Energy Levels of Light Nuclei $A=18$

F. Ajzenberg-Selove ${ }^{\mathrm{a}}$ and T. Lauritsen ${ }^{\text {b }}$
${ }^{\text {a }}$ University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396
${ }^{\text {b }}$ California Institute of Technology, Pasadena, California

Abstract

An evaluation of $A=5-24$ was published in Nuclear Physics 11 (1959), p. 1. This version of $A=18$ differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the NNDC/TUNL format.

(References closed December 1, 1958)

The original work of Fay Ajzenberg-Selove was supported by the US Department of Energy [DE-AC02-76-ER02785]. Later modification by the TUNL Data Evaluation group was supported by the US Department of Energy, Office of High Energy and Nuclear Physics, under: Contract No. DEFG05-88-ER40441 (North Carolina State University); Contract No. DEFG05-91-ER40619 (Duke University).

Table of Contents for $A=18$

Below is a list of links for items found within the PDF document. Figures from this evaluation have been scanned in and are available on this website or via the link below.
A. Nuclides: ${ }^{18} \mathrm{O},{ }^{18} \mathrm{~F},{ }^{18} \mathrm{Ne}$

B. Tables of Recommended Level Energies:

Table 18.1: Energy levels of ${ }^{18} \mathrm{O}$
Table 18.4: Energy levels of ${ }^{18} \mathrm{~F}$
C. References
D. Figures: ${ }^{18} \mathrm{O},{ }^{18} \mathrm{~F}$
E. Erratum to this Publication: PS or PDF
(Fig. 37)

GENERAL:

Theory: See (1955EL1B, 1955RE1D, 1956TH1B, 1957RA1C, 1958RE1B).

1. ${ }^{14} \mathrm{C}(\alpha, \gamma){ }^{18} \mathrm{O}$
$Q_{\mathrm{m}}=6.243$

Three resonances are reported, at $E_{\alpha}=1.13,1.79$, and 2.33 MeV (1958GO69, 1958PH37): see Table 18.2. Angular distribution measurements of the capture radiation at the resonances permit the assignments $J=0^{+}, 2^{+}, 4^{+}$for the first three states of ${ }^{18} \mathrm{O}$ and $J=4^{+}, 1^{-}$and 1^{-}to the resonance levels, ${ }^{18} \mathrm{O}^{*}(7.12,7.64,8.06)(1958 \mathrm{GO} 69,1958 \mathrm{PH} 37)$. The branching ratios for the upper two levels do not agree with values estimated from a simple collective model (1958PH37). The ground state transition from ${ }^{18} \mathrm{O} *(3.55)$ is less than 3% of the transition $3.55 \rightarrow 1.98$ (1958GO69).

$$
\text { 2. }{ }^{14} \mathrm{C}(\alpha, \mathrm{n})^{17} \mathrm{O} \quad Q_{\mathrm{m}}=-1.825 \quad E_{\mathrm{b}}=6.243
$$

Observed resonances in the 0° yield curve for $E_{\alpha}=2.3$ to 3.6 MeV are shown in Table 18.3. The angular distribution of the neutrons at the 2.64 MeV resonance indicates $J=1^{-}$or 3^{-}for the 8.29 MeV state of ${ }^{18} \mathrm{O}$ (1956SA06).
3. ${ }^{14} \mathrm{C}(\alpha, \alpha){ }^{14} \mathrm{C}$
$E_{\mathrm{b}}=6.243$

Observed anomalies in the scattering for $E_{\alpha}=2$ to 3.9 MeV are shown in Table 18.3. The resonances at $E_{\alpha}=(2.8), 3.3$, and 3.5 MeV appear to have $\Gamma_{\mathrm{n}} \gg \Gamma_{\alpha}$ (1958WE29).
4. ${ }^{14} \mathrm{C}(\alpha, p){ }^{17} \mathrm{~N}$
$Q_{\mathrm{m}}=-9.75$
$E_{\mathrm{b}}=6.238$

See (1951SU1A).
5. ${ }^{15} \mathrm{~N}(\mathrm{t}, \mathrm{p}){ }^{17} \mathrm{~N}$
$Q_{\mathrm{m}}=-0.15$
$E_{\mathrm{b}}=15.842$

Table 18.1: Energy levels of ${ }^{18} \mathrm{O}$

$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})$	J^{π}	$\Gamma(\mathrm{keV})$	Decay	Reactions
0	0^{+}		stable	1, 7, 10, 12, 13, 14, 15, 16, 18
1.982 ± 4	2^{+}		γ	1, 10, 12, 13, 16, 18
3.55 ± 20	4^{+}		γ	1, 10, 13, 18
3.929 ± 40				18
5.007 ± 40				18
5.170 ± 40				18
5.311 ± 40				18
5.456 ± 40				18
6.190 ± 40				18
6.328 ± 40				18
7.12	4^{+}		γ, α	1
7.638 ± 15	1^{-}	<3	γ, α	1
8.057 ± 15	1^{-}	<3	γ, α	1,3
8.229 ± 15	2^{+}	1.3 ± 0.8	α, n	2, 3
8.302 ± 15	3^{-}	8 ± 1	α, n	2, 3
(8.42 $\pm 20)$		17 ± 8	α, n	2
8.84 ± 20		80 ± 16	α, n	2
8.971 ± 15	$\geq 2^{+}$	42 ± 2	α, n	2, 3
$\begin{gathered} 9.0-9.2 \\ \text { (two levels) } \end{gathered}$	$\left\{\begin{array}{l}2^{+}, 3^{-} \\ 4^{+}, 3^{-}\end{array}\right.$or	> 150	α	3

Table 18.2: Resonances in ${ }^{14} \mathrm{C}(\alpha, \gamma)^{18} \mathrm{O}$ (1958GO69, 1958PH37)

$E_{\text {res }}$	Γ (MeV)	E_{x} in $^{18} \mathrm{O}$ (MeV)	J^{π}	$\Gamma_{\mathrm{s}}{ }^{\mathrm{a}}(\mathrm{eV})$				
	(keV)	(g.s.)	(1.98)	(3.55)	(3.93)			
1.13		7.12	4^{+}		0.01			
1.794 ± 6	<3	7.638	1^{-}	0.12	0.24	<0.02	<0.02	
2.334 ± 6	<3	8.058	1^{-}	0.09	0.23	<0.05	<0.05	

${ }^{\mathrm{a}} \Gamma_{\alpha} \Gamma_{\gamma} / \Gamma$ for γ-transitions leading to the states indicated.

Table 18.3: Resonances in ${ }^{14} \mathrm{C}(\alpha, \mathrm{n}){ }^{17} \mathrm{O}$ and ${ }^{14} \mathrm{C}(\alpha, \alpha){ }^{14} \mathrm{C}$

$E_{\text {res }}$ $(\mathrm{MeV} \pm \mathrm{keV})$	$\Gamma_{\text {lab }}($ total $)$ (keV)	θ_{α}^{2} $(\%)$	θ_{n}^{2} $(\%)$	E_{x} (MeV)	$J^{\pi \mathrm{c}}$
$2.331 \pm 5^{\mathrm{a}}$	$<6 \pm 3^{\mathrm{a}, \mathrm{d}}$	<2.8		8.056	$0^{+}, 1^{-\mathrm{d}}$
$2.553 \pm 4^{\mathrm{a}, \mathrm{b}}$	$1.6 \pm 1^{\mathrm{b}}$	0.90	6.2×10^{-4}	8.229	2^{+}
$2.642 \pm 3^{\mathrm{a}, \mathrm{b}}$	$10 \pm 1^{\mathrm{b}}$	20	0.16	8.302	3^{-}
$(2.798 \pm 11)^{\mathrm{b}}$	$22 \pm 10^{\mathrm{b}}$			(8.419)	
$3.335 \pm 15^{\mathrm{a}, \mathrm{b}}$	$100 \pm 20^{\mathrm{b}}$			8.837	
$3.508 \pm 4^{\mathrm{a}, \mathrm{b}}$	$54 \pm 3^{\mathrm{b}}$			8.971	$\geq 2^{+}$
$3.6-3.9^{\mathrm{a}}$	$>200^{\mathrm{a}}$			$9.0-9.2$	$\left\{\begin{array}{l}2^{+}, 3^{-} \\ 4^{+}, 3^{-}\end{array}\right.$

${ }^{\text {a }}$ (1958WE29): ${ }^{14} \mathrm{C}(\alpha, \alpha)^{14} \mathrm{C}$; measurements at several back angles.
${ }^{\mathrm{b}}$ (1956SA06): ${ }^{14} \mathrm{C}(\alpha, \mathrm{n})^{17} \mathrm{O} ; 0^{\circ}$.
${ }^{\text {c }}$ From analysis of (α, α) and (α, n) data (1958WE29).
${ }^{\mathrm{d}}$ Compare ${ }^{14} \mathrm{C}(\alpha, \gamma){ }^{18} \mathrm{O}$.

See (1956SH1A).
6. ${ }^{15} \mathrm{~N}(\alpha, \mathrm{p}){ }^{18} \mathrm{O}$
$Q_{\mathrm{m}}=-3.971$

Not observed.
7. ${ }^{16} \mathrm{O}(\mathrm{t}, \mathrm{p})^{18} \mathrm{O} \quad Q_{\mathrm{m}}=3.730$

See (1953CU1D).
8. ${ }^{17} \mathrm{O}(\mathrm{n}, \mathrm{p}){ }^{17} \mathrm{~N}$
See $(1949 \mathrm{CH} 1 \mathrm{~A})$.
9. ${ }^{17} \mathrm{O}(\mathrm{n}, \alpha){ }^{14} \mathrm{C}$

$$
Q_{\mathrm{m}}=1.825
$$

$$
E_{\mathrm{b}}=8.069
$$

The thermal neutron cross section is $0.4 \pm 0.1 \mathrm{~b}$ (1958HU18).
10. ${ }^{17} \mathrm{O}(\mathrm{d}, \mathrm{p})^{18} \mathrm{O}$

$$
\begin{aligned}
& Q_{\mathrm{m}}=5.842 \\
& Q_{0}=5.821 \pm 0.010(1954 \mathrm{AH} 37,1954 \mathrm{AH} 47) .
\end{aligned}
$$

Proton groups have been observed corresponding to excited states at 1.986 ± 0.013 (1954AH37, 1954AH47: based on Q_{0}), $1.981 \pm 0.02 \mathrm{MeV}$, at $2.449 \pm 0.02 \mathrm{MeV}\left(1955 \mathrm{HO} 28\right.$: based on $\left.Q_{\mathrm{m}}\right)$ and at $3.56 \pm 0.02 \mathrm{MeV}$ (1956BA1L: based on Q_{0}). The reported level at 2.45 MeV is not found by (1956BA1L): an upper limit of $0.2-0.3$ is given for the relative intensity of groups leading to states in the range $E_{\mathrm{x}}=2$ to 3.5 MeV compared to the ground-state group; see also ${ }^{18} \mathrm{O}(\mathrm{p}$, $\left.\mathrm{p}^{\prime}\right)^{18} \mathrm{O} *$ and ${ }^{19} \mathrm{~F}(\mathrm{t}, \alpha)^{18} \mathrm{O}$. At $E_{\mathrm{d}}=7.77 \mathrm{MeV}$, angular distributions of protons to the first three states of ${ }^{18} \mathrm{O}$ are fitted by $l_{\mathrm{n}}=2,0$ and 2 , respectively. Assignments of $J^{\pi}=0^{+}, 2^{+}, 4^{+}$are indicated for ${ }^{18} \mathrm{O}^{*}(0,1.98$, and 3.56 MeV$)$. Derived coefficients for the first excited state wave function are in good agreement with the theories of (1954RE1B and 1955EL1B) (1957BI80).

$$
\text { 11. }{ }^{18} \mathrm{O}(\gamma, \mathrm{p})^{17} \mathrm{~N} \quad Q_{\mathrm{m}}=-15.99
$$

See (1955AJ61) and (1955RE1C).
12. ${ }^{18} \mathrm{O}\left(\mathrm{p}, \mathrm{p}^{\prime}\right)^{18} \mathrm{O}^{*}$

At $E_{\mathrm{p}}=4.6$ to 5.3 MeV , a group is reported corresponding to ${ }^{18} \mathrm{O}^{*}(1.981 \pm 0.004)$. No evidence is found for a level at 2.45 MeV reported in ${ }^{17} \mathrm{O}(\mathrm{d}, \mathrm{p})^{18} \mathrm{O}$: intensity less than 0.1 of 1.98 MeV group (1957YO04). A $1.9 \mathrm{MeV} \gamma$-ray is reported by (1956NA1C), presumably arising from the decay of the first excited state.

13. ${ }^{18} \mathrm{O}\left(\mathrm{d}, \mathrm{d}^{\prime}\right)^{18} \mathrm{O}^{*}$

At $E_{\mathrm{d}}=7.8 \mathrm{MeV}$, deuteron groups are reported to states at $0,1.98$ and $3.551 \pm 0.019 \mathrm{MeV}$. Upper limits of 3 to 8% are given for other possible groups in the range $E_{\mathrm{x}}=2$ to 3.5 MeV (1956BA1L). At $E_{\mathrm{d}}=4.98 \mathrm{MeV}$, the $Q=-1.98 \mathrm{MeV}$ group is $<3 \%$ of the ground-sate group (1957YO04).
14. ${ }^{18} \mathrm{~F}\left(\beta^{+}\right)^{18} \mathrm{O}$
$Q_{\mathrm{m}}=1.667$

See ${ }^{18} F$.
15. ${ }^{19} \mathrm{~F}(\gamma, \mathrm{p}){ }^{18} \mathrm{O}$
$Q_{\mathrm{m}}=-7.964$

See ${ }^{19} \mathrm{~F}$.
16. ${ }^{19} \mathrm{~F}(\mathrm{n}, \mathrm{d}){ }^{18} \mathrm{O}$

$$
\begin{aligned}
& Q_{\mathrm{m}}=-5.737 \\
& Q_{0}=-5.79 \pm 0.08 \text { (1957RI44). }
\end{aligned}
$$

At $E_{\mathrm{n}}=14.1 \mathrm{MeV}$, deuteron groups are observed to the ground state, to an excited state at $1.9 \pm 0.1 \mathrm{MeV}$ and , possibly, to others near 3 to 4 MeV . Angular distributions indicate $l_{\mathrm{p}}=0$ for the ground state transition, consistent with $J=0^{+}$or 1^{+}, and most probably $l_{\mathrm{p}}=2$ for the 1.9 MeV state $\left(J=1^{+}, 2^{+}, 3^{+}\right)$. The ratio of reduced widths $\theta_{\mathrm{p}}^{2}(1.9) / \theta_{\mathrm{p}}^{2}(0)=0.87$, in good agreement with shell model calculations of (1955EL1B and 1957RI44).
17. ${ }^{19} \mathrm{~F}\left(\mathrm{~d},{ }^{3} \mathrm{He}\right){ }^{18} \mathrm{O}$
$Q_{\mathrm{m}}=-2.470$

Not observed.
18. ${ }^{19} \mathrm{~F}(\mathrm{t}, \alpha){ }^{18} \mathrm{O}$

$$
Q_{\mathrm{m}}=11.849
$$

At $E_{\mathrm{t}}=1.8 \mathrm{MeV}, \alpha$-groups are reported to levels at $1.989 \pm 0.024,3.504 \pm 0.034,3.929 \pm 0.040$, $5.007 \pm 0.040,5.170 \pm 0.040,5.311 \pm 0.040,5.456 \pm 0.040,6.190 \pm 0.040$ and $6.328 \pm 0.040 \mathrm{MeV}$. No other states below $E_{\mathrm{x}}=6.8 \mathrm{MeV}$ are observed (1956JA31).
19. ${ }^{21} \mathrm{Ne}(\mathrm{n}, \alpha){ }^{18} \mathrm{O}$
$Q_{\mathrm{m}}=0.704$

Not observed.
${ }^{18} \mathrm{~F}$
(Fig. 38)

GENERAL:

Theory: See (1954RE1B, 1955EL1A, 1955EL1B, 1956NE1B, 1957GR1D, 1959WA16).

1. ${ }^{18} \mathrm{~F}\left(\beta^{+}\right)^{18} \mathrm{O}$
$Q_{\mathrm{m}}=1.677$

The positron end point is 635 ± 15 (1949BL26), $649 \pm 9 \mathrm{keV}$ (1951RU24). The spectrum is simple (see (1956DR38)). The half-life is $112 \pm 1 \mathrm{~min}$ (1949BL26), $111 \pm 1 \mathrm{~min}$ (1955JA1A), $110 \pm 1 \mathrm{~min}$ (1958BE74): $\log f t=3.62$. The fact that the β transition to the ground state of ${ }^{18} \mathrm{O}$ is allowed indicates $J=1^{+}$for ${ }^{18} \mathrm{~F}$ (assumed $T=0$) (MO54). The ratio $\epsilon_{\mathrm{K}} / \beta^{+}=0.030 \pm 0.002$ (1956DR38). See also (1956DZ1A) and (1958RE1B; theor.).
2. ${ }^{12} \mathrm{C}\left({ }^{7} \mathrm{Li}, \mathrm{n}\right){ }^{18} \mathrm{~F} \quad Q_{\mathrm{m}}=5.963$

See (1957NO17).
3. ${ }^{14} \mathrm{~N}(\alpha, \gamma){ }^{18} \mathrm{~F} \quad Q_{\mathrm{m}}=4.421$

Resonances have been observed at $E_{\alpha}=1.53,1.62,2.35$, and 2.88 MeV , corresponding to ${ }^{18} \mathrm{~F}^{*}=5.61,5.68,6.25$, and 6.651 MeV (1955PR1A, 1958AL03, 1958BR29, 1958PH37): see Table 18.5.

The 5.61 MeV state decays to the ${ }^{18} \mathrm{~F}$ ground state (16%), and to states at 1.08 MeV (41%) and $3.06 \mathrm{MeV}(45 \%)$. Gamma rays with $E_{\gamma}=2.12$ and 0.94 MeV are also observed (1958AL03): see Fig. 39. The radiative widths $\omega \Gamma_{\mathrm{s}}$ to the ground state and ${ }^{18} \mathrm{~F}^{*}(1.08)$ are 0.7 and 2.2 eV , respectively; all others amount to 3 eV (1955PR1A). The branching ratios favor $J=1^{-} ; T=0$ for ${ }^{18} \mathrm{~F}^{*}(5.61)$ and $T=1$ for ${ }^{18} \mathrm{~F}^{*}(1.08$ and 3.06). Angular distributions of the cascade γ-rays are consistent with $J=0^{+}$and 2^{+}for the states at 1.08 and 3.06 MeV . Angular correlations rule out $J=0$ for the 0.94 MeV state. The 3.06 MeV state shows a 25% ground-state branch and a 75% cascade through the 0.94 MeV level (1958AL03: see also (1958KU81)). Delayed coincidence measurements on the γ-decay of the 0.94 MeV state show $\tau \leq 5 \times 10^{-9}$ sec. This implies $1 \leq$ $J \leq 3$ when taken together with the results of the ${ }^{16} \mathrm{O}\left({ }^{3} \mathrm{He}, \mathrm{p} \gamma\right)^{18} \mathrm{~F}$ reaction (1958BR29).

The 5.68 MeV state decays to the 1.08 MeV state $(1.075 \pm 0.010 \mathrm{MeV})$ with $\omega \Gamma_{\gamma}=2.2 \pm 0.3 \mathrm{eV}$. The ground-state transition is $<0.2 \mathrm{eV}$; others amount to about 2 eV (1955PR1A). The strength of the transition $5.68 \rightarrow 1.08$ suggests dipole radiation, $J(5.68)=1 ; T=0$ (1959WA16).

Table 18.4: Energy levels of ${ }^{18} \mathrm{~F}$

$\begin{gathered} E_{\mathrm{x}} \\ (\mathrm{MeV} \pm \mathrm{keV}) \end{gathered}$	$J^{\pi} ; T$	$\begin{gathered} \hline \tau_{1 / 2} \text { or } \Gamma \\ (\mathrm{keV}) \end{gathered}$	Decay	Reactions
0	$1^{+} ; 0$	$\tau_{1 / 2}=111 \pm 1 \mathrm{~min}$	β^{+}	$1,2,3,8,13,14,15,16$, $17,19,22,23,24,25,26$, 27, 28, 29, 32, 34
0.940 ± 10	$\left(2^{+}, 3^{+} ; 0\right)$	$\tau_{\mathrm{m}} \leq 5 \times 10^{-9} \mathrm{sec}$	γ	3, 14, 22, 27, 28, 29
1.043 ± 10	(0; 0)			3, 14, 22, 29, 32
1.085 ± 10	$0^{+} ; 1$	$\tau_{\mathrm{m}}<3 \times 10^{-13} \mathrm{sec}$	γ	3, 14, 27, 28, 29
1.127 ± 10	$\left(4^{+}, 5^{+}\right)$			14, (22), 29
1.700 ± 10	$1^{+} ; 0$		γ	3, 14, 27, 29, 32
2.104 ± 10	(1, 2); 0		γ	14, 29, 32
2.525 ± 10	(1,2,3); 0		γ	14, 29, 33
3.063 ± 10	$\left(2^{+} ; 1\right)$		γ	3,14, 29
3.133 ± 10				14, 29, 33
3.354 ± 10				14, 27, 29, 33
3.725 ± 10				14, 29
3.790 ± 10				14,29
3.839 ± 10				14, 27, 29, 32
4.115 ± 10	$3^{+} ; 0$			14, 27, 29, 32
4.226 ± 10				14, 29
4.360 ± 10				14, 29
4.400 ± 10				29, 32
4.649 ± 10				29
4.741 ± 10				29
4.840 ± 10				29
4.965 ± 13				29, 32
5.292 ± 10				29
5.500 ± 10				29
5.608 ± 15	$\left(1^{-}\right) ; 0$	<1.5	α, γ	3, 29
5.670 ± 10	$\left(1^{-} ; 0\right)$	<1.0	α, γ	3,29
5.785 ± 10				29
6.093 ± 10				29

Table 18.4: Energy levels of ${ }^{18} \mathrm{~F}$ (continued)

$\begin{gathered} E_{\mathrm{x}} \\ (\mathrm{MeV} \pm \mathrm{keV}) \end{gathered}$	$J^{\pi} ; T$	$\begin{gathered} \hline \tau_{1 / 2} \text { or } \Gamma \\ (\mathrm{keV}) \end{gathered}$	Decay	Reactions
6.137 ± 10				29
6.240 ± 10	$\left(2^{ \pm} ; 1\right)$	<1.0	α, γ	3, 6, 29
6.264 ± 10	$\left(1^{+}\right)$	<3	α	6,29
6.374 ± 10				29
6.470 ± 10				29
6.560 ± 10	$\left(3^{+}, 4^{+}, 5^{+}\right)$	<0.8	α	6,29
6.640 ± 10		<2.0	p, α, γ	3, 6, 18, 29
6.653 ± 10	1^{-}	93 ± 5	α	5,6
6.765 ± 10				29
6.790 ± 10				29
6.817 ± 10	2^{-}	101 ± 5	α, p	5, 6, 18
6.857 ± 10				29
7.190 ± 10	$\left(4^{+}\right)$	<4	α, p	6,29
7.29 ± 20	$\left(1^{+}\right)$	45	α, p	5, 6, 18
7.313 ± 10	$\left(3^{-}\right)$	53	α, p	5,6,18, 29
7.50 ± 20	$\left(3^{-}\right)$	25	α, p	5,6,18, 29
7.56 ± 20		75	α, p	5, 6, 18
7.62 ± 20		40	α, p	5,6
7.71 ± 20		11	α, p	18
7.74 ± 20		110	α, p	5, 6, 18
7.91 ± 20	$\left(2^{-}\right)$	≈ 25	α, p	5, 6, 18
7.96 ± 20	$\left(1^{+}\right)$	70	α, p	5,6
8.10 ± 20		≈ 40	d, p, α	10, 18
8.22 ± 20		≈ 15	α, p	18
8.24 ± 20		≈ 10	α, p	18
8.38 ± 20		≈ 50	α, p	6,18
$9.19-13.8$	29 levels reported in ${ }^{16} \mathrm{O}+$ d: see Table 18.6			

The 6.25 MeV state decays mainly to ${ }^{18} \mathrm{~F}^{*}(1.7): E_{\gamma}=4.45 \pm 0.05 \mathrm{MeV}\left(\omega \Gamma_{\gamma}=7.9 \pm 1.0 \mathrm{eV}\right)$, and ${ }^{18} \mathrm{~F}^{*}(0.94): E_{\gamma}=5.30 \pm 0.10 \mathrm{MeV}\left(\omega \Gamma_{\gamma}=0.8 \pm 0.15 \mathrm{eV}\right)$. Transitions to the ground state and to levels at $\approx 3 \mathrm{MeV}$ have upper limits of 5% and 20%. The 1.7 MeV state decays through

Table 18.5: Resonances in ${ }^{14} \mathrm{~N}+\alpha$

$\begin{gathered} E_{\alpha} \\ (\mathrm{MeV} \pm \mathrm{keV}) \end{gathered}$	Particle Out	$\begin{aligned} & \Gamma_{\mathrm{c} . \mathrm{m} .} \\ & (\mathrm{keV}) \end{aligned}$	$J^{\pi} ; T$	θ_{α}^{2}	$\begin{gathered} E_{\mathrm{x}} \\ (\mathrm{MeV}) \end{gathered}$	References
1.530 ± 3	γ	<1.5	$\left(1^{-}\right) ; 0$		5.611	$\begin{aligned} & \text { (1955PR1A, 1958AL03, } \\ & \text { 1958PH37) } \end{aligned}$
1.617 ± 3	γ	<1.0	$\left(1^{-} ; 0\right)$		5.679	(1955PR1A, 1958PH37, 1959WA16)
2.351 ± 3	γ, α	<1.0	$2^{ \pm} ; 1$		6.250	(1958HE54, 1958HE56, 1958PH37, 1959WA16)
2.370 ± 4	α	<3	$\left(1^{+}\right)$	<0.033	6.264	(1958HE54, 1958HE56)
2.767 ± 4	α	(<0.8)	$\left(3^{+}, 4^{+}, 5^{+}\right)$		6.573	(1958HE54, 1958HE56)
2.868 ± 4	γ, p_{0}	<2.0			6.651	(1958HE54, 1958HE56, 1958PH37)
2.870 ± 6	α	93 ± 5	1^{-}	0.715	6.653	(1958HE54, 1958HE56, 1958KA32)
3.080 ± 6	α, p_{0}	101 ± 5	2^{-}	0.50	6.817	(1953HE58, 1958HE54, 1958HE56, 1958KA32)
3.576 ± 4	α	<4	$\left(4^{+}\right)$		7.202	(1958HE54, 1958HE56, 1958KA32)
3.67	α	45 ± 10	$\left(1^{+}\right)$		7.28	(1958HE54, 1958HE56, 1958KA32)
3.72	α, p_{0}	53 ± 6	$\left(3^{-}\right)$		7.32	(1958HE54, 1958HE56, 1958KA32)
4.00	α, p_{0}	35	$\left(3^{-}\right)$		7.53	(1958KA32)
4.05	α, p_{0}	60			7.57	(1958KA32)
4.11	α, p_{0}	40			7.62	(1958KA32)
4.28	α, p_{0}	120			7.75	(1958KA32)
4.50	α, p_{0}	30	$\left(2^{-}\right)$		7.92	(1958KA32)
4.55	α, p_{0}	70	$\left(1^{+}\right)$		7.96	(1958KA32)
5.2	α				8.5	(1939BR1A, 1939DE1A)

${ }^{18} \mathrm{~F}^{*}(1.05)$. The $(6.25 \rightarrow 1.7)$ and $(1.05 \rightarrow 0) \gamma-\gamma$ correlation is isotropic within 10%, consistent with $J=0^{+}$for the 1.05 MeV state. The 1.7 MeV state is most likely to be $1^{ \pm}$or $\left(2^{+}\right)$, and is assumed to be $T=0$ from the ${ }^{18} \mathrm{O}$ level structure (compare ${ }^{20} \mathrm{Ne}(\mathrm{d}, \alpha)^{18} \mathrm{~F}$). The 6.25 MeV state is then $2^{ \pm}$or $3^{-}(1958 \mathrm{PH} 37)$. If the 1.7 MeV state is $1^{+}, J(6.25)$ is 2^{+}or 2^{-}; the strength of the transition ($6.25 \rightarrow 1.7$) indicates $T=1$ for ${ }^{18} \mathrm{~F}^{*}(6.25)$ (1959WA16).

The 6.65 MeV state decays with $E_{\gamma}=5.80 \pm 0.10(7 \%), \omega \Gamma_{\gamma}=0.25 \mathrm{eV}$ and 4.90 ± 0.05 $\mathrm{MeV}(70 \%), \omega \Gamma_{\gamma}=2.1 \mathrm{eV}$ to the 0.94 and 1.70 MeV states, respectively. Transitions with relative intensity $\approx 23 \%$ are also reported to states with $E_{\mathrm{x}} \approx 3 \mathrm{MeV}$ (1958PH37). See also (1958BA59, 1958BR1D, 1958HE1F) and ${ }^{16} \mathrm{O}\left({ }^{3} \mathrm{He}, \mathrm{p}\right)^{18} \mathrm{~F}$.
4. ${ }^{14} \mathrm{~N}(\alpha, \mathrm{n}){ }^{17} \mathrm{~F}$
$Q_{\mathrm{m}}=-4.747$
$E_{\mathrm{b}}=4.421$

See (1938FU01).
5. ${ }^{14} \mathrm{~N}(\alpha, \mathrm{p}){ }^{17} \mathrm{O}$
$Q_{\mathrm{m}}=-1.197$
$E_{\mathrm{b}}=4.421$

Observed resonances are displayed in Table 18.5 (1953HE58, 1958HE54, 1958KA32). Absolute cross sections are given by (1958HE54) for $E_{\alpha}=2.7$ to 3.6 MeV . The yield of protons to ${ }^{17} \mathrm{O}^{*}(0.7)$ is at least a factor of 10 smaller than the ground-state yield. See also (1954MA1F, 1955GR1F) and (1952AJ38).
6. ${ }^{14} \mathrm{~N}(\alpha, \alpha){ }^{14} \mathrm{~N}$

$$
E_{\mathrm{b}}=4.421
$$

Observed anomalies in the elastic scattering are exhibited in Table 18.5 (1939BR1A, 1939DE1A, 1953HE58, 1958HE54, 1958HE56, 1958KA32). The indicated assignments to the narrow resonances at $E_{\alpha}=2.35,2.37,2.77,2.88$, and 3.58 MeV are obtained from qualitative analysis of the excitation functions. The two broad resonances at $E_{\alpha}=2.870$ and 3.080 MeV have been analyzed in detail: both are formed with p-waves, $J=1^{-}$and 2^{-}, respectively. For the former, $\Gamma_{\alpha} / \Gamma=0.85$. See also (1958KA32). A broad anomaly at $E_{\alpha}=3.7 \mathrm{MeV}$ requires two levels, and possible admixture of higher l-values (1958HE56, 1958KA32).
7. ${ }^{15} \mathrm{~N}(\alpha, \mathrm{n}){ }^{18} \mathrm{~F}$
$Q_{\mathrm{m}}=-6.420$

Not reported.
8. ${ }^{16} \mathrm{O}(\mathrm{d}, \gamma){ }^{18} \mathrm{~F} \quad Q_{\mathrm{m}}=7.538$

At $E_{\mathrm{d}}=1.7 \mathrm{MeV}$, the capture cross section is $\approx 10 \mu \mathrm{~b}$ (1955BU1C). See also (1954SI07).
9. ${ }^{16} \mathrm{O}(\mathrm{d}, \mathrm{n}){ }^{17} \mathrm{~F}$
$Q_{\mathrm{m}}=-1.631$
$E_{\mathrm{b}}=7.538$

Observed resonances in the forward yield of neutrons are displayed in Table 18.6 (1955MA85). See also (1952AJ38) and (1955BU1C).
10. ${ }^{16} \mathrm{O}(\mathrm{d}, \mathrm{p}){ }^{17} \mathrm{O}$
$Q_{\mathrm{m}}=1.919$
$E_{\mathrm{b}}=7.538$

The yield shows strong variations with energy, suggesting compound nucleus formation (1948HE1C, 1955BE1J, 1955ST1A, 1956RO1A, 1956VA17): see Table 18.6. On the other hand, angular distribution measurements show strong stripping peaks for both p_{0} and p_{1}, for $E_{\mathrm{d}}=0.5$ to 4.1 MeV (1955AL1E, 1955BE1J, 1955JU1C, 1955ST1A, 1956GR1F, 1956JU1G, 1956KO26, 1957BA14, 1957JU1A). See also ${ }^{17}$ O.
11. ${ }^{16} \mathrm{O}(\mathrm{d}, \mathrm{d}){ }^{16} \mathrm{O}$

$$
E_{\mathrm{b}}=7.538
$$

Observed maxima in the $\theta=135^{\circ}$ and 97° cross section are listed in Table 18.6 (1956BE1B). Structure in the yield of elastically scattered deuterons is also reported by (1957BA14). See also (1955KH31, 1955KH35).
12. ${ }^{16} \mathrm{O}(\mathrm{d}, \alpha){ }^{14} \mathrm{~N}$
$Q_{\mathrm{m}}=3.116$
$E_{\mathrm{b}}=7.538$

Two resonances are reported for ground-state α-particles at $E_{\mathrm{d}}=3.85 \mathrm{MeV}, \Gamma=35 \mathrm{keV}$, and 4.0 $\mathrm{MeV}, \Gamma=100 \mathrm{keV}$ (1957BA14): see Table 18.6. Yield curves if the α_{0}, α_{1} and α_{2} groups are reported for $E_{\mathrm{d}}=5.5$ to 7.5 MeV by (1956BR36). The α_{1}-group, leading to the $T=1$, 2.31 MeV state of ${ }^{14} \mathrm{~N}$, is greatly inhibited: the average intensity is only a few per cent of the average yield of the α_{0} group. Broad resonances are observed in the yields of all three α groups. The resonances in the α_{1}-yield occur at $\approx 6.2,6.6$, and 7.0 MeV ; they are presumably due to predominantly $T=1$ states at $E_{\mathrm{x}} \approx 13.0,13.4$, and 13.8 MeV (1956BR36). At $E_{\mathrm{d}}=7.2 \mathrm{MeV}$, the intensity ratio α_{1} / α_{0} is $16 \%\left(\theta=35^{\circ}\right)$, at 6.8 and $7.1 \mathrm{MeV}, \alpha_{1} / \alpha_{0}<6 \%$, and at 8.9 MeV , $<2 \%$ (1958DA16). The observations are consistent with expected isobaric spin impurities in the states involved (1956BR36). Angular distributions for α_{0}, α_{2} may give evidence of compound nucleus effects (1958DA16): see also ${ }^{14} \mathrm{~N}$.
13. ${ }^{16} \mathrm{O}(\mathrm{t}, \mathrm{n}){ }^{18} \mathrm{~F}$
$Q_{\mathrm{m}}=1.280$

Table 18.6: Maxima in the yield of $\left({ }^{16} \mathrm{O}+\mathrm{d}\right)$ reactions

$E_{\text {d }}(\mathrm{MeV})$	Particle Out	E_{x} in ${ }^{18} \mathrm{~F}(\mathrm{MeV})$	References
(0.68)	p_{0}	(8.14)	(1956VA17)
1.86	$\mathrm{p}_{0}, \mathrm{p}_{1}$	9.19	(1948HE1C, 1955BE1J, 1956RO1A)
2.06	p_{1}	9.37	(1955BE1J, 1956RO1A)
2.14	p_{1}	9.44	(1956RO1A)
2.22	n	9.51	(1955MA85)
2.34	$\mathrm{n}, \mathrm{p}_{1}$	9.62	(1955MA85, 1956RO1A)
$2.42{ }^{\text {a }}$	n	9.69	(1955MA85)
2.55	p_{1}	9.81	(1955ST1A, 1956RO1A)
2.75	p_{1}	9.98	(1956RO1A)
2.92	$\mathrm{n}, \mathrm{p}_{0}, \mathrm{p}_{1}$	10.13	(1948HE1C, 1955MA85, 1955ST1A, 1956RO1A)
3.10	$\mathrm{n}, \mathrm{p}_{1}$	10.29	(1955MA85, 1956RO1A)
3.22	n	10.40	(1955MA85)
3.36	$\mathrm{n}, \mathrm{p}_{0}, \mathrm{p}_{1}$	10.53	(1955MA85, 1955ST1A, 1956RO1A)
(3.43)	p_{1}	(10.59)	(1956RO1A)
3.65	$\mathrm{n}, \mathrm{p}_{0}, \mathrm{p}_{1}$	10.78	(1955MA85, 1955ST1A, 1956RO1A)
(3.75)	p_{1}	(10.87)	(1956RO1A)
$3.84{ }^{\text {b }}$	$\mathrm{p}_{1}, \alpha_{0}$	10.95	(1956RO1A, 1957BA14)
3.94	$\mathrm{n}, \mathrm{p}_{1}$	11.04	(1955MA85, 1956RO1A)
$4.00{ }^{\text {c }}$	$\mathrm{p}_{1}, \alpha_{0}$	11.09	(1956RO1A, 1957BA14)
4.10	$\mathrm{n}, \mathrm{p}_{1}$	11.18	(1955MA85, 1956RO1A)
4.35	p_{1}	11.41	(1956RO1A)
4.79	d_{0}	11.80	(1956BE1B)
5.08	d_{0}	12.05	(1956BE1B)
5.617	d_{0}	12.53	(1956BE1B)
5.78	d_{0}	12.68	(1956BE1B)
6.10	d_{0}	12.96	(1956BE1B)
$6.2{ }^{\text {d }}$	α_{1}	13.0	(1956BR36)
6.40	d_{0}	13.23	(1956BE1B)
$6.57{ }^{\text {d }}$	$\mathrm{d}_{0}, \alpha_{1}$	13.38	(1956BE1B, 1956BR36)
6.74	d_{0}	13.53	(1956BE1B)
$7.0{ }^{\text {d }}$	α_{1}	13.8	(1956BR36)

${ }^{\text {a }} J^{\pi}=2^{+}$or 3^{+}.
${ }^{\mathrm{b}} \Gamma \approx 100 \mathrm{keV}$ (1957BA14).
${ }^{c} \Gamma \approx 35 \mathrm{keV}$ (1957BA14).
${ }^{\mathrm{d}}(T=1)$.

See (1951PO1A, 1955BA1Q, 1956SH1A).

$$
\text { 14. }{ }^{16} \mathrm{O}\left({ }^{3} \mathrm{He}, \mathrm{p}\right){ }^{18} \mathrm{~F} \quad \begin{array}{ll}
& Q_{\mathrm{m}}=2.045 \\
& Q_{0}=2.052 \pm 0.015 \text { (1959HI67). }
\end{array}
$$

Seventeen proton groups corresponding to excited states of ${ }^{18} \mathrm{~F}$ from 0 to $E_{\mathrm{x}}=4.36 \mathrm{MeV}$ are reported by $\left(1959 \mathrm{HI} 67: E\left({ }^{3} \mathrm{He}\right)=5.7\right.$ to 5.9 MeV$)$: see Table 18.7. See also (1958KU81). Angular distributions for the first five states, analyzed by direct interaction theory, indicate $J=1^{+}, 2^{+}$ or $3^{+}, 0^{+}$, (?), and 4^{+}or 5^{+}for ${ }^{18} \mathrm{~F}^{*}(0,0.94,1.04,1.08$ and 1.13$)$, respectively (1959HI67: tentative assignments). Gamma transitions to ${ }^{18} \mathrm{~F}(0)$ have been observed from the levels at $0.94,1.04$ and 1.08 MeV ; the decay of the 1.13 MeV level has not been detected (1958KU81). Proton-gamma coincidence techniques have been used to determine branching ratios and angular correlations involving ${ }^{18} \mathrm{~F}$ states at $0.94,1.08,1.7,2.1,2.5$, and 3.07 MeV (1958KU1D: see also (1956BU1F)): see Fig. 39. All of these states show at least one anisotropic radiation except for ${ }^{18} \mathrm{~F}^{*}(1.04$ and 1.08), excluding $J=0$ for all but these two ((1958KU1D) and E. Almqvist, private communication).

The mean life of the 0.94 MeV state is $\leq 5 \times 10^{-9} \mathrm{sec}$, indicating $J \leq 3$ (1958BR29). The polarization of the γ-radiation indicates positive parity for the state (1958LI41). The strong transition from ${ }^{18} \mathrm{~F}^{*}(3.07: T=1)$ suggests $T=0$. For the 1.04 MeV state, $J=0^{+}$is indicated by the proton angular distributions (1959HI67); $J=0^{-} ; T=0$ is suggested by the γ-branching (E. Almqvist, private communication). The 1.08 MeV state appears to have $J=0^{+} ; T=1\left(\operatorname{see}{ }^{14} \mathrm{~N}(\alpha, \gamma){ }^{18} \mathrm{~F}\right)$. The absence of the ground-state transition from ${ }^{18} \mathrm{~F}^{*}(1.12)$ is consistent with its expected $J=5^{+}$ character. The 1.7 MeV state is fixed as $J=1^{+}$from the present reaction and ${ }^{19} \mathrm{~F}(\mathrm{p}, \mathrm{d}){ }^{18} \mathrm{~F}$. For ${ }^{18} \mathrm{~F}^{*}(2.1$ and 2.54) assignments of $J=1,2$ and $1,2,3$ are indicated by the branching ratios (E . Almqvist, private communication). See also (1958BR1D, 1958BR86).
15. ${ }^{16} \mathrm{O}(\alpha, \mathrm{pn}){ }^{18} \mathrm{~F}$
$Q_{\mathrm{m}}=-18.533$

See (1947TE01).
16. ${ }^{16} \mathrm{O}\left({ }^{6} \mathrm{Li}, \alpha\right){ }^{18} \mathrm{~F} \quad Q_{\mathrm{m}}=6.067$

See (1957NO17).
17. ${ }^{17} \mathrm{O}(\mathrm{p}, \gamma)^{18} \mathrm{~F}$

$$
Q_{\mathrm{m}}=5.619
$$

A resonance in the capture cross section may be indicated near $1.24 \mathrm{MeV}\left(E_{\mathrm{x}}=6.79 \mathrm{MeV}\right)$, $\sigma \approx 1 \mathrm{mb}$ (1956NI1C).

Table 18.7: Energy levels of ${ }^{18} \mathrm{~F}$ from ${ }^{16} \mathrm{O}\left({ }^{3} \mathrm{He}, \mathrm{p}\right){ }^{18} \mathrm{~F},{ }^{19} \mathrm{~F}\left({ }^{3} \mathrm{He}, \alpha\right){ }^{18} \mathrm{~F}$ and ${ }^{20} \mathrm{Ne}(\mathrm{d}, \alpha){ }^{18} \mathrm{~F}$

(1959HI67) ${ }^{\text {a }}$		$(1958 \mathrm{KU} 81)^{\mathrm{b}}$	$(1951 \mathrm{MI} 1 \mathrm{~A})^{\text {c }}$	Assignment ${ }^{\text {d }}$	
$\left({ }^{3} \mathrm{He}, \mathrm{p}\right)$ (MeV)	$\begin{gathered} \left.\hline{ }^{3} \mathrm{He}, \alpha\right) \\ (\mathrm{MeV}) \end{gathered}$	$\left({ }^{3} \mathrm{He}, \mathrm{p}\right)$ (MeV)	$\begin{gathered} (\mathrm{d}, \alpha) \\ (\mathrm{MeV} \pm \mathrm{keV}) \\ \hline \end{gathered}$	$l_{\text {p }}$	$J^{\pi} ; T$
0	0	0	0	$0+2$	$1^{+} ; 0$
0.941	0.940	0.940		2	$2^{+}, 3^{+}$; (0)
1.044	1.042	1.045	1.05 ± 30	0	$0^{(+)}$e; (0)
1.084	1.087	1.080^{g}			$0^{+} ; 1^{\text {h }}$
1.126	1.129	1.125		(4)	$\left(4^{+}, 5^{+}\right)$
1.704	1.699		1.83 ± 30		$1^{+} ; 0$
2.104	2.105		2.20 ± 60		1, 2; 0
2.525	2.525		2.61 ± 50		1,2,3; 0
3.064	3.063				$2^{+} ; 1$
3.135	3.131		3.23 ± 80		
3.357	3.352				
3.723	3.727				
3.791	3.790				
3.837	3.841				
4.115	4.116		3.92 ± 40		
4.226	4.227				
4.361	4.358				
	4.400		4.42 ± 100		
	4.649				
	4.741				
	4.840				
	$4.965^{\text {f }}$		5.01 ± 90		
	5.292				
	5.500				
	$5.603{ }^{\text {f }}$		5.61 ± 100		
	5.666				
	5.785				
	6.093				

Table 18.7: Energy levels of ${ }^{18} \mathrm{~F}$ from ${ }^{16} \mathrm{O}\left({ }^{3} \mathrm{He}, \mathrm{p}\right){ }^{18} \mathrm{~F},{ }^{19} \mathrm{~F}\left({ }^{3} \mathrm{He}, \alpha\right){ }^{18} \mathrm{~F}$ and ${ }^{20} \mathrm{Ne}(\mathrm{d}, \alpha){ }^{18} \mathrm{~F}$ (continued)

(1959HI67) ${ }^{\text {a }}$		$\begin{array}{\|c} \hline(1958 \mathrm{KU} 81)^{\mathrm{b}} \\ \hline\left(\begin{array}{c} 3 \\ \mathrm{He}, \mathrm{p}) \\ (\mathrm{MeV}) \end{array}\right. \end{array}$	$\begin{gathered} (1951 \mathrm{MI} 1 \mathrm{~A})^{\mathrm{c}} \\ (\mathrm{~d}, \alpha) \\ (\mathrm{MeV} \pm \mathrm{keV}) \end{gathered}$	Assignment ${ }^{\text {d }}$	
$\left({ }^{3} \mathrm{He}, \mathrm{p}\right)$ (MeV)	$\left({ }^{3} \mathrm{He}, \alpha\right)$ (MeV)			l_{p}	$J^{\pi} ; T$
	$\begin{aligned} & \hline 6.137 \\ & 6.232 \\ & 6.264^{\mathrm{f}} \\ & 6.374 \\ & 6.470 \\ & 6.551 \\ & 6.633 \\ & 6.765 \\ & 6.790 \\ & 6.857 \\ & 7.183 \\ & 7.313 \\ & 7.495 \end{aligned}$				

${ }^{\text {a }} E\left({ }^{3} \mathrm{He}\right)=5.7$ and 5.9 MeV : energies $\pm 10 \mathrm{keV}$.
${ }^{\text {b }} E\left({ }^{3} \mathrm{He}\right)=2.4$ to 2.9 MeV .
${ }^{c} E_{\mathrm{d}}=7.8 \mathrm{MeV}$.
${ }^{\mathrm{d}} l_{\mathrm{p}}$ from proton distributions (1959HI67).
e $J=0^{-}, T=0$ suggested by γ-branching.
${ }^{\mathrm{f}} \pm 13 \mathrm{keV}$.
$\mathrm{g} \pm 10 \mathrm{keV}$.
${ }^{\mathrm{h}}$ Assignment from γ-branching, proton group weak but suggests odd parity (1959HI67).
18. ${ }^{17} \mathrm{O}(\mathrm{p}, \alpha){ }^{14} \mathrm{~N}$
$Q_{\mathrm{m}}=1.197$
$E_{\mathrm{b}}=5.619$

Resonances in the yield of ground state α-particles are displayed in Table 18.8 (1957AH20).
19. ${ }^{17} \mathrm{O}(\mathrm{d}, \mathrm{n}){ }^{18} \mathrm{~F} \quad Q_{\mathrm{m}}=3.392$

Table 18.8: Resonances in ${ }^{17} \mathrm{O}\left(\mathrm{p}, \alpha_{0}\right)^{14} \mathrm{~N}$ (1957AH20)

$E_{\mathrm{p}}(\mathrm{MeV})$	$\Gamma_{\text {c.m. }}(\mathrm{keV})$	$E_{\mathrm{x}}(\mathrm{MeV})$
1.110	9	6.667
1.273	90	6.821
1.786	≈ 65	7.306
2.021	11	7.528
2.048	90	7.553
2.218	11	7.714
2.235	100	7.730
2.406	≈ 25	7.891
2.435	≈ 25	7.919
2.623	≈ 40	8.096
2.753	≈ 15	8.219
2.775	≈ 10	8.240
2.928	≈ 50	8.384

See ${ }^{19} \mathrm{~F}$.
20. ${ }^{17} \mathrm{O}\left({ }^{3} \mathrm{He}, \mathrm{d}\right){ }^{18} \mathrm{~F}$
$Q_{\mathrm{m}}=0.125$

Not reported.
21. ${ }^{17} \mathrm{O}(\alpha, \mathrm{t}){ }^{18} \mathrm{~F}$
$Q_{\mathrm{m}}=-14.194$

Not reported.
22. ${ }^{18} \mathrm{O}(\mathrm{p}, \mathrm{n}){ }^{18} \mathrm{~F}$

$$
\begin{aligned}
& Q_{\mathrm{m}}=-2.450 \\
& E_{\text {thresh. }}=2.590 \pm 0.004(1950 \mathrm{RI} 59) \\
& E_{\text {thresh. }}=2.584 \pm 0.010(1956 \mathrm{MA} 18) \\
& E_{\text {thresh. }}=2.577 \pm 0.008(1956 \mathrm{HI} 35)
\end{aligned}
$$

Slow neutron thresholds are reported corresponding to $E_{\mathrm{x}}=960 \pm 10,1065 \pm 15$, and, possibly, $1245 \pm 10 \mathrm{keV}$; no others appear with $E_{\mathrm{x}}<1.65 \mathrm{MeV}$ (1956NA1B). Gamma rays are observed with $E_{\gamma}=940 \pm 20$ and $1040 \pm 20 \mathrm{keV}$ at $E_{\mathrm{p}}=4.3$ and 4.4 MeV : the $1040 \mathrm{keV} \gamma$-ray exhibits a Doppler shift ($\tau<3 \times 10^{-13} \mathrm{sec}$, consistent with $J=0^{+}$), the $940 \mathrm{keV} \gamma$-ray does not, which is consistent with $J=3^{+}, 5^{+}$. No γ-ray is observed from the 1245 keV state (1956NA1C, 1956RO1C). See also ${ }^{16} \mathrm{O}\left({ }^{3} \mathrm{He}, \mathrm{p}\right){ }^{18} \mathrm{~F}$ and ${ }^{19} \mathrm{~F}$.
23. ${ }^{18} \mathrm{O}\left({ }^{3} \mathrm{He}, \mathrm{t}\right){ }^{18} \mathrm{~F}$

$$
Q_{\mathrm{m}}=-1.685
$$

See (1953KU08).
24. ${ }^{18} \mathrm{Ne}\left(\beta^{+}\right){ }^{18} \mathrm{~F}$

$$
Q_{\mathrm{m}}=4.227
$$

See ${ }^{18} \mathrm{Ne}$.
25. ${ }^{19} \mathrm{~F}(\gamma, \mathrm{n}){ }^{18} \mathrm{~F}$

$$
Q_{\mathrm{m}}=-10.414
$$

See ${ }^{19} \mathrm{~F}$.
26. ${ }^{19} \mathrm{~F}(\mathrm{n}, 2 \mathrm{n}){ }^{18} \mathrm{~F}$

$$
Q_{\mathrm{m}}=-10.414
$$

See ${ }^{20} F$.
27. ${ }^{19} \mathrm{~F}(\mathrm{p}, \mathrm{d}){ }^{18} \mathrm{~F}$

$$
\begin{aligned}
& Q_{\mathrm{m}}=-8.187 \\
& Q_{0}=-8.12 \pm 0.2 \text { (1956RE04). }
\end{aligned}
$$

At $E_{\mathrm{p}}=18 \mathrm{MeV}$, angular distributions have been measured to the ground state of ${ }^{18} \mathrm{~F}$ (1956RE04, 1958BE28) and to levels at $0.94,1.05,1.7,3.4$ and 4.1 MeV (1958BE28). The results indicate $J=0^{+}$or 1^{+}for the ground state (1956RE04), even parity for the $0.94,1.04,1.7$ and 4.1 MeV states; probably assignments are stated to be $3^{+}, 0^{+}, 0^{+}$and 2^{+}, respectively, and odd parity, $J \leq 2$ for the 3.4 MeV state (1958BE28). The reduced width for the ground state reaction is $\theta^{2}=0.009$ (1956RE04). According to (1959WA16), the distributions permit $J=0^{+}$or 1^{+}for ${ }^{18} \mathrm{~F}^{*}(1.7)$; $J=0$ is excluded by the observed γ-decay to ${ }^{18} \mathrm{~F}^{*}(1.04)$. See also ${ }^{19} \mathrm{~F}$ and (1958EL1A; theor.).
28. ${ }^{19} \mathrm{~F}(\mathrm{~d}, \mathrm{t}){ }^{18} \mathrm{~F}$

$$
\begin{aligned}
& Q_{\mathrm{m}}=-4.155 \\
& Q_{0}=-4.17 \pm 0.02 \text { (1957EL12) }
\end{aligned}
$$

At $E_{\mathrm{d}}=8.9 \mathrm{MeV}$ proton groups are observed to the ground state and to states at 0.94 ± 0.02 and $1.07 \pm 0.02 \mathrm{MeV}$. The angular distributions are consistent with $l_{\mathrm{n}}=0,1$ and 0 , respectively (1957EL12). The $l_{\mathrm{n}}=1$, odd parity assignment for the 0.94 MeV state is not in accord with other experiments (see, e.g., ${ }^{16} \mathrm{O}\left({ }^{3} \mathrm{He}, \mathrm{p}\right){ }^{18} \mathrm{~F}$ and ${ }^{19} \mathrm{~F}(\mathrm{p}, \mathrm{d}){ }^{18} \mathrm{~F}$). See also (1950BO1A, 1951SH1B).
29. ${ }^{19} \mathrm{~F}\left({ }^{3} \mathrm{He}, \alpha\right){ }^{18} \mathrm{~F}$

$$
\begin{aligned}
& Q_{\mathrm{m}}=10.164 \\
& Q_{0}=10.162 \pm 0.015 \text { (1959HI67). }
\end{aligned}
$$

At $E\left({ }^{3} \mathrm{He}\right)=5.9 \mathrm{MeV}, 41 \alpha$-particle groups have been observed, corresponding to the ground state of ${ }^{18} \mathrm{~F}$ and to excited states with $E_{\mathrm{x}}<7.5 \mathrm{MeV}$ (1959HI67): see Table 18.7.
30. ${ }^{20} \mathrm{Ne}(\mathrm{n}, \mathrm{t}){ }^{18} \mathrm{~F}$

$$
Q_{\mathrm{m}}=-14.802
$$

Not reported.
31. ${ }^{20} \mathrm{Ne}\left(\mathrm{p},{ }^{3} \mathrm{He}\right){ }^{18} \mathrm{~F} \quad Q_{\mathrm{m}}=-15.567$

Not reported.
32. ${ }^{20} \mathrm{Ne}(\mathrm{d}, \alpha){ }^{18} \mathrm{~F}$

$$
\begin{aligned}
& Q_{\mathrm{m}}=2.784 \\
& Q_{0}=2.791 \pm 0.009 \text { (1954MI61). }
\end{aligned}
$$

Observed alpha-particle groups are listed in Table 18.7 (1951MI1A).
33. ${ }^{21} \mathrm{Ne}(\mathrm{p}, \alpha){ }^{18} \mathrm{~F}$
$Q_{\mathrm{m}}=-1.746$

Not reported.
34. ${ }^{25} \mathrm{Mg}(\mathrm{p}, 2 \alpha){ }^{18} \mathrm{~F}$
$Q_{\mathrm{m}}=-11.636$

See (1954CO72).
${ }^{18} \mathbf{N e}$
(Not illustrated)

GENERAL:

Theory: see (1957RA1C).

1. ${ }^{18} \mathrm{Ne}\left(\beta^{+}\right){ }^{18} \mathrm{~F}$
$Q_{\mathrm{m}}=4.227$

The maximum energy of the positrons is $3.2 \pm 0.2 \mathrm{MeV}$, the half-life is $1.6 \pm 0.2 \mathrm{sec}: \log f t=$ 2.9 ± 0.2 (1954GO17). See also (1956DZ1A).
2. ${ }^{16} \mathrm{O}\left({ }^{3} \mathrm{He}, \mathrm{n}\right){ }^{18} \mathrm{Ne}$
$Q_{\mathrm{m}}=-2.966$

See (1953KU08).
3. ${ }^{19} \mathrm{~F}(\mathrm{p}, 2 \mathrm{n}){ }^{18} \mathrm{Ne}$
$Q_{\mathrm{m}}=-15.424$

See (1954GO17).
4. ${ }^{20} \mathrm{Ne}(\mathrm{p}, \mathrm{t}){ }^{18} \mathrm{Ne} \quad Q_{\mathrm{m}}=-19.812$

Not reported.

References

(Closed 01 December 1958)

References are arranged and designated by the year of publication followed by the first two letters of the firstmentioned author's name and then by two additional characters. Most of the references appear in the National Nuclear Data Center files (Nuclear Science References Database) and have NNDC key numbers. Otherwise, TUNL key numbers were assigned with the last two characters of the form $1 \mathrm{~A}, 1 \mathrm{~B}$, etc. In response to many requests for more informative citations, we have, when possible, included up to ten authors per paper and added the authors' initials.

1938FU01 E. Funfer, Ann. Phys. (Paris) 32 (1938) 313
1939BR1A Brubaker, Phys. Rev. 56 (1939) 1181
1939DE1A Devons, Proc. Roy. Soc. A172 (1939) 127
1947 TE01 D.H. Templeton, J.J. Howland and I. Perlman, Phys. Rev. 72 (1947) 758
1948HE1C N.P. Heydenburg and D.R. Inglis, Phys. Rev. 73 (1948) 230
1949BL26 J.P. Blaser, F. Boehm and P. Marmier, Phys. Rev. 75 (1949) 1953
1949CH1A R.A. Charpie, K.-H. Sun, B. Jennings and J.F. Nechaj, Phys. Rev. 76 (1949) 1255
1950BO1A Boyer, M.I.T. Prog. Rept. LNSE (July, 1950)
1950RI59 H.T. Richards, R.V. Smith and C.P. Browne, Phys. Rev. 80 (1950) 524
1951MI1A Middleton and Tai, Proc. Phys. Soc. (London) A64 (1951) 801
1951PO1A M.L. Pool, D.N. Kundu, P.E. Weiler and T.W. Donaven, Phys. Rev. 82 (1951) 305, DA12

1951 RU24 L. Ruby and J.R. Richardson, Phys. Rev. 83 (1951) 698
1951SH1B Shull, Phys. Rev. 83 (1951) 875, F9
1951SU1A K.-H. Sun, B. Jennings, W.E. Shoupp and A.J. Allen, Phys. Rev. 82 (1951) 267
1952AJ38 F. Ajzenberg and T. Lauritsen, Rev. Mod. Phys. 24 (1952) 321
1953CU1D Cuer and Magnac-Valette, J. Phys. Rad. 14 (1953) 15S
1953 HE58 N.P. Heydenburg and G.M. Temmer, Phys. Rev. 92 (1953) 89
1953KU08 D.N. Kundu, T.W. Donaven, M.L. Pool and J.K. Long, Phys. Rev. 89 (1953) 1200
1954AH37 K. Ahnlund, Phys. Rev. 96 (1954) 999
1954AH47 K. Ahnlund, S. Thulin and R. Pauli, Ark. Fys. 8 (1954) 489
1954 CO72 B.L. Cohen, H.L. Reynolds and A. Zucker, Phys. Rev. 96 (1954) 1617
1954GO17 J.D. Gow and L.W. Alvarez, Phys. Rev. 94 (1954) 365
1954MA1F Mani and Pandhi, Proc. Indian Acad. Sci. 40 (1954) 61
1954 MI61 C. Mileikowsky, Ark. Fys. 7 (1954) 117

1954RE1B M.G. Redlich, Phys. Rev. 95 (1954) 448
1954 SI07 R.M. Sinclair, Phys. Rev. 93 (1954) 1082
1955AJ61 F. Ajzenberg and T. Lauritsen, Rev. Mod. Phys. 27 (1955) 77
1955AL1E Alba, Brody, Fernandez, Mazari, Serment and Vazquez, An. del Inst. Fis., Univ. Nacional. Autonoma de Mexico 1 (1955) 1

1955BA1Q Banks, Nucleonics 13 (1955) 62
1955BE1J Berthelot, Cohen, Cotton, Faraggi, Grjebine, Leveque, Naggiar, Roclawski-Conjeaud and Steinsznaider, J. Phys. Rad. 16 (1955) 241
1955BU1C Butler, Phys. Rev. 99 (1955) 643A
1955EL1A Elliot and Flowers, Proc. Glasgow Conf. (Pergamon Press, 1955)
1955EL1B Elliott and Flowers, Proc. Roy. Soc. A229 (1955) 536
1955GR1F Graetzer and Pollard, Phys. Rev. 98 (1955) 1184, RA10
1955HO28 H.D. Holmgren, T.D. Hanscome and D.K. Willett, Phys. Rev. 98 (1955) 241A
1955JA1A Jarmie, Phys. Rev. 98 (1955) 41
1955JU1C Juric and Petrovic, Bull. Inst. Nucl. Sci. Boris Kidrich 5 (1955) 1
1955KH31 L.M. Khromchenko and V.A. Blinov, Zh. Eksp. Teor. Fiz. 28 (1955) 741; JETP (Sov. Phys.) 1 (1955) 596
1955KH35 L.M. Khromchenko, Izv. Akad. Nauk SSSR Ser. Fiz. 19 (1955) 277; Columbia Tech. Transl. 19 (1956) 252
1955MA85 J.B. Marion, R.M. Brugger and T.W. Bonner, Phys. Rev. 100 (1955) 46
1955PR1A Price, Proc. Phys. Soc. (London) A68 (1955) 553
1955RE1C D. Reagan, Phys. Rev. 100 (1955) 113
1955RE1D M.G. Redlich, Phys. Rev. 99 (1955) 1427
1955ST1A Stratton, Blair, Famularo and Stuart, Phys. Rev. 98 (1955) 629
1956BA1L D.R. Bach and P.V. Hough, Phys. Rev. 102 (1956) 1341
1956BE1B Berger and Loper, Phys. Rev. 104 (1956) 1603
1956BR36 C.P. Browne, Phys. Rev. 104 (1956) 1598
1956BU1F Butler, Holmgren and Kunz, Bull. Amer. Phys. Soc. 1 (1956) 29
1956DR38 R.W.B. Drever, A. Moljk and J. Scobie, Phil. Mag. 1 (1956) 942
1956DZ1A Dzhelepov and Peker, Sov. Phys. Dokl. 1 (1956) 71
1956GR1F J.C. Grosskreutz, Phys. Rev. 101 (1956) 706
1956HI35 H.A. Hill and J.M. BIPhys. Rev. 104 (1956) 198
1956JA31 N. Jarmie, Phys. Rev. 104 (1956) 1683

1956JU1G Juric, Bull. Inst. Nucl. Sci. Boris Kidrich 6 (1956) 41
1956 KO26 B. Koudijs, Ph.D. Thesis, Univ. of Utrecht (1956)
1956MA18 H. Mark and C. Goodman, Phys. Rev. 101 (1956) 768
1956NA1B Naggiar, Roclawski-Conjeaud, Szteinsznaider and Thirion, Compt. Rend. 242 (1956) 1443

1956NA1C Naggiar, Roclawski-Conjeaud, Szteinsznaider and Thirion, J. Phys. Rad. 17 (1956) 561

1956NE1B Neudachin, Zh. Eksp. Teor. Fiz. 31 (1956) 892; JETP (Sov. Phys.) 4 (1957) 756
1956NI1C Nikolic, Povh and Zupancic, Bull. Inst. Nucl. Sci. Boris Kidrich 6 (1955) 51
1956RE04 J.B. Reynolds and K.G. Standing, Phys. Rev. 101 (1956) 158
1956RO1A Roclawski-Conjeaud and Cotton, Nucl. Phys. 1 (1956) 603; J. Phys. Rad. 17 (1956) 552; Physica 22 (1956) 1155A
1956RO1C Roclawski-Conjeaud, Naggiar, Szteinsznaider and Thirion, Physica 22 (1956) 1158A
1956 SA06 R.M. Sanders, Phys. Rev. 104 (1956) 1434
1956SH1A Sher and Floyd, Phys. Rev. 102 (1956) 242
1956TH1B R. Thieberger and I. Talmi, Phys. Rev. 102 (1956) 923
1956 VA17 F.P.G. Valckx, Ph.D. Thesis, Univ. of Utrecht (1956)
1957AH20 K. Ahnlund, Phys. Rev. 106 (1957) 124
$1957 B A 14$ E. Baumgartner and H.W. Fulbright, Phys. Rev. 107 (1957) 219
1957BI80 O.M. Bilaniuk and P.V.C. Hough, Phys. Rev. 108 (1957) 305
1957 EL12 F.A. El Bedewi and I. Hussein, Proc. Phys. Soc. (London) A70 (1957) 233
1957GR1D Groshev and Demidov, Sov. J. At. Energy 3 (1957) 853
1957JU1A Juric, Bull. Inst. Nucl. Sci. Boris Kidrich 7 (1957) 1
1957 NO17 E. Norbeck Jr. and C.S. Littlejohn, Phys. Rev. 108 (1957) 754
1957RA1C G. Rakavy, Nucl. Phys. 4 (1957) 375
1957 RI44 F.L. Ribe, Phys. Rev. 106 (1957) 767
1957 YO04 T.E. Young, G.C. Phillips and R.R. Spencer, Phys. Rev. 108 (1957) 72
1958 AL03 E. Almqvist, D.A. Bromley and J.A. Kuehner, Bull. Amer. Phys. Soc. 3 (1958) 27, J12
1958BA59 J.B. Ball, A.W. Fairhall and I. Halpern, Bull. Amer. Phys. Soc. 3 (1958) 322, H6
1958BE28 E.F. Bennett, Bull. Amer. Phys. Soc. 3 (1958) 26, J8
1958BE74 W.L. Bendel, J. McElhinney and R.A. Tobin, Phys. Rev. 111 (1958) 1297
1958BR1D Bromley, Proc. Rehovoth Conf. (North-Holland Pub. Co., Amsterdam, 1958)

1958 BR29 D.A. Bromley, J.A. Kuehner and E. Almqvist, Bull. Amer. Phys. Soc. 3 (1958) 27, J13

1958 BR86 D.A. Bromley, J.A. Kuehner and E. Almqvist, Bull. Amer. Phys. Soc. 3 (1958) 199, P5

1958 DA16 A.W. Dalton, S. Hinds and G. Parry, Proc. Phys. Soc. (London) A71 (1958) 252
1958EL1A El Nadi and Hadid, Nucl. Phys. 8 (1958) 51
1958GO69 H.E. Gove and A.E. Litherland, Bull. Amer. Phys. Soc. 3 (1958) 199, P7
1958HE1F Henley, Conf. on Photonucl. Reactions, National Bureau of Standards (1958)
1958HE54 D.F. Herring, R. Chiba, B.R. Gasten and H.T. Richards, Phys. Rev. 112 (1958) 1210
1958 HE56 D.F. Herring, Phys. Rev. 112 (1958) 1217
1958HU18 D.J. Hughes and R.B. Schwartz, BNL-325, 2nd Ed. (1958); BNL-325, 2nd Ed., Suppl. I (1960)

1958 KA32 E. Kashy, P.D. Miller and J.R. Risser, Phys. Rev. 112 (1958) 547
1958KU1D Kuehner, Almqvist and Bromley, Bull. Amer. Phys. Soc. 3 (1958) 27
1958KU81 J.A. Kuehner, E. Almqvist and D.A. Bromley, Phys.. Rev. Lett. 1 (1958) 260
1958 LI41 A.E. Litherland and H.E. Gove, Bull. Amer. Phys. Soc. 3 (1958) 200, P12
1958 PH37 W.R. Phillips, Phys. Rev. 110 (1958) 1408
1958RE1B M.G. Redlich, Phys. Rev. 110 (1958) 468
1958WE29 J.A. Weinman and E.A. Silverstein, Phys. Rev. 11 (1958) 277
1959 HI67 S. Hinds and R. Middleton, Proc. Phys. Soc. (London) A73 (1959) 721
1959WA16 E.K. Warburton, Phys. Rev. 113 (1959) 595
MO54 Unknown Source

