Julien, J.M. Hisleur, R. Lucas, C. Mazur, C. Ng, M. Ribrag and C. Cerruti, Phys. Lett. B193 (1987) 417

1987BEZY C. Beck, D.G. Kovar, D.J. Henderson, R.V.F. Janssens, W.C. Ma, S.J. Sanders, M. Vineyard, T.F. Wang, B.D. Wilkins, T. Moog et al, Bull. Amer. Phys. Soc. 32 (1987) 1078

1987BL18 R. Blumel and K. Dietrich, Nucl. Phys. A471 (1987) 453
1987BL20 P.G. Blunden and M.J. Iqbal, Phys. Lett. B196 (1987) 295
1987BLZZ L.C. Bland, J. Breeden, H.T. Fortune, J.D. Zumbro, R. Gilman, M. Dwyer, S. Mordechai, M. Bryan, C.F. Moore and C.L. Morris, Bull. Amer. Phys. Soc. 32 (1987) 1118, KE4
1987 BO11 A. Bouyssy, J.-F. Mathiot, Nguyen Van Giai and S. Marcos, Phys. Rev. C36 (1987) 380

1987 BO16 N. Bordes, G. Blondiaux, C.J. Maggiore, M. Valladon, J.L. Debrun, R. Coquille and M. Gauneau, Nucl. Instrum. Methods Phys. Res. B24-25 (1987) 722

1987BO1B Bond and Luck, Astrophys. J. 312 (1987) 203
1987BO1K Bock et al, Mod. Phys. Lett. A2 (1987) 721
1987 BO23 R. Bougault, D. Horn, C.B. Chitwood, D.J. Fields, C.K. Gelbke, D.R. Klesch, W.G. Lynch, M.B. Tsang and K. Kwiatkowski, Phys. Rev. C36 (1987) 830
1987BO42 M.C. Bosca, E. Buendia and R. Guardiola, Phys. Lett. B198 (1987) 312
1987 BO54 S. Boffi, C. Giusti, F.D. Pacati and F. Cannata, Nuovo Cim. A98 (1987) 291
1987BR20 J. Brzychczyk, K. Grotowski, Z. Majka, S. Micek, R. Planeta, D. Fabris, K. Hagel, J.B. Natowitz, G. Nebbia, P. Belery et al, Phys. Lett. B194 (1987) 473

1987BRZW M.E. Brandan, Bull. Amer. Phys. Soc. 32 (1987) 1542
1987BU06 V.P. Bugrov, S.G. Kadmensky, V.P. Markushev and L.A. Sliv, Yad. Fiz. 45 (1987) 360; Sov. J. Nucl. Phys. 45 (1987) 226
1987BU07 M. Burgel, H. Fuchs, H. Homeyer, G. Ingold, U. Jahnke and G. Thoma, Phys. Rev. C36 (1987) 90

1987 BU20 N.A. Burgov, A.E. Buklei, M.K. Vlasov, L.S. Vorobev, S.A. Gerzon, Yu.T. Kiselev, G.A. Leksin, A.N. Martemyanov, V.L. Novikov, N.A. Pivnyuk et al, Yad. Fiz. 45 (1987) 743; Sov. J. Nucl. Phys. 45 (1987) 463

1987 BU27 N.T. Burtebaev, A.D. Duisebaev, V.S. Sadkovskii and G.A. Feofilov, Izv. Akad. Nauk SSSR Ser. Fiz. 51 (1987) 615; Bull. Acad. Sci. USSR Phys. Ser. 51 (1987) 191
$1987 C A 16$ M. Cavinato, M. Marangoni and A.M. Saruis, Z. Phys. A327 (1987) 193
1987CA1E Castel and Zamick, Phys. Rep. 148 (1987) 217
1987 CA 27 M. Casas, J. Martorell, E. Moya de Guerra, J. Treiner, Nucl. Phys. A473 (1987) 429
1987CH10 R.E. Chrien, E.V. Hungerford and T. Kishimoto, Phys. Rev. C35 (1987) 1589
1987CH11 Ph. Chomaz, Nguyen Van Giai and S. Stringari, Phys. Lett. B189 (1987) 375
1987CH1D Chrien et al, Bull. Amer. Phys. Soc. 32 (1987) 1560
1987 CO07 J. Cook, Nucl. Phys. A465 (1987) 207
1987 CO09 J. Cohen, M.W. Price and G.E. Walker, Phys. Lett. B188 (1987) 393
1987CO1G Cohen, in Panic (1987) 584
1987 CO24 G. Co, A.M. Lallena and T.W. Donnelly, Nucl. Phys. A469 (1987) 684
1987 CO25 E.D. Cooper, K.H. Hicks and B.K. Jennings, Nucl. Phys. A470 (1987) 523
1987 CO26 T.D. Cohen, J.W. Van Orden and A. Picklesimer, Phys. Rev. Lett. 59 (1987) 1267
1987CO31 P.D. Cottle and K.W. Kemper, Phys. Rev. C36 (1987) 2034
1987CU1A Cummings and Stone, Bull. Amer. Phys. Soc. 32 (1987) 1066
1987CU1B Cugnon, Jasselette and Vandermeulen, Nucl. Phys. A470 (1987) 558
1987DA02 R. da Silveira and Ch. Leclercq-Willain, J. Phys. G13 (1987) 149
1987DA1D Dalkarov and Karmanov, Sov. J. Part. Nucl. 18 (1987) 599; Fiz. Elem. Chastits At. Yadra 18 (1987) 1399
1987DA23 Dao Tien Khoa and O.M. Knyazkov, Z. Phys. A328 (1987) 67
1987DA34 S. Datta, N. Cindro, R.M. Freeman, C. Beck, F. Haas and A. Morsad, Fizika 19 (1987) 445; Phys. Abs. 90276 (1988)
1987DE21 P. Descouvemont, Nucl. Phys. A470 (1987) 309
1987 DE32 P. Descouvemont and D. Baye, Phys. Rev. C36 (1987) 1249
1987DEZV L.C. Dennis, K. Sartor, X.A. Aslanoglou, R.A. Zingarelli and S.J. Padalino, Bull. Amer. Phys. Soc. 32 (1987) 1542
1987DH01 K.S. Dhuga, G.R. Burleson, J.A. Faucett, R.L. Boudrie, W.B. Cottingame, S.J. Greene, C.L. Morris, Z.F. Wang, J.W. McDonald, C.F. Moore et al, Phys. Rev. C35 (1987) 1148

1987DJ01 C. Djalali, G.M. Crawley, B.A. Brown, V. Rotberg, G. Caskey, A. Galonsky, N. Marty, M. Morlet and A. Willis, Phys. Rev. C35 (1987) 1201

1987DM01 V.F. Dmitriev, D.M. Nikolenko, S.G. Popov, I.A. Rachek, D.K. Toporkov, E.P. Tsentalovich, B.B. Woitsekhowski and V.G. Zelevinsky, Nucl. Phys. A464 (1987) 237
1987DO1A Dominy and Wallerstein, Astrophys. J. 317 (1987) 810
1987DW1A R. Dwyer and P. Meyer, Astrophys. J. 322 (1987) 981
1987EL14 C. Ellegaard, Can. J. Phys. 65 (1987) 600
1987 EN06 J.B.A. England, L. Zybert, G.T.A. Squier, O. Karban, R. Zybert, J.M. Nelson, D. Barker, B.R. Fulton, M.C. Mannion, C.A. Ogilvie et al, Nucl. Phys. A475 (1987) 422
1987 ES06 J.I. Escudero, F. Barranco and G. Madurga, J. Phys. G13 (1987) 1261
1987EV01 E.J. Evers, J.W. de Vries, G.A.P. Engelbertink and C. van der Leun, Nucl. Instrum. Methods Phys. Res. A257 (1987) 91
1987 FA09 M. Fatyga, K. Kwiatkowski, V.E. Viola, W.G. Wilson, M.B. Tsang, J. Pochodzalla, W.G. Lynch, C.K. Gelbke, D.J. Fields, C.B. Chitwood et al, Phys. Rev. Lett. 58 (1987) 2527

1987FA1A Faessler, Nucl. Phys. B279 (1987) 335
1987FA1C A.J. Fahey, J.N. Goswami, K.D. McKeegan and E.K. Zinner, Astrophys. J. 323 (1987) L91
1987FE1A Feng et al, Chin. Phys. 7 (1987) 121
1987FUZZ R.J. Furnstahl, Bull. Amer. Phys. Soc. 32 (1987) 1031
1987GE1A Gerbier et al, Phys. Rev. Lett. 59 (1987) 2535
1987GI01 K.L. Giovanetti, G. de Chambrier, P.F.A. Goudsmit, H.J. Leisi, B. Jeckelmann, Th. Karapiperis, Phys. Lett. B186 (1987) 9
1987GI1C W.R. Gibbs and B.F. Gibson, Ann. Rev. Nucl. Part. Sci. 37 (1987) 411
1987GM01 M. Gmitro, S.S. Kamalov and A.A. Ovchinnikova, Nucl. Phys. A468 (1987) 404
1987GM02 M. Gmitro, S.S. Kamalov, R. Mach, Phys. Rev. C36 (1987) 1105
1987 GM04 M. Gmitro, S. Kamalov and R. Mach, Prog. Theor. Phys. (Kyoto)Suppl. 91 (1987) 60
1987 GO05 M. Gouweloos and M. Thies, Phys. Rev. C35 (1987) 631
1987 GO19 S.S. Godre and Y.R. Waghmare, Pramana 28 (1987) 41
1987GO1C Golovkov and Goldberg, in Jurmala (1987) 388
1987GO1E Goerlach, Proc. Int. Europhys. Conf. in Sweden (1987) 146
$1987 G O 30$ S.S. Godre and Y.R. Waghmare, Phys. Rev. C36 (1987) 1632
1987 GR04 C. Gregoire, B. Remaud, F. Sebille and L. Vinet, Phys. Lett. B186 (1987) 14
1987 GR16 J.M. Greben, Phys. Lett. B192 (1987) 287

1987GR1I A.M. Green and J.A. Niskanen, Prog. Part. Nucl. Phys. 18 (1987) 93
$1987 G R 20$ A.M. Green and S. Wycech, Nucl. Phys. A467 (1987) 744
1987GU04 R.K. Gupta, S. Gulati, S.S. Malik and R. Sultana, J. Phys. G13 (1987) L27
1987HA1C Harris, Lambert and Goldman, Mon. Notic. Roy. Astron. Soc. 224 (1987) 237
1987HA1D Harris et al, Astrophys. J. 316 (1987) 294
1987HA1E Harris and Lambert, Astrophys. J. 318 (1987) 868
1987HA37 M.A. Hasan, S. Kohler and J.P. Vary, Phys. Rev. C36 (1987) 2180
1987HA40 R. Hausmann, P.B. Siegel, W. Weise and M. Kohno, Phys. Lett. B199 (1987) 17
1987HA42 M.A. Hasan, S. Kohler and J.P. Vary, Phys. Rev. C36 (1987) 2649
1987 HI10 J.D. Hinnefeld, J.J. Kolata, D.J. Henderson, R.V.F. Janssens, D.G. Kovar, K.T. Lesko, G. Rosner, G.S.F. Stephans, A.M. Van Den Berg, B.D. Wilkins et al, Phys. Rev. C36 (1987) 989

1987HO1C Hodgson, Contemp. Phys. 28 (1987) 365
1987HO1F Hofstadter, Aust. Phys. 24 (1987) 236
1987HU11 M.S. Hussein, A.N. Aleixo, L.F. Canto, P. Carrilho, R. Donangelo and L.S. de Paula, J. Phys. G13 (1987) 967

1987HU1C Humanic et al, Bull. Amer. Phys. Soc. 32 (1987) 1564
1987HY01 C.E. Hyde-Wright, W. Bertozzi, T.N. Buti, J.M. Finn, F.W. Hersman, M.V. Hynes, M.A. Kovash, J.J. Kelly, S. Kowalski, J. Lichtenstadt et al, Phys. Rev. C35 (1987) 880

1987 IK01 H. Ikezoe, N. Shikazono, Y. Tomita, Y. Sugiyama and K. Ideno, Nucl. Phys. A462 (1987) 150

1987IM1C Imanishi and Von Oertzen, Phys. Rep. 155 (1987) 29
1987IMZZ B. Imanishi, J.Y. Park and W. von Oertzen, Bull. Amer. Phys. Soc. 32 (1987) 1567
1987IS04 M.S. Islam, R.W. Finlay and J.S. Petler, Nucl. Phys. A464 (1987) 395
1987JA1B Jackson and Boggild, Nucl. Phys. A470 (1987) 669
$1987 J E 02$ P. Jennewein, B. Schoch and F. Zettl, Nucl. Phys. A468 (1987) 381
1987 KA04 R. Kaps, W. Cassing, U. Mosel and M. Tohyama, Z. Phys. A326 (1987) 97
$1987 K A 13$ M. Kanazawa, S. Homma, M. Koike, Y. Murata, H. Okuno, F. Soga, N. Yoshikawa and A. Sasaki, Phys. Rev. C35 (1987) 1828
1987 KA39 T. Karapiperis and M. Kobayashi, Ann. Phys. 177 (1987) 1
1987KE1A Kelly, Bull. Amer. Phys. Soc. 32 (1987) 1120
1987KH1A Khubeis and Ziegler, Nucl. Instrum. Meth. Phys. Res. B24-25 (1987) 691
1987KH1B Khankhasayev, in Panic (1987) 334

1987KI1C Kissener, Rotter and Goncharova, Fortschr. Phys. 35 (1987) 277
1987 KO12 S. Kox, A. Gamp, C. Perrin, J. Arvieux, R. Bertholet, J.F. Bruandet, M. Buenerd, R. Cherkaoui, A.J. Cole, Y. El-Masri et al, Phys. Rev. C35 (1987) 1678
1987 KO15 T. Kozik, J. Buschmann, K. Grotowski, H.J. Gils, N. Heide, J. Kiener, H. KleweNebenius, H. Rebel, S. Zagromski, A.J. Cole et al, Z. Phys. A326 (1987) 421
1987KO1E Kozmyr, in Jurmala (1987) 332
1987KO1F Kohno et al, in Panic (1987) 566
1987 KO30 M. Kohno, R. Hausmann, P. Siegel and W. Weise, Nucl. Phys. A470 (1987) 609
1987 KR19 J. Kramp, D. Habs, R. Kroth, M. Music, J. Schirmer, D. Schwalm and C. Broude, Nucl. Phys. A474 (1987) 412
1987KR1B Krotscheck, Nucl. Phys. A465 (1987) 461
1987KR1F Krumova, Petkov and Stoitsov, Bulg. J. Phys. 14 (1987) 501
1987 KU02 A. Kuronen, J. Keinonen and P. Tikkanen, Phys. Rev. C35 (1987) 591
1987 LA11 F.L. Lang, C.W. Werntz, C.J. Crannell, J.I. Trombka and C.C. Chang, Phys. Rev. C35 (1987) 1214

1987LA1C Lang and Werntz, Bull. Amer. Phys. Soc. 32 (1987) 1036
1987 LE12 S.F. LeBrun, A.M. Nathan and S.D. Hoblit, Phys. Rev. C35 (1987) 2005
1987LE1B F. Lenz, Prog. Theor. Phys. Suppl. 91 (1987) 27
1987 LH01 D. L'Hote, J.P. Alard, J. Augerat, R. Babinet, F. Brochard, Z. Fodor, L. Fraysse, J. Girard, P. Gorodetzky, J. Gosset et al, Phys. Lett. B198 (1987) 139
1987 LI04 J.S. Lilley, M.A. Nagarajan, D.W. Banes, B.R. Fulton and I.J. Thompson, Nucl. Phys. A463 (1987) 710

1987 LI3 0 R.A. Lindgren, M. Leuschner, B.L. Clausen, R.J. Peterson, M.A. Plum and F. Petrovich, Can. J. Phys. 65 (1987) 666
1987LO01 M. Lozano and A. Vitturi, Phys. Rev. C35 (1987) 367
1987 LU02 J.D. Lumpe and L. Ray, Phys. Rev. C35 (1987) 1040
1987 LY04 W.G. Lynch, Nucl. Phys. A471 (1987) 309C
1987MA04 J. Mahalanabis, Z. Phys. A326 (1987) 131
1987MA09 Q. Ma and N. Austern, Nucl. Phys. A463 (1987) 620
1987MA1B Masuda, Nitto and Uchiyama, Prog. Theor. Phys. 78 (1987) 972
1987MA1I Matthews et al, in Panic 87 (1987) 360
1987MA1K Matthews, Bull. Amer. Phys. Soc. 32 (1987) 1575
1987MA1M W. Ma, S. Wang, G. Zhang, C. Chen and S. Zhao, Kexue Tongbao 32 (1987) 12

1987MA22 E. Maglione, G. Poullarolo, A. Vitturi, R.A. Broglia and A. Winther, Phys. Lett. B191 (1987) 237

1987MA30 H.A. Mavromatis, H. Muther, T. Taigel and T.T.S. Kuo, Nucl. Phys. A470 (1987) 185
1987MC1A K.D. McKeegan, Science 237 (1987) 1468
1987MC1B McLerran, Proc. Hadronic Session of the 22nd Rencontre de Moriond, vol. 2, Les Arcs, France (1987) 399
1987ME12 O. Meirav, E. Friedman, A. Altmann, M. Hanna, R.R. Johnson and D.R. Gill, Phys. Rev. C36 (1987) 1066

1987ME1B Mewaldt and Stone, Bull. Amer. Phys. Soc. 32 (1987) 1037
1987MI1B Mitchell et al, Bull. Amer. Phys. Soc. 32 (1987) 1109
1987MI38 Mian, Phys. Rev. C35 (1987) 1463
1987MU03 J.A. Muzycka and B.I. Pustylnik, Sov. J. Nucl. Phys. 45 (1987) 57; Yad. Fiz. 45 (1987) 90

1987NA01 M.N. Namboodiri, R.K. Choudhury, L. Adler, J.D. Bronson, D. Fabris, U. Garg, P.L. Gonthier, K. Hagel, D.R. Haenni, Y.W. Lui et al, Phys. Rev. C35 (1987) 149
1987NA04 J. Navarro and F. Roig, Nucl. Phys. A465 (1987) 628
1987NA13 M.A. Nagarajan, M.V. Andres and M. Lozano, Phys. Lett. B192 (1987) 297
1987NA1C Nadasen et al, Bull. Amer. Phys. Soc. 32 (1987) 1076
1987NA1D Nagata et al, Nucl. Instrum. Meth. Phys. Res. B18 (1987) 515
1987NG01 Nguyen Van Sen, Ye Yanlin, J. Arvieux, G. Gaillard, B. Bonin, A. Boudard, G. Bruge, J.C. Lugol, T. Hasegawa, F. Soga et al, Nucl. Phys. A464 (1987) 717

1987NU02 G. Nuhn, W. Scheid and Jae Young Park, Phys. Rev. C35 (1987) 2146
1987 OC01 J.S. O’Connell, W.R. Dodge, J.W. Lightbody, Jr., X.K. Maruyama, J.-O. Adler, K. Hansen, B. Schroder, A.M. Bernstein, K.I. Blomqvist, B.H. Cottman et al, Phys. Rev. C35 (1987) 1063
1987 OH04 H. Ohnuma, M. Kabasawa, K. Furukawa, T. Kawamura, Y. Takahashi, A. Satoh, T. Nakagawa, K. Maeda, K. Miura, T. Niizeki et al, Nucl. Phys. A467 (1987) 61

1987OH08 S. Ohkubo and D.M. Brink, Phys. Rev. C36 (1987) 966
1987OH1B Ohta and Fujita, in Panic (1987) 744
1987OL1A Olson et al, Bull. Amer. Phys. Soc. 32 (1987) 1015
1987OS01 T. Osipowicz, K.P. Lieb and S. Brussermann, Nucl. Instrum. Meth. Phys. Res. B18 (1987) 232

1987 OS03 A. Osman, Indian J. Pure Appl. Phys. 25 (1987) 1
1987 OT02 N.A. Ottenstein, J. Sabutis and S.J. Wallace, Phys. Rev. C35 (1987) 369

1987 PA01 D.J. Parker, J.J. Hogan and J. Asher, Phys. Rev. C35 (1987) 161
1987PA1D M. Paul, D. Fink and G. Hollos, Nucl. Instrum. Meth. Phys. Res. B29 (1987) 393
1987 PA 24 G. Pantis and J.M. Pearson, Phys. Rev. C36 (1987) 1408
1987 PI02 J. Piekarewicz, Phys. Rev. C35 (1987) 675
1987PI1B Pile et al, in Panic (1987) 594
1987PI1C Pile et al, Bull. Amer. Phys. Soc. 32 (1987) 1560
1987 PL03 R. Plaga, H.W. Becker, A. Redder, C. Rolfs, H.P. Trautvetter and K. Langanke, Nucl. Phys. A465 (1987) 291

1987 PO11 V. Ponisch and S.E. Koonin, Phys. Rev. C36 (1987) 633
1987 PR03 C.E. Price and G.E. Walker, Phys. Rev. C36 (1987) 354
1987PR1A Prapkos, Arnould and Arcoragi, Astrophys. J. 315 (1987) 209
1987QU02 C. Quesne, Phys. Lett. B188 (1987) 1
1987 RA01 S. Raman, C.H. Malarkey, W.T. Milner, C.W. Nestor, Jr. and P.H. Stelson, At. Data Nucl. Data Tables 36 (1987) 1
1987 RA02 W.D.M. Rae, P.R. Keeling and S.C. Allcock, Phys. Lett. B184 (1987) 133
1987RA1D R. Ramaty and R.J. Murphy, Space Sci. Rev. 45 (1987) 213
1987RA22 W.D.M. Rae, P.R. Keeling and A.E. Smith, Phys. Lett. B198 (1987) 49
1987 RA28 M. Rajasekaran, N. Arunachalam and V. Devanathan, Phys. Rev. C36 (1987) 1860
1987 RA36 M. Rahman, H.M. Sen Gupta, Md.A. Rahman and A.B. Siddique, Nuovo Cim. A98 (1987) 513

1987 RE02 A. Redder, H.W. Becker, C. Rolfs, H.P. Trautvetter, T.R. Donoghue, T.C. Rinckel, J.W. Hammer and K. Langanke, Nucl. Phys. A462 (1987) 385

1987 RI03 J. Richert and P. Wagner, Nucl. Phys. A466 (1987) 132
1987RI1A Richter, Bull. Amer. Phys. Soc. 32 (1987) 1071
1987 RO04 P. Roussel, J. Barrette, F. Auger, B. Berthier, B. Fernandez, J. Gastebois, A. Gillibert, L. Papineau, W. Mittig, D. Disdier et al, Phys. Lett. B185 (1987) 29

1987 RO06 D.J. Rowe, P. Rochford and R. Le Blanc, Nucl. Phys. A464 (1987) 39
1987 RO10 G. Royer, Y. Raffray, A. Oubahadou and B. Remaud, Nucl. Phys. A466 (1987) 139
1987 RO25 C. Rolfs, H.P. Trautvetter and W.S. Rodney, Rep. Prog. Phys. 50 (1987) 233
1987RU1A Rufa et al, J. Phys. G13 (1987) L143
1987 RY03 J. Ryckebusch, M. Waroquier, K. Heyde and D. Ryckbosch, Phys. Lett. B194 (1987) 453
1987 SA01 C. Samanta, N.S. Chant, P.G. Roos, A. Nadasen and A.A. Cowley, Phys. Rev. C35 (1987) 333

1987SA15 H. Sagawa and H. Toki, J. Phys. G13 (1987) 453
1987SA1D Sawa, Solar Phys. 107 (1987) 167
1987SA25 M.G. Saint-Laurent, Nucl. Instrum. Meth. Phys. Res. B26 (1987) 273
1987 SA55 S.M. Saad, V.B. Subbotin, K.A. Gridnev, E.F. Hefter and V.M. Semjonov, Nuovo Cim. A98 (1987) 529
1987 SC11 L. Schmieder, D. Hilscher, H. Rossner, U. Jahnke, M. Lehmann, K. Ziegler and H.-H. Knitter, Nucl. Instrum. Meth. Phys. Res. A256 (1987) 457

1987 SC34 A. Scalia, Nuovo Cim. A98 (1987) 589
1987SH1B Shevedov and Nemets, in Jurmala (1987) 390
1987SH1C Shen et al, Phys. Energ. Fortis and Phys. Nucl. 11 (1987) 104
1987 SH21 W.Q. Shen, W.M. Qiao, W.L. Zhan, L.X. Ge, X.T. Zhu, S. Wenqing, G. Linxiao, G. Zhongyan, Q. Weinmin, Z. Wenlong et al, Z. Phys. A328 (1987) 219

1987 SH23 W. Shen, Y. Zhu, W. Zhan, Z. Guo, S. Yin, W. Qiao and X. Yu, Nucl. Phys. A472 (1987) 358

1987 SI06 K. Siwek-Wilczynska, J. Wilczynski, C.R. Albiston, Y. Chan, E. Chavez, S.B. Gazes, H.R. Schmidt and R.G. Stokstad, Phys. Rev. C35 (1987) 1316

1987 SK02 J. Skalski, Z. Phys. A326 (1987) 263
1987SN01 K. Sneppen, Nucl. Phys. A470 (1987) 213
1987 SP05 D.A. SPARROW, PHYS. REV. C35 (1987) 1410
1987 SP11 D. Sperber, J. Stryjewski and M. Zielinska-Pfabe, Phys. Scr. 36 (1987) 880
1987 SU03 T. Sugimitsu, H. Inoue, H. Fujita, N. Kato, K. Kimura, T. Tachikawa, K. Anai, Y. Ikeda and Y. Nakajima, Nucl. Phys. A464 (1987) 415
1987 SU07 T. Suomijarvi, B. Berthier, R. Lucas, M.C. Mermaz, J.P. Coffin, G. Guillaume, B. Heusch, F. Jundt and F. Rami, Phys. Rev. C36 (1987) 181

1987SU08 K. Suzuki, R. Okamoto and H. Kumagai, Prog. Theor. Phys. 77 (1987) 196
1987 SU12 K. Suzuki, R. Okamoto and H. Kumagai, Phys. Rev. C36 (1987) 804
1987TA1C Tang, in AIP Conf. Proc. 162 (1987) 174
1987 TE01 A. Tellez-Arenas, R.J. Lombard and J.P. Maillet, J. Phys. G13 (1987) 311
1987 TH03 R.B. Thayyullathil, T.D. Cohen and W. Broniowski, Phys. Rev. C35 (1987) 1969
1987 TI01 W. Tiereth, Z. Basrak, N. Bischof, B. Nees, E. Nieschler, I. Weitzenfelder and H. Voit, Nucl. Phys. A464 (1987) 125

1987 TO10 M. Tohyama, Phys. Rev. C36 (1987) 187
1987TO1B Towner, Phys. Rep. 155 (1987) 263
$1987 T R 01$ H.-J. Trost, P. Lezoch and U. Strohbusch, Nucl. Phys. A462 (1987) 333

1987TZ1A Tzeng and Kuo, Chin. J. Phys. 25 (1987) 326
1987VA03 O.S. van Roosmalen, Phys. Rev. C35 (1987) 977
1987 VA26 A.G.M. van Hees, A.A. Wolters and P.W.M. Glaudemans, Phys. Lett. B196 (1987) 19
1987VAZY S.P. van Verst, D.P. Sanderson, K.W. Kemper, D.E. Trcka, G.A. Hall, V. Hnizdo, K.R. Chapman and B.G. Schmidt, Bull. Amer. Phys. Soc. 32 (1987) 1547
1987VD1A A.I. Vdovin, A.V. Golovin and I.I. Loschakov, Sov. J. Part. Nucl. 18 (1987) 573
1987VE03 J. Vesper, D. Drechsel and N. Ohtsuka, Nucl. Phys. A466 (1987) 652
1987VI02 F. Videbaek, S.G. Steadman, G.G. Batrouni and J. Karp, Phys. Rev. C35 (1987) 2333
1987VI04 N. Vinh Mau, Nucl. Phys. A470 (1987) 406
1987 VI14 V.E. Viola, Nucl. Phys. A471 (1987) 53c
1987WA1B Wada and Horiuchi, Phys. Rev. Lett. 58 (1987) 2190
1987WU05 R. Wunsch and J. Zofka, Phys. Lett. B193 (1987) 7
1987 XI01 L. Xia and G. He, Phys. Rev. C35 (1987) 1789
1987 YA0 2 M. Yamazaki, P.K. Teng, B.H. Cottman, L. Ghedira, K. Min, P. Stoler, E.J. Winhold, P.F. Yergin, A.M. Bernstein, K.I. Blomqvist et al, Phys. Rev. C35 (1987) 355

1987YA1B Yazici and Irvine, J. Phys. G13 (1987) 615
1987YA1C Yamamoto, in Panic (1987) p. 582
1987YA1D Yamazaki et al, in Panic (1987) 670
1987YA1E A.I. Yavin, Can. J. Phys. 65 (1987) 647
1987 YO04 A. Yokoyama and H. Horie, Phys. Rev. C36 (1987) 1657
1987YO1A Young, Bull. Amer. Phys. Soc. 32 (1987) 1565
1987ZA08 V.P. Zavarzina and V.A. Sergeev, Yad. Fiz. 46 (1987) 486; Sov. J. Nucl. Phys. 46 (1987) 261
$1987 Z E 05$ V.G. Zelevinsky and V.V. Mazepus, Izv. Akad. Nauk SSSR, Ser. Fiz. 51 (1987) 884; Bull. Acad. Sci. USSR, Phys. Ser. 51 (1987) 45
1987ZU1A H.-C. zur Loye, K.J. Leary, S.W. Keller, W.K. Ham, T.A. Faltens, J.N. Micheals and A.M. Stacy, Science 238 (1987) 1558

1988 AD07 G.S. Adams, E.R. Kinney, J.L. Matthews, W.W. Sapp, T. Soos, R.O. Owens, R.S. Turley and G. Pignault, Phys. Rev. C38 (1988) 2771
1988AD08 S. Adachi and E. Lipparini, Nucl. Phys. A489 (1988) 445
1988AH04 J. Ahrens, H. Gimm, T. Beuermann, P. Rullhusen, M. Schumacher, B. Fricke and W.D. Sepp, Nucl. Phys. A490 (1988) 655

1988AI1C Aiello et al, Europhys. Lett. 6 (1988) 25
1988AJ01 F. Ajzenberg-Selove, Nucl. Phys. A490 (1988) 1

1988 AL06 Y. Alhassid, F. Iachello and B. Shao, Phys. Lett. B201 (1988) 183
1988 AL08 A.N. Aleixo, L.F. Canto, P. Carrilho, R. Donangelo, L.S. de Paula and M.S. Hussein, Phys. Rev. C37 (1988) 1062
1988AL1K M.M. Al-Kofahi, A.B. Hallak, H.A. Al-Juwair and A.K. Saafin, Bull. Amer. Phys. Soc. 33 (1988) 1730

1988AL1N Alberico et al, Phys. Rev. C38 (1988) 1801
1988AM03 K. Amos, R. de Swiniarski and L. Berge, Nucl. Phys. A485 (1988) 653
1988AN18 A.N. Antonov, I.S. Bonev, Chr.V. Christov and I.Zh. Petkov, Nuovo Cim. A100 (1988) 779

1988AN1C Anne et al, Nucl. Instrum. Meth. Phys. Res. B34 (1988) 295
1988AN1D Andreani, Vangioniflam and Audouze, Astrophys. J. 334 (1988) 698
1988AR1D Ardito et al, Europhys. Lett. 6 (1988) 131
1988 AR22 K.P. Artemov, M.S. Golovkov, V.Z. Goldberg, V.V. Pankratov, V.P. Rudakov, I.N. Serikov and V.A. Timofeev, Yad. Fiz. 48 (1988) 935; Sov. J. Nucl. Phys. 48 (1988) 596

1988ARZU K.P. Artemov, M.S. Golovkov, V.Z. Goldberg, V.P. Rudakov, I.N. Serikov, V.A. Timofeev, J. Schmider, M. Madeya and Ya. Yakel, in Baku (1988) 381
1988AS03 H.-J. Assenbaum, K. Langanke and G. Soff, Phys. Lett. B208 (1988) 346
1988AU03 F. Auger and B. Fernandez, Nucl. Phys. A481 (1988) 577
1988AU1A Aushev et al, in Baku (1988) 369
1988 AY03 S. Ayik, D. Shapira and B. Shivakumar, Phys. Rev. C38 (1988) 2610
1988 BA15 D. Baye and P. Descouvemont, Nucl. Phys. A481 (1988) 445
1988BA21 A. Badala, R. Barbera, G. Bizard, J.L. Laville, A. Palmeri and G.S. Pappalardo, Nucl. Phys. A482 (1988) 511C
1988BA43 D. Bandyopadhyay and S.K. Samaddar, Nucl. Phys. A484 (1988) 315
1988BE1D Becchetti et al, 5th Int. Conf. on Clustering in Nucl., Kyoto, Japan (1988)
1988 BE20 G.H. Berthold, A. Stadler and H. Zankel, Phys. Rev. C38 (1988) 444
1988 BE24 B. Behera and T.R. Routray, J. Phys. G14 (1988) 1073
1988BE2A C. Besliu, A. Jipa, Rev. Roum. Phys. 33 (1988) 409
1988BE2B S.L. Belostotsky, Yu.V. Dotsenko, N.P. Kuropatkin, O.V. Mikluho, V.N. Nikulin, O.E. Prokofiev, Yu.A. Scheglov, V.E. Starodubsky, A.Yu. Tsaregorodtsev, A.A. Vorobyov and M.B. Zhalov, in Novosibirsk (1988) 191
$1988 B E 49$ T.L. Belyaeva and N.S. Zelenskaya, Izv. Akad. Nauk SSSR, Ser. Fiz. 52 (1988) 942; Bull. Acad. Sci. USSR, Phys. Ser. 52 (1988) 105

1988BE57 Yu.A. Berezhnoi, V.P. Mikhailyuk and V.V. Pilipenko, Izv. Akad. Nauk SSSR Ser. Fiz. 52 (1988) 2185; Bull. Acad. Sci. USSR Phys. Ser. 52 (1988) 104
1988BEYB T.L. Belyaeva, N.C. Zelenskaya, in Baku (1988) 449
1988BEYJ A.V. Belozerov, K. Borcha, I. Vintsour, Z. Dlougy, Nguen Khoai Tyau and Yu.Eh. Penionzhkevich, in Baku (1988) 380

1988BL02 J. Blocki, S. Drozdz, M. Dworzecka, J. Okolowicz and M. Ploszajczak, Nucl. Phys. A477 (1988) 189

1988 BL07 E. Bleszynski, B. Aas, D. Adams, M. Bleszynski, G.J. Igo, T. Jaroszewicz, A. Ling, D. Lopiano, F. Sperisen, M.G. Moshi et al, Phys. Rev. C37 (1988) 1527

1988BL10 P.G. Blunden and P. McCorquodale, Phys. Rev. C38 (1988) 1861
1988BL1H Blanpain et al, Nucl. Instrum. Meth. Phys. Res. B34 (1988) 459
1988BL1I Blunden, in AIP Conf. Proc. 176 (1988) 636
1988BO04 M.C. Bosca and R. Guardiola, Nucl. Phys. A476 (1988) 471
1988 BO10 G. Bozzolo, O. Civitarese and J.P. Vary, Phys. Rev. C37 (1988) 1240
1988 BO13 B. Borderie, M. Montoya, M.F. Rivet, D. Jouan, C. Cabot, H. Fuchs, D. Gardes, H. Gauvin, D. Jacquet, F. Monnet et al, Phys. Lett. B205 (1988) 26
1988BO39 M.J.G. Borge, H. Cronberg, M. Cronqvist, H. Gabelmann, P.G. Hansen,L. Johannsen, B. Jonson, S. Mattsson, G. Nyman, A. Richter et al, and the ISOLDE Collaboration, Nucl. Phys. A490 (1988) 287

1988BO40 S. Boffi, O. Nicrosini and M. Radici, Nucl. Phys. A490 (1988) 585
1988BO46 J. Bogdanowicz, Nucl. Phys. A479 (1988) 323c
1988 BR04 M.-E. Brandan, Phys. Rev. Lett. 60 (1988) 784
1988BR1N Brechtmann and Heinrich, Z. Phys. A330 (1988) 407
1988 BR20 M.E. Brandan, S.H. Fricke and K.W. McVoy, Phys. Rev. C38 (1988) 673
1988BR29 M.E. Brandan and G.R. Satchler, Nucl. Phys. A487 (1988) 477
1988BRZY J.D. Brown, A. Middleton and S.M. Aziz, Bull. Amer. Phys. Soc. 33 (1988) 1022
1988BU06 N.A. Burkova, L.Ya. Glozman, M.A. Zhusupov and V.G. Neudachin, Yad. Fiz. 47 (1988) 983; Sov. J. Nucl. Phys. 47 (1988) 627

1988 CA07 M. Cavinato, M. Marangoni and A.M. Saruis, Z. Phys. A329 (1988) 463
1988 CA10 M. Cavinato, M. Marangoni and A.M. Saruis, Phys. Rev. C37 (1988) 1823
1988CA26 G.R. Caughlan and W.A. Fowler, At. Data Nucl. Data Tables 40 (1988) 283
1988 CA27 G. Cardella, M. Papa, G. Pappalardo, F. Rizzo, A. De Rosa, G. Inglima, M. Sandoli, G. Fortuna, G. Montagnoli, A.M. Stefanini et al, Nucl. Phys. A482 (1988) 235c

1988CAZV D.D. Caussyn, N.R. Fletcher, G.L. Gentry, J.A. Liendo, K.L. Lamkin, J.D. Fox, A.D. Frawley, E.G. Myers and J.F. Mateja, Bull. Amer. Phys. Soc. 33:8 (1988) 1562 (AC11)

1988 CH08 T. Cheon, Phys. Rev. C37 (1988) 1088
1988CH28 A.K. Chaudhuri, S. Bhattacharya and K. Krishan, Nucl. Phys. A485 (1988) 181
1988 CH30 A. Champagne, G. Beaudoin, L.A. Hamel, H. Jeremie and L. Lessard, Z. Phys. A330 (1988) 377

1988 CH48 R.E. Chrien, Nucl. Phys. A478 (1988) 705C
1988CH49 R.E. Chrien, S. Bart, P. Pile, R. Sutter, N. Tsoupas, H.O. Funsten, J.M. Finn, C. Lyndon, V. Punjabi, C.F. Perdrisat et al, Phys. Rev. Lett. 60 (1988) 2595
1988CIZZ D.E. Ciskowski, M.R. Barlett, T.A. Carey, J.B. McClelland, L.J. Rybarcyk, T.N. Taddeucci, E. Sugarbaker, D. Marchlenski, C.D. Goodman, W. Huang et al, Bull. Amer. Phys. Soc. 33 (1988) 1583
1988 CL03 B.L. Clausen, R.J. Peterson and R.A. Lindgren, Phys. Rev. C38 (1988) 589
1988 CL04 N.M. Clarke, P.R. Hayes, M.B. Becha, K.I. Pearce, R.J. Griffiths, J.B.A. England, L. Zybert, C.N. Pinder, G.M. Field and R.S. Mackintosh, J. Phys. G14 (1988) 1399
1988CL1C Clayton, Astrophys. J. 334 (1988) 191
1988 CO15 E. Comay, I. Kelson and A. Zidon, Phys. Lett. B210 (1988) 31
1988CO1G Co et al, Nucl. Phys. A485 (1988) 463
1988CS01 J. Cseh and G. Levai, Phys. Rev. C38 (1988) 972
1988CUZX A.C. Cummings, E.R. Christian, E.C. Stone, Bull. Amer. Phys. Soc. 33 (1988) 1069, HM12

1988 DA11 S. Datta, R. Caplar, N. Cindro, R.L. Auble, J.B. Ball and R.L. Robinson, J. Phys. G14 (1988) 937

1988 DE09 J.W. de Vries, D. Doornhof, C.W. de Jager, R.P. Singhal, S. Salem, G.A. Peterson and R.S. Hicks, Phys. Lett. B205 (1988) 22

1988DE1A DeYoung et al, Bull. Amer. Phys. Soc. 33 (1988) 928
1988DE22 F.W.N. de Boer, J. Deutsch, J. Lehmann, R. Prieels and J. Steyaert, J. Phys. G14 (1988) L131

1988DE31 R. de Swiniarski and D.L. Pham, Nuovo Cim. A99 (1988) 117
1988 DE35 R. De Swiniarski, D.L. Pham and J. Raynal, Phys. Lett. B213 (1988) 247
1988DH1A Dhuga and Ernst, in AIP Conf. Proc. 163 (1988) 484
1988 DI02 S.S. Dietrich and B.L. Berman, At. Data Nucl. Data Tables 38 (1988) 199
1988 DI07 S.S. Dimitrova, I.Zh. Petkov and M.V. Stoitso, Nucl. Phys. A485 (1988) 233

1988 DO05 M. Dobeli, M. Doser, L. van Elmbt, M.W. Schaad, P. Truol, A. Bay, J.P. Perroud, J. Imazato and T. Ishikawa, Phys. Rev. C37 (1988) 1633
1988 DR02 S. Drozdz, J. Okolowicz, M. Ploszajczak, E. Caurier and M. Dworzecka, Phys. Lett. B206 (1988) 567

1988DU04 E.I. Dubovoy and G.I. Chitanava, Yad. Fiz. 47 (1988) 75
1988DU1B Dufour, Parker and Heinze, Astrophys. J. 327 (1988) 859
1988DU1G Dufour, Garnett and Shields, Astrophys. J. 332 (1988) 752
1988 EL06 A.J.R. El-Hassani, J.-F. Gilot, P.F.A. Goudsmit, H.J. Leisi and St. Thomann, Helv. Phys. Acta 61 (1988) 1130
1988 ER04 D.J. Ernst and K.S. Dhuga, Phys. Rev. C37 (1988) 2651
1988FA1B Faessler, Nucl. Phys. A479 (1988) 3c
1988FE1A Ferrando et al, Phys. Rev. C37 (1988) 1490
1988FEZX A.E. Feldman, P. Boberg, B.S. Flanders, S.D. Hyman, J.J. Kelly, M.A. Khandaker, H. Seifert, P. Karen, B.E. Norum, A. Saha et al, Bull. Amer. Phys. Soc. 33 (1988) 1570
1988FI01 J. Fiase, A. Hamoudi, J.M. Irvine and F. Yazici, J. Phys. G14 (1988) 27
1988FO1E Forrest and Murphy, Solar Phys. 118 (1988) 123
1988 FR02 E. Friedman, A. Gal, G. Kalbermann and C.J. Batty, Phys. Lett. B200 (1988) 251
1988FR06 V. Franco and A. Tekou, Phys. Rev. C37 (1988) 1097
1988FR14 S.H. Fricke, M.E. Brandan and K.W. McVoy, Phys. Rev. C38 (1988) 682
1988FR19 A. Frischknecht, M. Dobeli, W. Stehling, G. Strassner, P. Truol, J.C. Alder, C. Joseph, J.F. Loude, J.P. Perroud, D. Ruegger et al, Phys. Rev. C38 (1988) 1966
$1988 G A 11$ S.B. Gazes, Y.D. Chan, E. Chavez, A. Dacal, M.E. Ortiz, K. Siwek-Wilczynska, J. Wilczynski and R.G. Stokstad, Phys. Lett. 208B (1988) 194
$1988 G A 12$ S.B. Gazes, H.R. Schmidt, Y. Chan, E. Chavez, R. Kamermans and R.G. Stokstad, Phys. Rev. C38 (1988) 712
1988GA1A Gal, Nucl. Phys. A479 (1988) 97c
1988GA1I Gal, in AIP Conf. Proc. 163 (1988) 144
1988GN1A B. Gnade, Bull. Amer. Phys. Soc. 33 (1988) 1759
$1988 G O 11$ J. Gomez del Campo, J.L. Charvet, A. D'Onofrio, R.L. Auble, J.R. Beene, M.L. Halbert and H.J. Kim, Phys. Rev. Lett. 61 (1988) 290
1988GO21 V.I. Goldanskii, Phys. Lett. B212 (1988) 11
1988GOZR C.A. Gossett, J.A. Behr, S.J. Luke, B.T. McLain, D.P. Rosenzweig and K.A. Snover, Bull. Amer. Phys. Soc. 33 (1988) 1601
1988GR1E Gram, in AIP Conf. Proc. 163 (1988) 79
$1988 G R 32$ K.A. Gridnev, V.B. Subbotin and S.N. Fadeev, Izv. Akad. Nauk SSSR, Ser. Fiz. 52 (1988) 2262; Bull. Acad. Sci. USSR, Phys. Ser. 52 (1988) 184
$1988 G U 03$ I.S. Gulkarov, M.M. Mansurov and A.A. Khomich, Sov. J. Nucl. Phys. 47 (1988) 25
1988GU13 R. Guardiola and M.C. Bosca, Nucl. Phys. A489 (1988) 45
$1988 G U 14$ I.S. Gulkarov and M.M. Mansurov, Izv. Akad. Nauk SSSR, Ser. Fiz. 52 (1988) 878; Bull. Acad. Sci. USSR, Phys. Ser. 52 (1988) 42

1988HA03 H. Hashim and D.M. Brink, Nucl. Phys. A476 (1988) 107
1988HA04 H.J. Hausman, S.L. Blatt, T.R. Donoghue, J. Kalen, W. Kim, D.G. Marchlenski, T.W. Rackers, P. Schmalbrock, M.A. Kovash and A.D. Bacher, Phys. Rev. C37 (1988) 503
$1988 H A 08$ S. Hama, B.C. Clark, R.E. Kozack, S. Shim, E.D. Cooper, R.L. Mercer and B.D. Serot, Phys. Rev. C37 (1988) 1111
1988HA12 S.S. Hanna, J. Phys. G14 (1988) S283
1988HA22 W.C. Haxton, Phys. Rev. C37 (1988) 2660
1988HA41 R.S. Hayano, Nucl. Phys. A478 (1988) 113C
1988HA44 R. Hausmann, Nucl. Phys. A479 (1988) 247c
1988HAZS B.A. Harmon, Y.D. Chan, A. Dacal, D.E. Digregorio, R. Knop, M.E. Ortiz, J. Pouliot, R.G. Stokstad, C. Moisan, L. Potvin et al, Bull. Amer. Phys. Soc. 33 (1988) 1572

1988 HE06 D.F. Hebbard, J. Nurzynski, T.R. Ophel, P.V. Drumm, Y. Kondo, B.A. Robson and R. Smith, Nucl. Phys. A481 (1988) 161
1988HE1G E.M. Henley, Can. J. Phys. 66 (1988) 554
1988HE1I Hennino, in AIP Conf. Proc. 176 (1988) 663
$1988 H O 10$ T. Hoshino, H. Sagawa and A. Arima, Nucl. Phys. A481 (1988) 458
1988HO1K Horowitz, in AIP Conf. Proc. 176 (1988) 1140
1988HO1L Hoibraten et al, in AIP Conf. Proc. 176 (1988) 614
1988HYZY S.D. Hyman, H. Breuer, N.S. Chant, F. Khazaie, D. Mack, B.G. Ritchie, P.G. Roos, J.D. Silk, P.A. Amaudruz, Th.S. Bauer et al, Bull. Amer. Phys. Soc. 33 (1988) 1607

1988HYZZ S.D. Hyman, H. Breuer, N.S. Chant, F. Khazaie, D. Mack, B.G. Ritchie, P.G. Roos, J.D. Silk, P.A. Amaudruz, Th.S. Bauer et al, Bull. Amer. Phys. Soc. 33 (1988) 902

1988 ILZZ D. Ila and G.H.R. Kegel, Bull. Amer. Phys. Soc. 33 (1988) 1731, PA’3
1988 IM02 B. Imanishi, S. Misono and W. von Oertzen, Phys. Lett. B210 (1988) 35
1988 IS02 Y. Iseri, H. Kameyama, M. Kamimura, M. Yahiro and M. Tanifuji, Nucl. Phys. A490 (1988) 383

1988 IT02 K. Itonaga, T. Motoba and H. Bando, Z. Phys. A330 (1988) 209
1988 IT03 K. Itonaga and S. Nagata, Prog. Theor. Phys. 80 (1988) 517

1988JA09 P. Jasselette, J. Cugnon and J. Vandermeulen, Nucl. Phys. A484 (1988) 542
1988JA1B Jacq, Despois and Baudry, Astron. Astrophys. 195 (1988) 93
1988JO1E M.B. Johnson, AIP Conf. Proc. 163 (1988) 352
1988JO1F Johnson, in AIP Conf. Proc. 163 (1988) 502
1988JU02 J. Julien, M. Bolore, H. Dabrowski, J.M. Hisleur, V. Bellini, A.S. Figuera, R. Fonte, A. Insolia, G.F. Palama, G.V. Russo et al, Z. Phys. A330 (1988) 83

1988KA13 A. Kabir, M.W. Kermode and N. Rowley, Nucl. Phys. A481 (1988) 94
1988KA1G Kawai, Saio and Nomoto, Astrophys. J. 328 (1988) 207
1988KA1Z Kato, Fukatsu and Tanaka, Prog. Theor. Phys. 80 (1988) 663
1988KA39 Sh.S. Kayumov, A.M. Mukhamedzhanov and R. Yarmukhamedov, Sov. J. Nucl. Phys. 48 (1988) 268
1988 KE07 K.W. Kemper, G.A. Hall, S.P. Van Verst and J. Cook, Phys. Rev. C38 (1988) 2664
1988 KH01 M.Kh. Khankhasayev and A.P. Sapozhnikov, Phys. Lett. B201 (1988) 17
1988KH1B Khan et al, Bull. Amer. Phys. Soc. 33 (1988) 963
1988KI1C Kiptily, in Baku (1988) 534
1988 KO01 M. Korolija, N. Cindro and R. Caplar, Phys. Rev. Lett. 60 (1988) 193
1988 KO02 H.S. Kohler and B.S. Nilsson, Nucl. Phys. A477 (1988) 318
1988 KO09 V. Koch, U. Mosel, T. Reitz, C. Jung and K. Niita, Phys. Lett. B206 (1988) 395
1988 KO17 J.J. Kolata, R.A. Kryger, P.A. DeYoung and F.W. Prosser, Phys. Rev. Lett. 61 (1988) 1178

1988KO1S Kowalski, Proc. Int. Symp. on Modern Develpmenta in Nucl. Phys., Novosibirsk, USSR 1987 (World Scientific: 1988) 391
1988KO1U Kovar et al, Proc. Texas A \& M Symposium on Hot Nucl. 1987 (World Scientific: Singapore 1988) 392
1988 KO23 T. Kohmura, S. Ohnaka and V. Gillet, Nucl. Phys. A486 (1988) 253
1988 KO27 A.M. Kobos, M.E. Brandan and G.R. Satchler, Nucl. Phys. A487 (1988) 457
1988 KR06 R.M. Kremer, C.A. Barnes, K.H. Chang, H.C. Evans, B.W. Filippone, K.H. Hahn and L.W. Mitchell, Phys. Rev. Lett. 60 (1988) 1475

1988 KR09 H. Krivine, E. Lipparini, J. Navarro and F. Roig, Nucl. Phys. A481 (1988) 781
1988 KR11 L. Kraus, A. Boucenna, I. Linck, B. Lott, R. Rebmeister, N. Schulz, J.C. Sens, M.C. Mermaz, B. Berthier, R. Lucas et al, Phys. Rev. C37 (1988) 2529

1988KR1E Krewald, Nakayama and Speth, Phys. Rep. 161 (1988) 103
1988KU18 R. Kuchta, Phys. Lett. B212 (1988) 264
1988KY1A Kyle, in AIP Conf. Proc. 163 (1988) 289
$1988 L A 25$ F. Lahlou, B. Cujec and B. Dasmahapatra, Nucl. Phys. A486 (1988) 189
$1988 L E 05$ G. Levai and J. Cseh, J. Phys. G14 (1988) 467
1988LE08 K.T. Lesko, E.B. Norman, R.-M. Larimer, S. Kuhn, D.M. Meekhof, S.G. Crane and H.G. Bussell, Phys. Rev. C37 (1988) 1808

1988LEZW M.B. Leuschner, F.W. Hersman, J.R. Calarco, J.E. Wise, L. Lapikas, P.K.A. de WittHuberts, E. Jans, G. Kramer and H.P. Blok, Bull. Amer. Phys. Soc. 33 (1988) 1097

1988 LI13 E. Lipparini and S. Stringari, Nucl. Phys. A482 (1988) 205C
1988 LI1O Y. LI, High Energy Phys. Nucl. Phys. 12 (1988) 501; Phys. Abs. 5798
1988LI1P Li, High Energy Phys. Nucl. Phys. 12 (1988) 509
$1988 L$ L34 E.P. Lifshits, Izv. Akad. Nauk SSSR, Ser. Fiz. 52 (1988) 979; Bull. Acad. Sci. USSR, Phys. Ser. 52 (1988) 141
1988 LO07 G.M. Lotz and H.S. Sherif, Phys. Lett. B210 (1988) 45
1988LU03 J.D. Lumpe, Phys. Lett. B208 (1988) 70
1988LU1A Luntz et al, Bull. Amer. Phys. Soc. 33 (1988) 1080
1988MA05 R.S. Mackintosh, S.G. Cooper and A.A. Ioannides, Nucl. Phys. A476 (1988) 287
1988MA07 J.F. Mateja, G.L. Gentry, N.R. Fletcher, L.C. Dennis and A.D. Frawley, Phys. Rev. C37 (1988) 1004

1988MA09 A. Matsuyama and K. Yazaki, Nucl. Phys. A477 (1988) 673
1988MA1G Majling et al, Phys. Lett. B202 (1988) 489
1988MA1O May and Scheid, Nucl. Phys. A485 (1988) 173
1988MA1X Malfliet, Prog. Part. Nucl. Phys. 21 (1988) 207
1988MA27 W.-H. Ma, G.-Y. Zhang, S.-W. Wang and C.-K. Chen, Nucl. Phys. A481 (1988) 793
1988MA29 S.E. Massen, H.P. Nassena and C.P. Panos, J. Phys. G14 (1988) 753
1988MA31 R.S. Mackintosh, A.A. Ioannides and S.G. Cooper, Nucl. Phys. A483 (1988) 195
1988MA37 K. Masutani and R. Seki, Phys. Rev. C38 (1988) 867
1988MA53 G. Mairle, K.T. Knopfle and M. Seeger, Nucl. Phys. A490 (1988) 371
1988MAZM D. Mack, H. Breuer, N.S. Chant, F. Khazaie, B.G. Ritchie, P.G. Roos, J.D. Silk, P.A. Amaudruz, Th.S. Bauer, Ch.Q. Ingram et al, Bull. Amer. Phys. Soc. 33 (1988) 1587

1988MC03 J.P. McDermott, E. Rost, J.R. Shepard and C.Y. Cheung, Phys. Rev. Lett. 61 (1988) 814

1988MCZT V. McLane, C.L. Dunford and P.F. Rose, Neutron Cross Sections, Vol. 2 (Academic Press, New York, 1988)
1988ME09 A.C. Merchant and M.P. Isidro Filho, Phys. Rev. C38 (1988) 1911

1988ME1H Menchaca-Rocha et al, Proc. Texas A \& M Symp. on Hot Nucl. 1987 (Singapore: World Scientific 1988) 479
1988MEZX S. Mellema, D. Kadrmas, R.W. Finlay, M.S. Islam and F.S. Dietrich, Bull. Amer. Phys. Soc. 33 (1988) 1570
1988MI1J D.J. Millener, AIP Conf. Proc. 163 (1988) 402
1988MI1N Millener, Dover and Gal, Phys. Rev. C38 (1988) 2700
1988MI28 M. Mishra, M. Satpathy and L. Satpathy, J. Phys. G14 (1988) 1115
1988MIZY V. Mishra, C.E. Brient, N. Boukharouba, S.M. Grimes, M. Hoque, R. Pedroni and S.K. Saraf, Bull. Amer. Phys. Soc. 33 (1988) 1022

1988MO05 K. Mohring, T. Srokowski, D.H.E. Gross and H. Homeyer, Phys. Lett. B203 (1988) 210

1988MO18 M.F. Mohar, E. Adamides, W. Benenson, C. Bloch, B.A. Brown, J. Clayton, E. Kashy, M. Lowe, J.A. Nolen, Jr., W.E. Ormand et al, Phys. Rev. C38 (1988) 737

1988MO1B T. Motoba, Nucl. Phys. A470 (1988) 227c
1988MO23 T. Motoba, H. Bando, R. Wunsch and J. Zofka, Phys. Rev. C38 (1988) 1322
1988MU04 H. Muther, R. Machleidt and R. Brockmann, Phys. Lett. B202 (1988) 483
1988MU20 K. Muto, Phys. Lett. B213 (1988) 115
1988 NA10 M.A. Nagarajan, A. Faessler, R. Linden and N. Ohtsuka, Nucl. Phys. A485 (1988) 360

1988NO1B Novikov et al, in Baku (1988) 561
1988OS05 A. Osman, Ann. Phys. 45 (1988) 379
1988OS1C Oset, Nucl. Phys. B304 (1988) 820
$19880 T 04$ N. Ottenstein, S.J. Wallace and J.A. Tjon, Phys. Rev. C38 (1988) 2272
1988 PA05 J.M. Pacheco, E. Maglione and R.A. Broglia, Phys. Rev. C37 (1988) 2257
1988PA1H Pacheco and Machado, Astron. J. 96 (1988) 365
$1988 P A 20$ S. Pal, Nucl. Phys. A486 (1988) 188
1988 PA 21 Z. Papp, Phys. Rev. C38 (1988) 2457
1988PAZZ S.F. Pate, R.W. Zurmuhle, A.H. Wuosmaa, P.H. Kutt, M.L. Halbert, D.C. Hensley and S. Saini, Bull. Amer. Phys. Soc. 33 (1988) 978

1988 PE09 F. Petrovich, J.A. Carr, R.J. Philpott and A.W. Carpenter, Phys. Lett. B207 (1988) 1
1988PE1F Peng, in AIP Conf. Proc. 163 (1988) 160
1988PE1H Peng, in AIP Conf. Proc. 176 (1988) 39
1988PI1E Pile, in AIP Conf. Proc. 176 (1988) 719
1988PO1H Povh, Prog. Part. Nucl. Phys. 20 (1988) 353

1988POZS N.A.F.M. Poppelier, J.H. de Vries, A.A. Wolters and P.W.M. Glaudemans, in AIP Conf. Proc. 164 (1988) 334
1988POZZ J. Pouliot, Y.D. Chan, A. Dacal, B.A. Harmon, R. Knop, M.E. Ortiz, E. Plagnol, R.G. Stokstad, C. Moisan, L. Potvin et al, Bull. Amer. Phys. Soc. 33 (1988) 1179, AG1
1988 PR05 M.W. Price and G.E. Walker, Phys. Rev. C38 (1988) 2860
1988 RA02 L. Ray, G.W. Hoffmann, M.L. Barlett and N. Ottenstein, Phys. Rev. C37 (1988) 224
1988 RA15 T.W. Rackers, S.L. Blatt, T.R. Donoghue, H.J. Hausman, J. Kalen, W. Kim, D.G. Marchlenski, M. Wiescher, M.A. Kovash and A.D. Bacher, Phys. Rev. C37 (1988) 1759

1988RA1G Rae, Int. J. Mod. Phys. A3 (1988) 1343
1988RE1A Reinhard et al, Phys. Rev. C37 (1988) 1026
1988RE1E Reames, Astrophys. J. 330 (1988) L71
1988 RO01 P. Roussel-Chomaz, N. Alamanos, F. Auger, J. Barrette, B. Berthier, B. Fernandez, L. Papineau, H. Doubre and W. Mittig, Nucl. Phys. A477 (1988) 345
1988 RO09 I. Rotter, J. Phys. G14 (1988) 857
1988 RO11 A.S. Rosenthal, D. Halderson, K. Hodgkinson and F. Tabakin, Ann. Phys. 184 (1988) 33

1988RO1L Rolfs, Bull. Amer. Phys. Soc. 33 (1988) 1712
1988RO1M Roos, in AIP Conf. Proc. 163 (1988) 210
1988RO1R Rotter, Fortschr. Physik 36 (1988) 781
1988RU01 V.A. Rubchenya and S.G. Yavshits, Z. Phys. A329 (1988) 217
1988 RU04 M. Rufa, P.-G. Reinhard, J.A. Maruhn, W. Greiner and M.R. Strayer, Phys. Rev. C38 (1988) 390

1988 RY03 J. Ryckebusch, M. Waroquier, K. Heyde, J. Moreau and D. Ryckbosch, Nucl. Phys. A476 (1988) 237
1988 SA03 M. Saraceno, J.P. Vary, G. Bozzolo and H.G. Miller, Phys. Rev. C37 (1988) 1267
1988 SA19 H. Sato, Phys. Rev. C37 (1988) 2902
1988SA1B Saltzberg et al, Bull. Amer. Phys. Soc. 33 (1988) 988
1988SA24 L.L. Salcedo, E. Oset, M.J. Vicente-Vacas and C. Garcia-Recio, Nucl. Phys. A484 (1988) 557

1988 SA31 G. Sanouillet, M. Bolore, Y. Cassagnou, H. Dabrowski, J.M. Hisleur, J. Julien, R. Legrain, G.S. Pappalardo, L. Roussel, A. Badala et al, Nuovo Cim. A99 (1988) 875
1988 SC14 R.A. Schumacher, P.A. Amaudruz, C.H.Q. Ingram, U. Sennhauser, H. Breuer, N.S. Chant, A.E. Feldman, B.S. Flanders, F. Khazaie, D.J. Mack et al, Phys. Rev. C38 (1988) 2205

1988 SE07 V.M. Semjonov, K.M. Omar, K.A. Gridnev and E.F. Hefter, Phys. Rev. C38 (1988) 765

1988SEZU H. Seifert, A.E. Feldman, B.S. Flanders, J.J. Kelly, M. Khandaker, Q. Chen, P. Karen, B.E. Norum, P. Welch and A. Scott, Bull. Amer. Phys. Soc. 33 (1988) 1570

1988 SH03 B. Shivakumar, D. Shapira, P.H. Stelson, S. Ayik, B.A. Harmon, K. Teh and D.A. Bromley, Phys. Rev. C37 (1988) 652
1988 SH05 N.R. Sharma, B.K. Jain and R. Shyam, Phys. Rev. C37 (1988) 873
1988SH1E Shvedov, Nemets and Rudchik, in Baku (1988) 351
1988SH1F Shvedov, Nemets and Rudchik, in Baku (1988) 352
1988SH1H Shen et al, Chin. Phys. 8 (1988) 163
1988 SI01 J.D. Silk, H.D. Holmgren, D.L. Hendrie, T.J.M. Symons, G.D. Westfall, P.H. Stelson, S. Raman, R.L. Auble, J.R. Wu and K. Van Bibber, Phys. Rev. C37 (1988) 158

1988 SO03 S.A. Sofianos, H. Fiedeldey and M. Fabre de la Ripelle, Phys. Lett. B205 (1988) 163
1988 SZ02 J. Szmider and S. Wiktor, Acta Phys. Pol. B19 (1988) 221
1988TA1P Tang and Zheng, High Energy Phys. Nucl. Phys. 12 (1988) 455
1988 TA 21 T. Takaki and M. Thies, Phys. Rev. C38 (1988) 2230
1988 TE03 W. Terlau, M. Burgel, A. Budzanowski, H. Fuchs, H. Homeyer, G. Roschert, J. Uckert and R. Vogel, Z. Phys. A330 (1988) 303
1988 TO09 M. Tohyama, Phys. Rev. C38 (1988) 553
1988TO1C Towner, in AIP Conf. Proc. 164 (1988) 593
1988TRZY D.E. Trcka, S.P. Van Verst, A.D. Frawley, K.W. Kemper, J.D. Fox, V. Hnizdo and E.G. Myers, Bull. Amer. Phys. Soc. 33 (1988) 1101

1988TRZZ J.H. Trice, M.A. Kovash, B. Anderson-Pugh, M. Wang, J.L. Weil, T.R. Donoghue and A. Abduljalil, Bull. Amer. Phys. Soc. 33 (1988) 1023

1988UM1A K. Umezawa, T. Kurio, J. Yamane, F. Shoji, K. Oura, T. Hanawa and S. Yano, Nucl. Instrum. Meth. Phys. Res. B33 (1988) 634

1988 UT02 H. Utsunomiya and R.P. Schmitt, Nucl. Phys. A487 (1988) 162
1988 VA03 A.G.M. van Hees, A.A. Wolters and P.W.M. Glaudemans, Nucl. Phys. A476 (1988) 61
1988VI1A Vinogradova et al, Baku (1988) 567
1988WA1B T. Walcher, Nucl. Phys. A479 (1988) 63c
1988WA1E E.K. Warburton, in Brighton 87 (1988) 81
1988WA31 T. Wada and H. Horiuchi, Prog. Theor. Phys. 80 (1988) 488
1988 WI16 S.W. Wissink, S.S. Hanna, D.G. Mavis and T.R. Wang, Phys. Rev. C37 (1988) 2289

1988WI1B Williams et al, Bull. Amer. Phys. Soc. 33 (1988) 1131
1988WI1F Williams et al, Bull. Amer. Phys. Soc. 33 (1988) 1591
1988WI1I A. Williams, S. Mordechai, C.F. Moore, H. Baer, J. McGill, C. Morris, J. Zumbro, G. Burleson, G. Kyle, M. Burlein et al, Bull. Amer. Phys. Soc. 33 (1988) 1472
1988WO04 A.A. Wolters, A.G.M. van Hees and P.W.M. Glaudemans, Europhys. Lett. 5 (1988) 7
1988WU1A Wu, Chin. Phys. 8 (1988) 213
1988YA08 Yanhe Jin and D.S. Onley, Phys. Rev. C38 (1988) 813
1988YE1A Ye et al, Chin. Phys. 8 (1988) 188
1988ZH07 D.C. Zheng, D. Berdichevsky and L. Zamick, Phys. Rev. C38 (1988) 437
1988ZH1G Zhu et al, High Energy Phys. Nucl. Phys. 12 (1988) 799
1989AB1J Abia and Rebolo, Astrophys. J. 347 (1989) 186
1989AD1B Adamovich et al, Phys. Rev. C40 (1989) 66
1989AL1D Aleksandrov et al, Tashkent (1989) 377
1989AN10 A.N. Antonov, Chr.V. Christov, I.Zh. Petkov and I.S. Bonev, Nuovo Cim. A101 (1989) 639

1989 AR02 T. A. Arakelyan, L. S. Davtyan and S. G. Matinyan, Yad. Fiz. 49 (1989) 86
1989BA06 H. Bando, T. Motoba, M. Sotona and J. Zofka, Phys. Rev. C39 (1989) 587
1989BA2P J.N. Bahcall, Neutrino Astrophys. (Publ. Cambridge Univ. Press 1989)
1989BA63 Yu.A. Batusov, N.I. Kostanashvili, V.I. Tretyak and Kh.M. Chernev, Yad. Fiz. 49 (1989) 1248; Sov. J. Nucl. Phys. 49 (1989) 777

1989BA64 G. Baur and M. Weber, Nucl. Phys. A504 (1989) 352
1989BA92 H. Bando, Nuovo Cim. A102 (1989) 627
1989BA93 H. Bando, M. Sano, J. Zoofka and M. Wakai, Nucl. Phys. A501 (1989) 900
1989BE02 C. Bennhold and L.E. Wright, Phys. Rev. C39 (1989) 927
1989BE11 C. Bennhold, Phys. Rev. C39 (1989) 1944
1989 BE14 E.J. Beise, G. Dodson, M. Garcon, S. Hoibraten, C. Maher, D.L. Pham, R.P. Redwine, W. Sapp, K.E. Wilson, S.A. Wood and M. Deady, Phys. Rev. Lett. 62 (1989) 2593

1989 BE17 C. Beck, D.G. Kovar, S.J. Sanders, B.D. Wilkins, D.J. Henderson, R.V.F. Janssens, W.C. Ma, M.F. Vineyard, T.F. Wang, C.F. Maguire et al, Phys. Rev. C39 (1989) 2202

1989BE2H Bencivenni et al, Astrophys. J. 71 (1989) 109
1989BEZC J.A. Behr, K.A. Snover, C.A. Gossett, J.H. Gundlach, W. Hering, Bull. Amer. Phys. Soc. 34 (1989) 1832
1989BI1A Bibi et al, in Wein 89 (1989) Paper PG04

1989BLZZ D. Blumenthal, S.V. Greene, J. Mitchell, B. Shivakumar, D.A. Bromley, J. Gomez del Campo, A. Ray, D. Shapira and M. Hindi, Bull. Amer. Phys. Soc. 34 (1989) 1155
1989BOYV I.N. Borzov and G.Ya. Tertychnyi, in Tashkent (1989) 427
1989BR14 I.M. Brancus, I. Berceanu, A. Buta, A. Demian, C. Grama, I. Lazar, I. Mihai, M. Petrascu, V. Simion and A. Constantinescu, Z. Phys. A333 (1989) 71

1989BU15 A. Bulgac, Phys. Rev. C40 (1989) 1073
1989 CA04 M. Cauvin, V. Gillet and T. Kohmura, Phys. Lett. B219 (1989) 35
1989CA11 R. Caplar, M. Korolija and N. Cindro, Nucl. Phys. A495 (1989) 185C
1989 CA13 M. Cavinato, M. Marangoni and A.M. Sarius, Nucl. Phys. A496 (1989) 108
1989CA14 N. Carlin-Filho, M.M. Coimbra, N. Added, R.M. Anjos, L. Fante, Jr., M.C.S. Figueira, V. Guimaraes, E.M. Szanto, A. Szanto de Toledo and O. Civitarese, Phys. Rev. C40 (1989) 91
1989 CA15 S. Cavallaro, S.Z. Yin, G. Prete and G. Viesti, Phys. Rev. C40 (1989) 98
1989CA1L Carstoiu et al, Rev. Roum. Phys. 34 (1989) 1165
1989CEZZ D.A. Cebra, J. Clayton, S. Howden, J. Karn, A. Nadasen, C. Ogilvie, A. Vander Molen, G.D. Westfall, W.K. Wilson and J. Winfield, Bull. Amer. Phys. Soc. 34 (1989) 1221

1989CH04 N.S. Chant and P.G. Roos, Phys. Rev. C39 (1989) 957
1989 CH13 D.C. Choudhury and T. Guo, Phys. Rev. C39 (1989) 1883
1989CH1X Chen and Li, Astrophys. Space Sci. 158 (1989) 153
1989CH31 A.A. Chumbalov, R.A. Eramzhyan and S.S. Kamalov, Czech. J. Phys. B39 (1989) 853

1989 CH32 R.E. Chrien, Czech. J. Phys. B39 (1989) 914
1989 CU03 B. Cujec, I. Hunyadi and I.M. Szoghy, Phys. Rev. C39 (1989) 1326
1989CU1E Cummings, Stone and Webber, Bull. Amer. Phys. Soc. 34 (1989) 1171
1989DA1C Dabrowski, Acta Phys. Pol. B20 (1989) 61
1989 DE02 P.A. DeYoung, M.S. Gordon, Xiuqin Lu, R.L. McGrath, J.M. Alexander, D.M. de Castro Rizzo and L.C. Vaz, Phys. Rev. C39 (1989) 128
1989DE1P Demkov and Karpeshin, in Tashkent (1989) 438
1989DE22 F.W.N. de Boer, J. Deutsch, J. Lehmann, R. Prieels and J. Steyaert, J. Phys. G15 (1989) L177

1989DO04 J. Dobes, Phys. Lett. B222 (1989) 315
1989 DO05 T.W. Donnelly, E.L. Kronenberg and J.W. Van Orden, Nucl. Phys. A494 (1989) 365
1989DO1I C.B. Dover, D.J. Millener and A. Gal, Phys. Rept. 184 (1989) 1

1989DR1C Drechsel and Giannini, Rep. Prog. Phys. 52 (1989) 1083
1989 EL01 M. El-Shabshiry, A. Faessler and M. Ismail, J. Phys. G15 (1989) L59
1989EL02 Ch. Elster and P.C. Tandy, Phys. Rev. C40 (1989) 881
1989 ES06 M.A. Eswaran, S. Kumar, E.T. Mirgule and N.L. Ragoowansi, Phys. Rev. C39 (1989) 1856

1989 ES07 H. Esbensen and F. Videbaek, Phys. Rev. C40 (1989) 126
1989FE07 F. Fernandez, T. Lopez-Arias and C. Prieto, Z. Phys. A334 (1989) 349
1989FE1F Feldmeier, Schonhofen and Cubero, Nucl. Phys. A495 (1989) 337c
1989FEZV A.E. Feldman, P. Boberg, B.S. Flanders, S.D. Hyman, J.J. Kelly, M.A. Khandaker, H. Seifert, P. Karen, B.E. Norum, A. Saha et al, Bull. Amer. Phys. Soc. 34 (1989) 1232
1989 FI03 R.L. Filho, A. Lepine-Szily, A.C.C. Villari and O.P. Filho, Phys. Rev. C39 (1989) 680
1989 FI04 J. Fink, V. Blum, P.-G. Reinhard, J.A. Maruhn and W. Greiner, Phys. Lett. B218 (1989) 277

1989 FI05 D.E. Fields, K. Kwiatkowski, D. Bonser, R.W. Viola, V.E. Viola, W.G. Lynch, J. Pochodzalla, M.B. Tsang, C.K. Gelbke, D.J. Fields et al, Phys. Lett. B220 (1989) 356
1989FI08 B.W. Filippone, J. Humblet and K. Langanke, Phys. Rev. C40 (1989) 515
1989 FO07 R. Fonte, A. Insolia, G. Palama and G.V. Russo, Nucl. Phys. A495 (1989) 43C
1989FO1D Fowler, Nature 339 (1989) 345
1989FR02 J. Friedrich and N. Voegler, Phys. Lett. B217 (1989) 220
1989 FR04 R.M. Freeman, F. Haas, A. Morsad and C. Beck, Phys. Rev. C39 (1989) 1335
1989 FU02 M. Fukugita, Y. Kohyama, K. Kubodera and T. Kuramoto, Astrophys. J. 337 (1989) L59

1989 FU10 B.R. Fulton, S.J. Bennett, M. Freer, R.D. Page, P.J. Woods, S.C. Allcock, A.E. Smith, W.D.M. Rae and J.S. Lilley, Phys. Lett. B232 (1989) 56

1989FU1J Fukahori, JAERI-M 89-047 (1989)
1989FU1N Fukatsu, Kato and Tanaka, Prog. Theor. Phys. 81 (1989) 738
1989 GA05 C. Gao and Y. Kondo, Phys. Lett. B219 (1989) 40
1989 GA09 C. García-Recio, M.J. Lopez, J. Navarro and F. Roig, Phys. Lett. B222 (1989) 329
1989GA26 F. A. Gareev, S. N. Ershov, A. A. Ogloblin and S. B. Sakuta, Fiz. Elem. Chastits At. Yad. 20 (1989) 1293; Sov. J. Part. Nucl. 20 (1989) 547
1989GE11 C.K. Gelbke, Nucl. Phys. A495 (1989) 27c
1989GO1F Gong and Tohyama, Bull. Amer. Phys. Soc. 34 (1989) 1156
1989 GR05 N. Grion, R. Rui, F.M. Rozon, M. Hanna, R.R. Johnson, J. McAlister, R. Olszewski, C. Ponting, M.E. Sevior, V. Sossi et al, Nucl. Phys. A492 (1989) 509

1989 GR06 P.A.M. Gram, S.A. Wood, E.R. Kinney, S. Hoibraten, P. Mansky, J.L. Matthews, T. Soos, G.A. Rebka, Jr. and D.A. Roberts, Phys. Rev. Lett. 62 (1989) 1837
1989 GR13 K. Grotowski, J. Ilnicki, T. Kozik, J. Lukasik, S. Micel, Z. Sosin, A. Wieloch, N. Heide, H. Jelitto, I. Kiener et al, Phys. Lett. B223 (1989) 287

1989GRZQ W. Greiner, M. Ivascu, D.N. Poenaru and A. Sandulescu, Treatise on Heavy-Ion Sci. 8 (1989) 641; Ed. Bromlev, published by Plenum Publ. Corp. 1989
1989GU06 I.S. Gulkarov and V.I. Kuprikov, Yad. Fiz. 49 (1989) 33; Sov. J. Nucl. Phys. 49 (1989) 21

1989GU1J N. Guessoum, Astrophys. J. 345 (1989) 363
1989GU1Q Gupta and Webber, Astrophys. J. 340 (1989) 1124
1989GU28 N. Guessoum and R.J. Gould, Astrophys. J. 345 (1989) 356
1989HA07 R. Hausmann and W. Weise, Nucl. Phys. A491 (1989) 598
1989HA24 M.Y.M. Hassan, M.N.H. Comsan and I.M.A. Tageldin, Ann. Phys. 46 (1989) 207
1989HA29 R. Hausmann and W. Weise, Nuovo Cim. A102 (1989) 421
1989HA32 D. Halderson, Phys. Rev. C40 (1989) 2173
1989HAZY A.C. Hayes, J.L. Friar and D.D. Strottman, Bull. Amer. Phys. Soc. 34 (1989) 1187
1989 HE04 R. Heaton, H. Lee, P. Skensved and B.C. Robertson, Nucl. Instrum. Meth. Phys. Res. A276 (1989) 529
1989HE21 H. Heiselberg, A.S. Jensen, A. Miranda and G.C. Oades, Phys. Scr. 40 (1989) 141
1989HO10 S.-W. Hong, Y.J. Lee, B.T. Kim and D. Cha, Phys. Rev. C39 (1989) 2061
1989HU1C Huang and Yen, Phys. Rev. C40 (1989) 635
1989HY1B Hyman et al, Bull. Amer. Phys. Soc. 34 (1989) 1568
1989 JE07 C. Jeanperrin, L.H. Rosier, B. Ramstein and E.I. Obiajunwa, Nucl. Phys. A503 (1989) 77

1989JI1A L. Jin, W.D. Arnett and S.K. Chakrabarti, Astrophys. J. 336 (1989) 572
1989JO07 M.B.Johnson, Czech. J. Phys. B39 (1989) 822
1989KA02 J.D. Kalen, H.J. Hausman, A. Abduljalil, W. Kim, D.G. Marchlenski, J.P. McDermott, T.W. Rackers, S.L. Blatt, M.A. Kovash and A.D. Bacher, Phys. Rev. C39 (1989) 340

1989KA24 F. Kappeler, H. Beer and K. Wisshak, Rep. Prog. Phys. 52 (1989) 945
1989KA28 S.P. Kamerdzhiev and V.N. Tkachev, Z. Phys. A334 (1989) 19
1989 KA35 Ch. L. Katkhat, Izv. Akad. Nauk SSSR, Ser. Fiz. 53 (1989) 103; Bull. Acad. Sci. USSR, Phys. Ser. 53 (1989) 100

1989 KA37 G. Kalbermann, E. Friedman, A. Gal and C.J. Batty, Nucl. Phys. A503 (1989) 632

1989 KE03 J.J. Kelly, W. Bertozzi, T.N. Buti, J.M. Finn, F.W. Hersman, C. Hyde-Wright, M.V. Hynes, M.A. Kovash, B. Murdock, B.E. Norum et al, Phys. Rev. C39 (1989) 1222
1989KE05 J.J. Kelly, Phys. Rev. C39 (1989) 2120
1989KH01 M.Kh. Khankhasayev and N.S. Topilskaya, Phys. Lett. B217 (1989) 14
1989KH08 Khankhasayev, Czech. J. Phys. 39 (1989) 836
1989 KO10 K. Koide, O. Dietzsch, H. Takai and A. Bairrio Nuevo, Jr., Phys. Rev. C39 (1989) 1636
1989 KO23 Y. Kondo, B.A. Robson and R. Smith, Phys. Lett. B227 (1989) 310
1989KO29 M.A. Kovash, B. Anderson-Pugh, M.T. McEllistrem, J.K. Ternes, J.H. Trice, J.L. Weil, S.L. Blatt, H.J. Hausman, D.G. Marchlenski and A.D. Bacher, Phys. Rev. C40 (1989) R1093

1989KO2A Kolde, Sao Paulo (1989) 326
1989 KO37 C.G. Koutroulos, J. Phys. G15 (1989) 1659
1989 KO55 Yu.E. Kozyr and M.V. Sokolov, Izv. Akad. Nauk SSSR, Ser. Fiz. 53 (1989) 2246; Bull. Acad. Sci. USSR, Phys. Ser. 53, No. 11 (1989) 194
1989KRZX R.A. Kryger and J.J. Kolata, Bull. Amer. Phys. Soc. 34 (1989) 1156
1989KU30 M. Kutschera and W. Wojcik, Phys. Lett. B223 (1989) 11
1989KU31 S.D. Kurgalin and Yu.M. Chuvilsky, Ukr. Fiz. Zh. 34 (1989) 1157
1989LA1G Lang and Werntz, Bull. Amer. Phys. Soc. 34 (1989) 1186
1989LA1I Lanskoi, Sov. J. Nucl. Phys. 49 (1989) 41
1989 LE12 D. Lebrun, J. Chauvin, D. Rebreyend, G. Perrin, P. De Saintignon, P. Martin, M. Buenerd, C. Le Brun, J.F. Lecolley, Y. Cassagnou et al, Phys. Lett. B223 (1989) 139
1989LE23 S.M. Lenzi, A. Vitturi and F. Zardi, Phys. Rev. C40 (1989) 2114
1989LE24 S.J. Lee, H.H. Gans, E.D. Cooper and S. Das Gupta, Phys. Rev. C40 (1989) 2585
1989LH02 M. L’Huillier and Nguyen Van Giai, Phys. Rev. C39 (1989) 2022
1989LI01 Li Guo-Qiang and Xu Gong-Ou, Phys. Rev. C39 (1989) 276
1989LI1G Lipparini and Stringari, Phys. Rept. 175 (1989) 103
1989LI1H Liu, Londergan and Walker, Phys. Rev. C40 (1989) 832
1989LI1I Livio et al, Nature 340 (1989) 281
1989 LI29 Y. Li, Z. Xiang, H. Xu, Y. Mu, S. Wang and J. Liu, Chin. J. Nucl. Phys. 11 (1989) 69
1989MA06 S.E. Massen and C.P. Panos, J. Phys. G15 (1989) 311
1989MA08 R. Maass, K.-E. May and W. Scheid, Phys. Rev. C39 (1989) 1201
1989MA23 F. Malaguti, E. Verondini, E. Fuschini, G. Vannini, I. Iori, A. Bracco, A. Moroni, E. Fioretto, R.A. Ricci, P. Boccaccio et al, Nuovo Cim. A101 (1989) 517

1989MA30 J. Mares and J. Zofka, Z. Phys. A333 (1989) 209
1989MA41 A. Malecki, P. Picozza and P.E. Hodgson, Nuovo Cim. A101 (1989) 1045
1989MA45 Z. Majka, V. Abenante, Z. Li, N.G. Nicolis, D.G. Sarantites, T.M. Semkow, L.G. Sobotka, D.W. Stracener, J.R. Beene, D.C. Hensley et al, Phys. Rev. C40 (1989) 2124
1989MC05 J.A. McNeil, R.J. Furnstahl, E. Rost and J.R. Shepard, Phys. Rev. C40 (1989) 399
1989ME10 H. Meier-Hajduk, U. Oelfke and P.U. Sauer, Nucl. Phys. A499 (1989) 637
1989ME1C Mewaldt and Stone, Astrophys. J. 337 (1989) 959
1989MI06 F. Michel, Y. Kondo and G. Reidemeister, Phys. Lett. B220 (1989) 479
1989MI1K Miao and Chao, Nucl. Phys. A494 (1989) 620
1989MO17 T. Motoba, Nuovo Cim. A102 (1989) 345
1989NA01 J. Navarro and F. Roig, Phys. Rev. C39 (1989) 302
19890B1B Oberhummer, Herndl and Leeb, Kerntechnik 53 (1989) 211
1989 OR07 G.V. O’Rielly, D. Zubanov and M.N. Thompson, Phys. Rev. C40 (1989) 59
1989 PI01 J. Piekarewicz and G.E. Walker, Phys. Rev. C39 (1989) 1
1989 PI07 A. Picklesimer and J.W. Van Orden, Phys. Rev. C40 (1989) 290
1989PI11 P.H. Pile, Nuovo Cim. A102 (1989) 413
1989PI1F Pieper, Bull. Amer. Phys. Soc. 34 (1989) 1149
1989 PO05 I.V. Poplavsky, Yad. Fiz. 49 (1989) 408; Sov. J. Nucl. Phys. 49 (1989) 253
1989 PO06 N.T. Porile, A.J. Bujak, D.D. Carmony, Y.H. Chung, L.J. Gutay, A.S. Hirsch, M. Mahi, G.L. Paderewski, T.C. Sangster, R.P. Scharenberg et al, Phys. Rev. C39 (1989) 1914

1989 PO07 J. Pouliot, Y. Chan, A. Dacal, D.E. DiGregorio, B.A. Harmon, R. Knop, M.E. Oritz, E. Plagnol, R.G. Stokstad, C. Moisan et al, Phys. Lett. B223 (1989) 16

1989PO1K Poppelier, Ph.D. Thesis, Univ. of Utrecht (1989)
1989RA02 L. Ray, Phys. Rev. C39 (1989) 1170
1989 RA15 L. Ray and J.R. Shepard, Phys. Rev. C40 (1989) 237
$1989 R A 16$ S. Raman, C.W. Nestor, Jr. , S. Kahane and K.H. Bhatt, At. Data Nucl. Data Tables 42 (1989) 1

1989RA17 P. Raghavan, At. Data Nucl. Data Tables 42 (1989) 189
1989 RE08 U. Reuter, F. Hagelberg, S. Kremeyer, H.-J. Simonis, K.-H. Speidel, M. Knopp, W. Karle, J. Cub, P.N. Tandon and J. Gerber, Phys. Lett. B230 (1989) 16
1989RE1C Reinhard, Rep. Prog. Phys. 52 (1989) 439
1989RI1E Riska, Phys. Rept. 181 (1989) 207

1989 RY01 J. Ryckebusch, K. Heyde, D. Van Neck and M. Waroquier, Phys. Lett. B216 (1989) 252

1989 RY06 J. Ryckebusch, K. Heyde, D. Van Neck and M. Waroquier, Nucl. Phys. A503 (1989) 694

1989 SA10 M.G. Saint-Laurent, R. Anne, D. Bazin, D. Guillemaud-Mueller, U. Jahnke, Jin GenMing, A.C. Mueller, J.F. Bruandet, F. Glasser, S. Kox et al, Z. Phys. A332 (1989) 457

1989 SA14 A. Sarma and R. Singh, Z. Phys. A333 (1989) 299
1989SAZZ R. Sawafta, A.D. Bacher, G.P.A. Berg, J. Lisantti, C. Olmer, B.K. Park, E.J. Stephenson, S.W. Wissink, D. Frekers, J.D. King et al, Bull. Amer. Phys. Soc. 34 (1989) 1141

1989SC1I Schmidt et al, Phys. Lett. B229 (1989) 197
1989 SE06 V. M. Semjonov, H. M. Omar, K. A. Gridnev and E. F. Hefter, Phys. Rev. C40 (1989) 463
1989 SH13 T. Shigehara, K. Shimizu and A. Arima, Nucl. Phys. A492 (1989) 388
1989SH27 J.R. Shepard, E. Rost and J.A. McNeil, Phys. Rev. C40 (1989) 2320
1989 SI09 A.A. Sibirtsev and Yu.V. Trebukhovsky, Yad. Fiz. 49 (1989) 1001; Sov. J. Nucl. Phys. 49 (1989) 622

1989 SP01 R.H. Spear, At. Data Nucl. Data Tables 42 (1989) 55
1989SP1G Spite, Barbuy and Spite, Astron. Astrophys. 222 (1989) 35
1989 ST08 E. Stiliaris, H.G. Bohlen, P. Frobrich, B. Gebauer, D. Kolbert, W. von Oertzen, M. Wilpert and Th. Wilpert, Phys. Lett. B223 (1989) 291
1989 SU01 Y. Suzuki and S. Hara, Phys. Rev. C39 (1989) 658
1989 SU05 E. Suraud, M. Pi and P. Schuck, Nucl. Phys. A492 (1989) 294
1989SU1I Suraud, Gregoire and Tamain, Prog. Part. Nucl. Phys. 23 (1989) 357
1989 TA04 H. Tanabe, M. Kohno and C. Bennhold, Phys. Rev. C39 (1989) 741
1989 TA16 H. Tamura, T. Yamazaki, R.S. Hayano, T. Ishikawa, M. Iwasaki, T. Motoki, H. Outa, H. Sakurai, E. Takada, W. Bruckner et al, Phys. Rev. C40 (1989) R479

1989 TA17 H. Tamura, T. Yamazaki, M. Sano, Y. Yamamoto, M. Wakai and H. Bando, Phys. Rev. C40 (1989) R483
1989 TA19 H. Tamura, R.S. Hayano, T. Ishikawa, M. Iwasaki, T. Motoki, H. Outa, H. Sakurai, E. Takada, W. Bruckner, S. Paul et al, Nuovo Cim. A102 (1989) 575
1989 TA24 Z.-Q. Tan and Y.-T. Gu, J. Phys. G15 (1989) 1699
1989 TA26 M. Takahara, M. Hino, T. Oda, K. Muto, A.A. Wolters, P.W.M. Glaudemans and K. Sato, Nucl. Phys. A504 (1989) 167

1989 TA32 Tanaka, Phys. Lett. B227 (1989) 195
1989 TE02 F. Terrasi, A. Brondi, G. La Rana, G. De Angelis, A. D’Onofrio, R. Moro, E. Perillo and M. Romano, Phys. Rev. C40 (1989) 742
1989 TE06 M.L. Terranova, D.A. de Lima and J.D. Pinheiro Filho, Europhys. Lett. 9 (1989) 523
1989TH1C Thielemann and Wiescher, Proc. int. Symp. on Heavy Ion Phys. and Nucl. Astrophys. Problems, Tokyo, 21-23 July 1988, ed. S. Kubono, M. Ishihara, T. Nomura (World Scientific, 1989) 27
1989 TO11 H. Toki, S. Hirenzaki, T. Yamazaki and R.S. Hayano, Nucl. Phys. A501 (1989) 653
1989 VA04 S. P. Van Verst, D. P. Sanderson, D. E. Trcka, K. W. Kemper, V. Hnizdo, B. G. Schmidt and K. R. Chapman, Phys. Rev. C39 (1989) 853
1989 VA09 S.Y. van der Werf, S. Brandenburg, P. Grasdijk, W.A. Sterrenburg, M.N. Harakeh, M.B. Greenfield, B.A. Brown and M. Fujiwara, Nucl. Phys. A496 (1989) 305

1989VI01 M.J. Vicente, E. Oset, L.L. Salcedo and C. Garcia-Recio, Phys. Rev. C39 (1989) 209
1989 VI09 A.C.C. Villari, A. Lepine-Szily, R.L. Filho, O.P. Filho, M.M. Obuti, J.M. Oliveira, Jr. and N. Added, Nucl. Phys. A501 (1989) 605
1989 VO19 V.I. Voloshchuk, I.V. Dogyust, V.V. Kirichenko and A.F. Khodyachikh, Ukr. Fiz. Zh. 34 (1989) 511
1989 WA26 R. E. Warner, A. Okihana, M. Fujiwara, N. Matsuoka, K. Tamura, M. Tosaki, T. Ohsawa, K. Fukunaga, S. Kakigi, J. Kasagi et al, Nucl. Phys. A503 (1989) 161

1989WAZZ J.W. Watson, B.D. Anderson, A.R. Baldwin, R. Madey, M.R. Plumley, J. Schambach, P.J. Pella and C.C. Foster, Bull. Amer. Phys. Soc. 34 (1989) 1142

1989WE1E Wefel et al, Bull. Amer. Phys. Soc. 34 (1989) 1137
1989WE1I Weller et al, Sao Paulo (1989) 8
1989 WI20 A. Wirzba, H. Toki, E.R. Siciliano, M.B. Johnson and R. Gilman, Phys. Rev. C40 (1989) 2745

1989 WI24 M. Wiescher, J. Gorres, S. Graff, L. Buchmann and F.-K. Thielemann, Astrophys. J. 343 (1989) 352.

1989WUZZ A.H. Wuosmaa and R.W. Zurmuhle, Bull. Amer. Phys. Soc. 34 (1989) 1187
1989 YA15 S. Yamaguchi, K. Yabana and H. Horiuchi, Prog. Theor. Phys. 82 (1989) 217
1989YI1A Yin et al, Chin. Phys. 9 (1989) 1045
1989 YO02 A. Yokoyama, T. Saito, H. Baba, K. Hata, Y. Nagame, S. Ichikawa, S. Baba, A. Shinohara and N. Imanishi, Z. Phys. A332 (1989) 71
1989 YO09 W. Yokota, T. Nakagawa, M. Ogihara, T. Komatsubara, Y. Fukuchi, K. Suzuki, W. Galster, Y. Nagashima, K. Furuno, S.M. Lee et al, Z. Phys. A333 (1989) 379
1989ZHZY X.L. Tu, V.G. Lind, D.J. Vieira, J.M. Wouters, K.E.G. Lobner, Z.Y. Zhou, H.L. Seifert, Bull. Amer. Phys. Soc. 34 (1989) 1800

1989 ZO03 J. Zofka, Czech. J. Phys. B39 (1989) 925
1989ZUZZ R.W. Zurmuhle, A.H. Wuosmaa, S.F. Pate, D.A. Smith and G. Vaughan, Bull. Amer. Phys. Soc. 34 (1989) 1810
1990 AB07 U. Abbondanno, F. Demanins, G. Vannini, L. Vannucci, P. Boccaccio, R. Dona, R.A. Ricci, M. Bozin and N. Cindro, J. Phys. G16 (1990) 1517

1990 AB10 U. Abbondanno, K. Bethge, N. Cindro and W. Greiner, Phys. Lett. B249 (1990) 396
1990AB1D Abraamyan et al, Yad. Fiz. 51 (1990) 150; Sov. J. Nucl. Phys. 51 (1990) 94
1990AB1E Abia, Canal and Isern, Astrophys. Space Sci. 170 (1990) 361
1990AB1G F. Abel, G. Amsel, E. d'Artemare, C. Ortega, J. Siejka and G. Vizkelethy, Nucl. Instrum. Meth. Phys. Res. B45 (1990) 100

1990ADZT V.V. Adodin, A.M. Blekhman, N.T. Burtebaev, A.D. Duisebaev, G.N. Ivanov, V.I. Kanashevich and A.I. Redkina, Program and Thesis, Proc. 40th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei., Leningrad, (1990) 321
1990ADZU V.V. Adodin, A.M. Blekhman, N.T. Burtebaev, A.D. Duisebaev, G.N. Ivanov, V.I. Kanashevich and A.I. Redkina, Program and Thesis, Proc. 40th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei., Leningrad, (1990) 320

1990 AL05 M.M. Alam and F.B. Malik, Phys. Lett. B237 (1990) 14
1990AM06 M.Ya. Amusya, I.S. Gulkarov and M.M. Mansurov, Yad. Fiz. 52 (1990) 1252; Sov. J. Nucl. Phys. 52 (1990) 796

1990AR11 H.F. Arellano, F.A. Brieva and W.G. Love, Phys. Rev. C42 (1990) 652
1990AS06 R.M. Asherova, Yu.F. Smirnov and D.V. Fursa, Izv. Akad. Nauk SSSR, Ser. Fiz. 54 (1990) 131; Bull. Acad. Sci. USSR, Phys. Ser. 54 (1990) 134

1990AZZY V. Azzouz and N. Bendjaballah, Bull. Amer. Phys. Soc. 35 (1990) 1720
1990BA1M Barthe et al, Nucl. Instrum. Meth. Phys. Res. B45 (1990) 105
1990BA1Z Baroni et al, Nucl. Phys. A516 (1990) 673
1990BL16 L.D. Blokhintsev, A.M. Mukhamedzhanov, N.K. Timofeyuk and Yu.M. Chuvilsky, Izv. Akad. Nauk SSSR, Ser. Fiz. 54 (1990) 569; Bull. Acad. Sci. USSR, Phys. Ser. 54 (1990) 190

1990BL1H Blecher et al, Nucl. Phys. B Proc. Suppl. 13 (1990) 322
1990BL1K Blaes et al, Astrophys. J. 363 (1990) 612
1990BO01 W. Bohne, H. Morgenstern, K. Grabisch, T. Nakagawa and S. Proschitzki, Phys. Rev. C41 (1990) R5

1990BO1X Bonetti and Chiesa, Mod. Phys. Lett. A5 (1990) 619
1990BO31 S. Boffi, C. Giusti, F.D. Pacati and M. Radici, Nucl. Phys. A518 (1990) 639
1990BR1Q Brown, Bull. Amer. Phys. Soc. 35 (1990) 940

1990BRZY T.B. Bright and S.R. Cotanch, Bull. Amer. Phys. Soc. 35 (1990) 927
1990BU27 M. Buballa, A. Gattone, R. De Haro, R. Jessenberger and S. Krewald, Nucl. Phys. A517 (1990) 61

1990 CA09 F. Cannata, J.P. Dedonder and W.R. Gibbs, Phys. Rev. C41 (1990) 1637
1990 CA34 B. Castel, Y. Okuhara and H. Sagawa, Phys. Rev. C42 (1990) R1203
1990 CH13 H.C. Chiang, E. Oset and P. Fernandez de Cordoba, Nucl. Phys. A510 (1990) 591
1990 CO19 W.R. Coker and L. Ray, Phys. Rev. C42 (1990) 659
1990 CO29 S.G. Cooper and R.S. Mackintosh, Nucl. Phys. A517 (1990) 285
1990 CR02 R. Crespo, R.C. Johnson and J.A. Tostevin, Phys. Rev. C41 (1990) 2257
1990 DA03 B. Dasmahapatra, B. Cujec, F. Lahlou, I.M. Szoghy, S.C. Gujrathi, G. Kajrys and J.A. Cameron, Nucl. Phys. A509 (1990) 393

1990DA14 J.F. Dawson and R.J. Furnstahl, Phys. Rev. C42 (1990) 2009
1990DA1Q Darwish et al, Appl. Radiat. Isot. 41 (1990) 1177
1990DE16 P.K.A. de Witt Huberts, J. Phys. G16 (1990) 507
1990DE1M Degtyarenko et al, Z. Phys. A335 (1990) 231
1990 DE35 L.S. de Paula and L.F. Canto, Phys. Rev. C42 (1990) 2628
1990EL01 Ch. Elster, T. Cheon, E.F. Redish and P.C. Tandy, Phys. Rev. C41 (1990) 814
1990 ER09 M. Ermer, H. Clement, P. Grabmayr, G. Graw, R. Hertenberger, H. Kader and G.J. Wagner, J. Phys.(Paris), Colloq.C-6 (1990) 431
1990FEZY A.E. Feldman, P. Boberg, B.S. Flanders, S.D. Hyman, J.J. Kelly, M.A. Khandaker, H. Seifert, P. Karen, B.E. Norum, P. Welch, A. Saha et al, Bull. Amer. Phys. Soc. 35 (1990) 1038

1990FU06 F. Fujimoto, Nucl. Instrum. Meth. Phys. Res. B45 (1990) 49
1990GL02 P. Gleissl, M. Brack, J. Meyer and P. Quentin, Ann. Phys. 197 (1990) 205
1990 GL09 C. Glashausser, J. Phys.(Paris), Colloq.C-6 (1990) 577
1990HA35 W.C. Haxton, Phys. Rev. Lett. 65 (1990) 1325
1990 HJ02 B. Hjorvarsson and J. Ryden, Nucl. Instrum. Meth. Phys. Res. B45 (1990) 36
1990HO1I Hollowell and Iben, Astrophys. J. 349 (1990) 208
1990HO1Q Hodgson, Contemp. Phy. 31 (1990) 99
1990HO24 T. Hoch and P. Manakos, Z. Phys. A337 (1990) 383
1990 IR01 R. Irmscher, Ch. Buchal and B. Stritzker, Nucl. Instrum. Meth. Phys. Res. B51 (1990) 442

1990 JI02 X. Ji, B.W. Filippone, J. Humblet and S.E. Koonin, Phys. Rev. C41 (1990) 1736

1990JI1C Jin et al, Nucl. Phys. A506 (1990) 655
1990 KE03 J.J. Kelly, J.M. Finn, W. Bertozzi, T.N. Buti, F.W. Hersman, C. Hyde-Wright, M.V. Hynes, M.A. Kovash, B. Murdock, P. Ulmer et al, Phys. Rev. C41 (1990) 2504
1990KH04 H.S. Khosla, S.S. Malik and R.K. Gupta, Nucl. Phys. A513 (1990) 115
1990 KH05 S.A. Khan and W.P. Beres, Phys. Rev. C42 (1990) 1768
1990 KO18 Y. Kondo, F. Michel and G. Reidemeister, Phys. Lett. B242 (1990) 340
1990KO1X Kong et al, Chin. Phys. Lett. 7 (1990) 212
1990KO2C Koznichenko et al, Acta Phys. Pol. B21 (1990) 1031
1990 KO36 M. Kohno and H. Tanabe, Nucl. Phys. A519 (1990) 755
1990 KR14 R.A. Kryger, J.J. Kolata, W. Chung, S. Dixit, R.J. Tighe, J.J. Vega, P.A. De Young, C. Copi, J. Sarafa, D.G. Kovar et al, Phys. Rev. Lett. 65 (1990) 2118
1990 KR16 A.T. Kruppa and K. Kato, Prog. Theor. Phys. 84 (1990) 1145
1990KR1D Krakauer et al, in Panic XII (1990) Paper XV-8
1990LI10 Qing-Run Li and Sheng-Zhong Chen, Phys. Rev. C41 (1990) 2449
1990LO11 R.J. Lombard, J. Phys. G16 (1990) 1311
1990 LO20 G.M. Lotz and H.S. Sherif, J. Phys.(Paris), Colloq.C-6 (1990) 495
1990MA63 S.E. Massen, J. Phys. G16 (1990) 1713
1990MC06 K.G. McNeill and J.W. Jury, Phys. Rev. C42 (1990) 2234
1990MEZV K. Mellendorf, D. Dale, R. Eisenstein, F. Federspiel, M. Lucas, B. MacGibbon and A. Nathan, Bull. Amer. Phys. Soc. 35 (1990) 1680

1990MO1K Morgenstern, Bull. Amer. Phys. Soc. 35 (1990) 1634
1990MO36 T.M. Morse, C.E. Price and J.R. Shepard, Phys. Lett. B251 (1990) 241
1990MU15 H. Muther, R. Machleidt and R. Brockmann, Phys. Rev. C42 (1990) 1981
1990 NA15 T. Nakano, M. Nakamura, H. Sakaguchi, M. Yosoi, M. Ieiri, H. Togawa, S. Hirata, O. Kamigaito, H.M. Shimizu, M. Iwaki et al, Phys. Lett. B240 (1990) 301
$19900 H 04$ H. Ohnuma, N. Hoshino, K. Ieki, M. Iwase, H. Shimizu, H. Toyokawa, T. Hasegawa, K. Nisimura, M. Yasue, H. Kabasawa et al, Nucl. Phys. A514 (1990) 273

1990 OL01 N. Olsson, E. Ramstrom and B. Trostell, Nucl. Phys. A509 (1990) 161
1990 OP01 A.K. Opper, S.W. Wissink, A.D. Bacher, J. Lisantti, C. Olmer, R. Sawafta, E.J. Stephenson and S.P. Wells, J. Phys.(Paris), Colloq.C-6 (1990) 607
1990PAZW S.J. Padalino, S. Lassell, D. Cigna, L.C. Dennis, M. Tiede and R. Zingarelli, Bull. Amer. Phys. Soc. 35 (1990) 1664
1990 PO04 I.V. Poplavsky, Yad. Fiz. 51 (1990) 1258; Sov. J. Nucl. Phys. 51 (1990) 799
1990RA12 L. Ray, Phys. Rev. C41 (1990) 2816

1990RE1E Reed and Haider, Bull. Amer. Phys. Soc. 35 (1990) 947
1990RO1C Rolfs and Barnes, Ann. Rev. Nucl. Part. Sci. 40 (1990) 45
1990SA1O Satchler, Proc. 1989 Int. Nucl. Phys. Conf., Sao Paulo, Brasil (Singapore: World SCientific 1990) 541
1990 SA 27 S.K. Saha, W.W. Daehnick, S.A. Dytman, P.C. Li, J.G. Hardie, G.P.A. Berg, C.C. Foster, W.P. Jones, D.W. Miller and E.J. Stephenson, Phys. Rev. C42 (1990) 922
1990 SE04 K.K. Seth, D. Barlow, S. Iversen, M. Kaletka, H. Nann, D. Smith, M. Artuso, G. Burleson, G. Blanpied, G. Daw et al, Phys. Rev. C41 (1990) 2800

1990SE11 P.A. Seidl, M.A. Bryan, M. Burlein, G.R. Burleson, K.S. Dhuga, H.T. Fortune, R. Gilman, S.J. Greene, M.A. Machuca, C.F. Moore et al, Phys. Rev. C42 (1990) 1929
1990 SE18 V.A. Sergeev, Izv. Akad. Nauk SSSR Ser. Fiz. 54 (1990) 2281; Bull. Acad. Sci. USSR Phys. Ser. 54 (1990) 193

1990 SH10 T. Shigehara, K. Shimizu and A. Arima, Nucl. Phys. A510 (1990) 106
1990SH1D Shibata et al, Rept. JAERI-M90-012, Japan At. Energy Res. Inst., Tokai, Ibaraki, Japan (1990)
1990 SL01 B. Slavov, F. Grummer, K. Goeke, R. Gissler, V.I. Dimitrov and Ts. Venkova, J. Phys. G16 (1990) 395

1990SN1A K. Snover, Bull. Amer. Phys. Soc. 35 (1990) 1032
1990 TA31 Z. Tan and Y. Gu, Chin. J. Nucl. Phys. 12 (1990) 201
1990TH1D Thiel, J. Phys. G16 (1990) 867
1990 TJ01 J.A. Tjon, J. Phys.(Paris), Colloq.C-6 (1990) 111
1990 TO09 S.Y. Tong, W.N. Lennard, P.F.A. Alkemade and I.V. Mitchell, Nucl. Instrum. Meth. Phys. Res. B45 (1990) 30

1990 TR02 D.E. Trcka, A.D. Frawley, K.W. Kemper, D. Robson, J.D. Fox and E.G. Myers, Phys. Rev. C41 (1990) 2134
1990 VA07 L. Van Hoorebeke, D. Ryckbosch, R. Van de Vyver, H. Ferdinande, D. Nilsson, J.-O. Adler, B.-E. Andersson, K.I. Blomqvist, L. Isaksson, A. Sandell et al, Phys. Rev. C42 (1990) R1179

1990 VA08 S.Y. van der Werf, Phys. Scr. T32 (1990) 43
1990 WA01 T. Wada, S. Yamaguchi and H. Horiuchi, Phys. Rev. C41 (1990) 160
1990WE10 W. Weiss, W. Grum, J.W. Hammer, M. Koch and G. Schreder, Nucl. Instrum. Meth. Phys. Res. A292 (1990) 359
1990 WO09 A.A. Wolters, A.G.M. van Hees and P.W.M. Glaudemans, Phys. Rev. C42 (1990) 2053

1990 WO10 A.A. Wolters, A.G.M. van Hees and P.W.M. Glaudemans, Phys. Rev. C42 (1990) 2062

1990 XE01 A.C. Xenoulis, A.E. Aravantinos, G.P. Eleftheriades, C.T. Papadopoulos, E.N. Gazis and R. Vlastou, Nucl. Phys. A516 (1990) 108
1990 YE02 S.J. Yennello, K. Kwiatkowski, S. Rose, L.W. Woo, S.H. Zhou and V.E. Viola, Phys. Rev. C41 (1990) 79

1990ZHZV D.C. Zheng and L. Zamick, Bull. Amer. Phys. Soc. 35 (1990) 1651
1991 AB10 B.M. Abramov, S.A. Bulychev, I.A. Dukhovskoy, V.V. Kishkurno, Yu.S. Krestnikov, A.P. Krutenkova, V.V. Kulikov, M.A. Matsyuk, P.A. Murat, S.V. Proshin et al, Yad. Fiz. 54 (1991) 550; Sov. J. Nucl. Phys. 54 (1991) 332

1991AB1C Abada and Vautherin, Phys. Lett. B258 (1991) 1
1991AB1F Ableev et al, Z. Phys. A340 (1991) 191
1991 AJ01 F. Ajzenberg-Selove, Nucl. Phys. A523 (1991) 1
1991 AL02 W.M. Alberico, A. De Pace and M. Pignone, Nucl. Phys. A523 (1991) 488
1991AN1E E. Anders, A. Virag, E. Zinner and R.S. Lewis, Astrophys. J. 373 (1991) L77
1991 AR06 J. Arends, P. Detemple, N. Floss, S. Huthmacher, G. Kaul, B. Mecking, G. Noldeke and R. Stenz, Nucl. Phys. A526 (1991) 479
1991 AR11 H.F. Arellano, W.G. Love and F.A. Brieva, Phys. Rev. C43 (1991) 2734
1991AR1K H.F. Arellano, F.A. Brieva and W.G. Love, Proc. of the XIV Symp. on Nucl. Phys. 1991 (1991) 19

1991BA1K F.C. Barker and T. Kajino, Aust. J. Phys. 44 (1991) 369
1991BA1M P.K. Barhai and A.K. Akhaury, Czech. J. Phys. 41 (1991) 536
1991 BA44 C.J. Batty, E. Friedman, A. Gal and G. Kalbermann, Nucl. Phys. A535 (1991) 548
1991BAZW J. Barreto, R. Charity, L.G. Sobotka, D.G. Sarantites, D.W. Stracener, A. Chbihi, N.G. Nicolis, R. Auble, C. Baktash, J.R. Beene et al, Bull. Amer. Phys. Soc. 36 (1991) 1272, C11 12

1991 BE01 C. Bennhold, Phys. Rev. C43 (1991) 775
1991 BE05 C.A. Bertulani and M.S. Hussein, Nucl. Phys. A524 (1991) 306
1991BE1E Berezhnov, Mikhailyuk and Pilipenko, Mod. Phys. Lett. A6 (1991) 775
1991 BE45 Yu.A. Berezhnoy, V.P. Mikhailyuk and V.V. Pilipenko, Acta Phys. Pol. B22 (1991) 873

1991 BO02 J.G.L. Booten, A.G.M. van Hees, P.W.M. Glaudemans and R. Wervelman, Phys. Rev. C43 (1991) 335
1991 BO10 S. Boffi and M. Radici, Nucl. Phys. A526 (1991) 602
1991 BO26 S. Boffi, L. Bracci and P. Christillin, Nuovo Cim. A104 (1991) 843
1991 BO29 S. Boffi and M.M. Giannini, Nucl. Phys. A533 (1991) 441

1991 BO 39 H.F. Boersma, R. Malfliet and O. Scholten, Phys. Lett. B269 (1991) 1
1991 CA35 J. Carlson, Nucl. Phys. A522 (1991) 185c
1991CE09 M. Centelles, X. Vinas, M. Barranco, N. Ohtsuka, A. Faessler, D.T. Khoa and H. Muther, J. Phys. G17 (1991) L193
1991CH28 C.R. Chinn, Ch. Elster and R.M. Thaler, Phys. Rev. C44 (1991) 1569
1991 CH39 L. Chinitz, M. Bernheim, G.P. Capitani, A. Catarinella, J.F. Danel, E. De Sanctis, S. Frullani, F. Garibaldi, F. Ghio, M. Iodice et al, Phys. Rev. Lett. 67 (1991) 568
1991 CI08 A. Cieply, M. Gmitro, R. Mach and S.S. Kamalov, Phys. Rev. C44 (1991) 713
1991 CO13 A.A. Cowley, J.J. Lawrie, G.C. Hillhouse, D.M. Whittal, S.V. Fortsch, J.V. Pilcher, F.D. Smit and P.G. Roos, Phys. Rev. C44 (1991) 329

1991 CR04 R. Crespo, R.C. Johnson and J.A. Tostevin, Phys. Rev. C44 (1991) R1735
1991 CR06 S. Croft, Nucl. Instrum. Methods Phys. Res. A307 (1991) 353
1991CR1A Crecca and Walker, Phys. Rev. C43 (1991) 1709
1991 CS01 J. Cseh, G. Levai and K. Kato, Phys. Rev. C43 (1991) 165
1991 DA05 B. Dasmahapatra, B. Cujec, I.M. Szoghy and J.A. Cameron, Nucl. Phys. A526 (1991) 395

1991 DE11 A.R. DeAngelis and G. Gatoff, Phys. Rev. C43 (1991) 2747
1991 DE15 P. Descouvemont, Phys. Rev. C44 (1991) 306
1991DU04 O. Dumitrescu, Nucl. Phys. A535 (1991) 94
1991 ER03 M. Ermer, H. Clement, G. Holetzke, W. Kabitzke, G. Graw, R. Hertenberger, H. Kader, F. Merz and P. Schiemenz, Nucl. Phys. A533 (1991) 71
1991ES1B Esmael and Abousteit, J. Phys. G17 (1991) 1755
1991FE06 V.N. Fetisov, L. Majling, J. Zofka and R.A. Eramzhyan, Z. Phys. A339 (1991) 399
1991FI08 F.W.K. Firk, J. Phys. G17 (1991) 1739
1991 FL01 B.S. Flanders, J.J. Kelly, H. Seifert, D. Lopiano, B. Aas, A. Azizi, G. Igo, G. Weston, C. Whitten, A. Wong et al, Phys. Rev. C43 (1991) 2103

1991 GA07 C. Garcia-Recio, E. Oset, L.L. Salcedo, D. Strottman and M.J. Lopez, Nucl. Phys. A526 (1991) 685

1991 GL03 L. Glowacka, J. Turkiewicz, O.Yu. Goryunov, A.V. Mokhnach, O.A. Ponkratenko, A.T. Rudchik, V.K. Chernievsky, A.A. Shvedov, E.I. Koshchy and Yu.G. Mashkarov, Nucl. Phys. A534 (1991) 349
1991 GM02 S. Gmuca, J. Phys. G17 (1991) 1115
1991 GO12 A.M. Gorbatov, V.L. Skopich, E.A. Kolganova, P.V. Komarov, Yu.N. Krylov, V.A. Luchkov, M.I. Marinov and A.V. Bursak, Yad. Fiz. 53 (1991) 680; Sov. J. Nucl. Phys. 53 (1991) 425

1991 GO25 S.A. Goncharov, A.S. Demyanova, I.Yu. Zayats, A.P. Ilin, A.V. Kuznichenko, L.V. Mikhailov, A.V. Mokhnach, A.A. Ogloblin, G.M. Onishchenko, O.A. Ponkratenko et al, Yad. Fiz. 54 (1991) 911; Sov. J. Nucl. Phys. 54 (1992) 552
1991 HE16 H. Herndl, H. Abele, G. Staudt, B. Bach, K. Grun, H. Scsribany, H. Oberhummer and G. Raimann, Phys. Rev. C44 (1991) R952

1991HO03 S. Hoibraten, S. Gilad, W.J. Burger, R.P. Redwine, E. Piasetzky, H.W. Baer, J.D. Bowman, F.H. Cverna, F. Irom, M.J. Leitch et al, Phys. Rev. C43 (1991) 1255
1991HU10 J. Humblet, B.W. Filippone and S.E. Koonin, Phys. Rev. C44 (1991) 2530
1991IS1D Iskra, XXth Int. Symp. on Nucl. Phys., Castle Gaussig (World Sci., 1991) 51
1991 KA09 K. Kawahigashi and M. Ichimura, Prog. Theor. Phys. 85 (1991) 829
1991 KA12 K.V. Karadzhev, A.A. Korsheninnikov, V.I. Manko, V.A. Timofeev, M. Petrascu, K. Borcha and A. Butsa, Yad. Fiz. 53 (1991) 326; Sov. J. Nucl. Phys. 53 (1991) 204

1991 KA19 T. Kaneko, M. LeMere and Y.C. Tang, Phys. Rev. C44 (1991) 1588
1991KA22 K. Kaki, Nucl. Phys. A531 (1991) 478
1991 KE02 J.J. Kelly, A.E. Feldman, B.S. Flanders, H. Seifert, D. Lopiano, B. Aas, A. Azizi, G. Igo, G. Weston, C. Whitten et al, Phys. Rev. C43 (1991) 1272
1991 KH08 D.T. Khoa, W. von Oertzen, A. Faessler, M. Ermer and H. Clement, Phys. Lett. B260 (1991) 278

1991 KI08 J.D. King, D. Frekers, R. Abegg, R.E. Azuma, L. Buchmann, C. Chan, T.E. Drake, R. Helmer, K.P. Jackson, L. Lee et al, Phys. Rev. C44 (1991) 1077
1991KN03 N. Kniest, M. Horoi, O. Dumitrescu and G. Clausnitzer, Phys. Rev. C44 (1991) 491
1991KN04 D. Knobles and T. Udagawa, Nucl. Phys. A533 (1991) 189
1991 KO18 W. Koepf and P. Ring, Z. Phys. A339 (1991) 81
1991 KO23 W. Koepf, M.M. Sharma and P. Ring, Nucl. Phys. A533 (1991) 95
1991 KO40 Yu.E. Kozyr, Izv. Akad. Nauk SSSR, Ser. Fiz. 55 (1991) 144; Bull. Acad. Sci. USSR, Phys. Ser. 55 (1991) 136
1991 LA02 A.V. Lagu and A.K. Singh, Nucl. Phys. A528 (1991) 525
1991 LE06 M.-C. Lemaire, M. Trzaska, J.P. Alard, J. Augerat, D. Bachelier, N. Bastid, J.-L. Boyard, C. Cavata, P. Charmensat, P. Dupieux et al, Phys. Rev. C43 (1991) 2711
1991 LE13 A.I. Lebedev and V.A. Tryasuchev, J. Phys. G17 (1991) 1197
1991 LE14 W. Leidemann, G. Orlandini and M. Traini, Phys. Rev. C44 (1991) 1705
1991 LI25 R. Lichtenthaler, A.C.C. Villari, A. Lepine-Szily and L.C. Gomes, Phys. Rev. C44 (1991) 1152

1991 LI28 K.-F. Liu, H. Luo, Z. Ma and Q. Shen, Nucl. Phys. A534 (1991) 25
1991 LI29 K.-F. Liu, H.-D. Luo, Z. Ma, M. Feng and Q.-B. Shen, Nucl. Phys. A534 (1991) 48

1991MA29 M.M. Majumdar, B.C. Samanta and S.K. Samaddar, J. Phys. G17 (1991) 1387
1991MA33 H.A. Mavromatis, P.J. Ellis and H. Muther, Nucl. Phys. A530 (1991) 251
1991MA39 I.J.D. MacGregor, J.R.M. Annand, I. Anthony, S.N. Dancer, S.M. Doran, S.J. Hall, J.D. Kellie, J.C. McGeorge, G.J. Miller, R.O. Owens et al, Nucl. Phys. A533 (1991) 269

1991MC08 V.A. McGlone and P.B. Johnson, Nucl. Instrum. Meth. Phys. Res. B61 (1991) 201
1991MO1B Motarou et al, Phys. Rev. C44 (1991) 365
1991MU04 H. Muther and L.D. Skouras, J. Phys. G17 (1991) L27
1991OM03 Kh.M. Omar, S.S. Saad and N.Z. Darwish, Appl. Radiat. Isot. 42 (1991) 823
1991 OR02 S. Oryu, H. Kamada, H. Sekine and T. Nishino, Nucl. Phys. A534 (1991) 221
1991OW01 R.O. Owens, J.L. Matthews and G.S. Adams, J. Phys. G17 (1991) 261
1991 PA06 F.D. Pacati and M. Radici, Phys. Lett. B257 (1991) 263
1991PA1C Pavlenko, Astr. Zhurnal 68 (1991) 431
1991 PI07 P.H. Pile, S. Bart, R.E. Chrien, D.J. Millener, R.J. Sutter, N. Tsoupas, J.-C. Peng, C.S. Mishra, E.V. Hungerford, T. Kishimoto et al, Phys. Rev. Lett. 66 (1991) 2585
1991 RA14 M. Rashdan, A. Faessler and W. Wadia, J. Phys. G17 (1991) 1401
1991RA1C Raiteri et al, Astrophys. J. 371 (1991) 665
1991RU1B Ruan, Chin. J. Nucl. Phys. 13 (1991) 377
1991SA20 R.K. Samanta and S. Mukherjee, Phys. Rev. C44 (1991) 2233
1991 SC26 K.W. Schmid, H. Muther and R. Machleidt, Nucl. Phys. A530 (1991) 14
1991 SE12 V.M. Semenov, Kh.M. Omar, K.A. Gridnev and E.F. Hefter, Yad. Fiz. 54 (1991) 708; Sov. J. Nucl. Phys. 54 (1991) 429
1991 SH08 Q.-B. Shen, D.-C. Feng and Y.-Z. Zhuo, Phys. Rev. C43 (1991) 2773
1991 SH31 R.K. Sheline, P.C. Sood and I. Ragnarsson, Int. J. Mod. Phys. A6 (1991) 5057
1991 TE03 N. Teruya, A.F.R. de Toledo Piza and H. Dias, Phys. Rev. C44 (1991) 537
1991 TH04 A. Theil, J.Y. Park and W. Scheid, J. Phys. G17 (1991) 1237
1991 TO03 H. Toki, Y. Sugahara, D. Hirata, B.V. Carlson and I. Tanihata, Nucl. Phys. A524 (1991) 633

1991UM01 A.S. Umar, M.R. Strayer, J.-S. Wu, D.J. Dean and M.C. Guclu, Phys. Rev. C44 (1991) 2512

1991VA1F Variamov et al, Bull. Acad. Sci. 55 (1991) 137
1991 VO02 N. Voegler, J. Friedrich, E.A.J.M. Offermann, C.W. de Jager and H. de Vries, Phys. Rev. C43 (1991) 2172

1991YA08 S. Yamaguchi, Phys. Rev. C44 (1991) 1171

1991 ZH05 Z.Y. Zhu, H.J. Mang and P. Ring, Phys. Lett. B254 (1991) 325
1991 ZH16 J.-K. Zhang and D.S. Onley, Phys. Rev. C44 (1991) 1915
1991ZH17 J.-K. Zhang and D.S. Onley, Phys. Rev. C44 (1991) 2230
1992BA31 Th.S. Bauer, R. Hamers, P. Boberg, H. Breuer, R. van Dantzig, F. Geerling, S. Hyman, J. Konijn, C.T.A.M. de Laat, Y. Lefevere et al, Phys. Rev. C46 (1992) R20

1992 BE03 Yu.A. Berezhnoy, V.P. Mikhailyuk and V.V. Pilipenko, J. Phys. (London) G18 (1992) 85

1992 BO04 M. Borromeo, D. Bonatsos, H. Muther and A. Polls, Nucl. Phys. A539 (1992) 189
1992BR05 C.R. Brune and R.W. Kavanagh, Phys. Rev. C45 (1992) 1382
1992 CA04 R.C. Carrasco and E. Oset, Nucl. Phys. A536 (1992) 445
1992CH1E Chen and Ma, High Energy Phys. Nucl. Phys. 16 (1992) 123
1992CL04 N.M. Clarke, J. Phys. G18 (1992) 917
1992 CR05 R. Crespo, R.C. Johnson and J.A. Tostevin, Phys. Rev. C46 (1992) 279
1992DE06 F.V. De Blasio, W. Cassing, M. Tohyama, P.F. Bortignon and R.A. Broglia, Phys. Rev. Lett. 68 (1992) 1663
1992 EN02 D. Endisch, F. Rauch, A. Gotzelmann, G. Reiter and M. Stamm, Nucl. Instrum. Meth. Phys. Res. B62 (1992) 513

1992 FA04 M. Fallavier, B. Hjorvarsson, M. Benmansour and J.P. Thomas, Nucl. Instrum. Meth. Phys. Res. B64 (1992) 83
1992 FR05 J.P. Fritsch, H.J. Emrich, A. Grasmuck, R. Neuhausen, S. Schardt, N. Zimmermann, J.R. Calarco and M. Potokar, Phys. Rev. Lett. 68 (1992) 1667
$1992 J A 04$ A.K. Jain, Phys. Rev. C45 (1992) 2387
1992KA21 T. Kaneko, M. LeMere and Y.C. Tang, Phys. Rev. C46 (1992) 298
1992LA01 C.M. Laymon, K.D. Brown and D.P. Balamuth, Phys. Rev. C45 (1992) R576; Errata, Phys. Rev. C50 (1994) 3178

1992LI1D Li and Zhou, High Energy Phys. Nucl. Phys. 16 (1992) 229
1992LU01 M. Ludwig, B.-E. Andersson, A. Baumann, K.I. Blomqvist, K. Fuhrberg, E. Hayward, G. Miller, D. Nilsson, A. Sandell, B. Schroder et al, Phys. Lett. B274 (1992) 275

1992MA09 D.J. Mack, P.G. Roos, H. Breuer, N.S. Chant, S.D. Hyman, F. Khazaie, B.G. Ritchie, J.D. Silk, G.S. Kyle, P.A. Amaudruz et al, Phys. Rev. C45 (1992) 1767

1992MI01 D.J. Millener, A.C. Hayes and D. Strottman, Phys. Rev. C45 (1992) 473
1992 PH01 L.D. Pham, S. Hoibraten, R.P. Redwine, D.R. Tieger, G. van der Steenhoven, K.W. Wilson, M.E. Yuly, F.J. Federspiel, R.A. Eisenstein, A.M. Nathan et al, Phys. Rev. C46 (1992) 621

1992 QI02 H. Qi, G. Chen, Y. Chen, Q. Chen, Z. Chen and Z. Chen, Chin. J. Nucl. Phys. 14 (1992) 15

1992 RY02 J. Ryckebusch, K. Heyde, L. Machenil, D. Ryckbosch, M. Vanderhaeghen and M. Waroquier, Phys. Rev. C46 (1992) R829

1992SA26 P. Sarangi and L. Satpathy, Pramana 39 (1992) 279
1992SH11 T.D. Shoppa and S.E. Koonin, Phys. Rev. C46 (1992) 382
1992 SI01 D.A. Sims, S. Karataglidis, G.J. O’Keefe, R.P. Rassool, A.D. Bates, M.N. Thompson, S. Ito, H. Matsuyama, S. Sazaki, O. Konno et al, Phys. Rev. C45 (1992) 479

1992 TO04 I.S. Towner, Nucl. Phys. A542 (1992) 631
1992WA1L E.K. Warburton, Brown and Towner, Private Communication (1992)
1992WA22 E.K. Warburton and B.A. Brown, Phys. Rev. C46 (1992) 923
1992 WA25 E.K. Warburton, B.A. Brown and D.J. Millener, Phys. Lett. B293 (1992) 7
1992ZU01 D. Zubanov, M.N. Thompson, B.L. Berman, J.W. Jury, R.E. Pywell and K.G. McNeill, Phys. Rev. C45 (1992) 174; Erratum Phys. Rev. C46 (1992) 1147
1993 CH06 W.T. Chou, E.K. Warburton and B.A. Brown, Phys. Rev. C47 (1993) 163

[^0]: ${ }^{1}$ We are very grateful to Dr. John Millener for providing these comments on the shell model for the $A=16$ system.

[^1]: ${ }^{\text {a }}$ (1983GA03). See also (1984GA1A).
 ${ }^{\mathrm{b}}$ (1976AL02).

[^2]: ${ }^{\text {a }}$ For references see Table 16.7 in (1982AJ01).
 ${ }^{\mathrm{b}} \tau_{\mathrm{m}}=5.1 \pm 0.3$ psec.
 ${ }^{\text {c }}$ The errors listed here for E_{x} for these two broad peaks are probably underestimates (1986AJ04).
 ${ }^{\mathrm{d}}$ Results are ambiguous.
 ${ }^{e}$ May be a doublet.
 ${ }^{\mathrm{f}}$ Identified with shell-model counterparts.

[^3]: ${ }^{\text {a }}$ See Tables 16.12 in (1971AJ02), 16.15 in (1977AJ02) and 16.12 in (1982AJ01) for the earlier work and for references. See also Table 16.15 here.
 ${ }^{\mathrm{b}}$ Monopole matrix element in fm^{2}.
 ${ }^{\text {c }}$ Weighted mean of earlier measurements and of a newer one reported in reaction 42 (1985 MO 10).
 ${ }^{\mathrm{d}}(3.0 \pm 0.4) \times 10^{-4}$ [M1], $(2.5 \pm 0.2) \times 10^{-3}$ [E2] (1982VE04).
 ${ }^{\mathrm{e}}(8 \pm 3) \times 10^{-5}$ [M1], $(3.4 \pm 0.5) \times 10^{-4}$ [E2] (1982VE04).
 ${ }^{\mathrm{f}} E_{\gamma}=2471.5 \pm 0.5 \mathrm{keV}$ for $(8.87 \rightarrow 6.13)$ transition.
 ${ }^{\mathrm{g}}$ Pairs due to this transition are not observed.
 ${ }^{\mathrm{h}}$ For the radiative decay of higher states see Tables $16.15,16.22$, and 16.26.
 ${ }^{\text {i }}$ (1982VE04). See also for δ.
 j (1986ZI08).

[^4]: ${ }^{\text {a }}$ For references see Table 16.17 in (1982AJ01).
 ${ }^{\mathrm{b}}$ Mostly compound nucleus.
 ${ }^{\text {c }}$ Unresolved.
 ${ }^{\mathrm{d}}$ Also reported in $\mathrm{p} \gamma_{4.4}$ coincidences.
 e Very weak proton group. See (1986AJ04).
 ${ }^{f}$ (1978FO27) have compared the cross section ratios of these three $T=1$ states with their analogs in ${ }^{16} \mathrm{~N}$ populated in the (t, p) reaction: only the 2^{-}states have the expected cross section ratio of 0.5 for $\left({ }^{3} \mathrm{He}, \mathrm{p}\right) /(\mathrm{t}, \mathrm{p})$. The populations of the 0^{-}and 3^{-}states in ${ }^{16} \mathrm{O}$ are lower by a factor of two.
 g (1978FO19) suggest that these two states [$\left.{ }^{16} \mathrm{O}^{*}(14.93,15.79)\right]$ are 1^{+} and $3^{+} 2 \mathrm{p}-2 \mathrm{~h}$ states with $T_{\mathrm{p}}=T_{\mathrm{h}}=0$.
 ${ }^{\mathrm{h}}$ States at 17.82 and $18.04(\pm 0.04) \mathrm{MeV}$ are also reported in $\mathrm{p} \gamma_{4.4}$ coincidences.

[^5]: ${ }^{\text {a }}$ Adopted value average of (1984WA07, 1985HE08).
 ${ }^{\mathrm{b}}$ Recalculated so that the sum of the branches is 100%.
 ${ }^{\text {c }}$ See (1986AJ04).
 ${ }^{\mathrm{d}} \log f_{1} t$.
 ${ }^{e}$ E.K. Warburton, private communication. We are indebted to Dr. Warburton for his very useful comments.
 ${ }^{\mathrm{f}}$ See also (1993CH06).

[^6]: ${ }^{\text {a }}$ See Table 16.24 in (1986AJ04).
 ${ }^{\mathrm{b}}$ (1984ST10) report $\Gamma_{\mathrm{c} . \mathrm{m} .} \approx 25$ and $\approx 100 \mathrm{keV}$ for ${ }^{16} \mathrm{~F}^{*}(0,0.19)$.

