Energy Levels of Light Nuclei $A=16$

F. Ajzenberg-Selove ${ }^{\mathrm{a}}$ and T. Lauritsen ${ }^{\text {b }}$
${ }^{\text {a }}$ University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396
${ }^{\text {b }}$ California Institute of Technology, Pasadena, California

Abstract

An evaluation of $A=5-24$ was published in Nuclear Physics 11 (1959), p. 1. This version of $A=16$ differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the NNDC/TUNL format.

(References closed December 1, 1958)

The original work of Fay Ajzenberg-Selove was supported by the US Department of Energy [DE-AC02-76-ER02785]. Later modification by the TUNL Data Evaluation group was supported by the US Department of Energy, Office of High Energy and Nuclear Physics, under: Contract No. DEFG05-88-ER40441 (North Carolina State University); Contract No. DEFG05-91-ER40619 (Duke University).

Table of Contents for $A=16$

Below is a list of links for items found within the PDF document. Figures from this evaluation have been scanned in and are available on this website or via the link below.
A. Nuclides: ${ }^{16} \mathrm{~N},{ }^{16} \mathrm{O},{ }^{16} \mathrm{~F}$

B. Tables of Recommended Level Energies:

Table 16.1: Energy levels of ${ }^{16} \mathrm{~N}$
Table 16.3: Energy levels of ${ }^{16} \mathrm{O}$
C. References
D. Figures: ${ }^{16} \mathrm{~N},{ }^{16} \mathrm{O}$
E. Erratum to this Publication: PS or PDF

${ }^{16} \mathbf{N}$

(Fig. 31)

GENERAL:

Theory: See (1954FL1A, 1956KA1C, 1957EL1B).

1. ${ }^{16} \mathrm{~N}\left(\beta^{-}\right)^{16} \mathrm{O}$

$$
Q_{\mathrm{m}}=10.402
$$

From the character of the beta decay, it is concluded that ${ }^{16} \mathrm{~N}(0)$ has $J^{\pi}=2^{-}$. See ${ }^{16} \mathrm{O}$.
2. ${ }^{7} \mathrm{Li}\left({ }^{14} \mathrm{~N},{ }^{5} \mathrm{Li}\right){ }^{16} \mathrm{~N} \quad Q_{\mathrm{m}}=0.589$

See (1958AL1D).
3. ${ }^{9} \mathrm{Be}\left({ }^{7} \mathrm{Li},{ }^{8} \mathrm{Li}\right){ }^{8} \mathrm{Be}$
$Q_{\mathrm{m}}=0.368$
$E_{\mathrm{b}}=20.585$

The cross section for this reaction has been measured from $E\left({ }^{7} \mathrm{Li}\right)=1.1$ to 2.0 MeV . At the higher energy it is approximately 1 mb (1957NO17).
4. ${ }^{13} \mathrm{C}(\alpha, \mathrm{p}){ }^{16} \mathrm{~N}$
$Q_{\mathrm{m}}=-7.416$

Not reported.
5. ${ }^{14} \mathrm{C}(\mathrm{d}, \gamma){ }^{16} \mathrm{~N} \quad Q_{\mathrm{m}}=10.481$

At $E_{\mathrm{d}}=1.16 \mathrm{MeV}$, the cross section is $\lesssim 0.1 \mathrm{mb}$ (1957BO04). At $E_{\mathrm{d}}=2.0 \mathrm{MeV}, \sigma \leq 0.6 \mathrm{mb}$ (1956DO37).
6. ${ }^{14} \mathrm{C}(\mathrm{d}, \mathrm{n}){ }^{15} \mathrm{~N}$
$Q_{\mathrm{m}}=7.987$
$E_{\mathrm{b}}=10.481$

See (1950HU72) and ${ }^{15} \mathrm{~N}$.

Table 16.1: Energy levels of ${ }^{16} \mathrm{~N}$

E_{x} $(\mathrm{MeV} \pm \mathrm{keV})$	J^{π}	$\tau_{1 / 2}$ or $\Gamma(\mathrm{keV})$	Decay	Reactions
0	2^{-}	$\tau_{1 / 2}=7.37 \pm 0.04 \mathrm{sec}$	β^{-}	$1,2,5,12,13,16,19,24$
0.120 ± 1	0^{-}	$\tau_{1 / 2}=5.7 \mu \mathrm{sec}$	γ	16,24
0.295 ± 4	3^{-}		γ	$16,24,25$
0.392 ± 3	1^{-}		γ	$16,24,25$
(3.53 ± 30)		sharp		16
3.980 ± 20		sharp		16
4.80 ± 50		230 ± 40		16
(5.01 ± 50)				16
5.25 ± 50	$2^{-}, 3^{ \pm}$	200	n	14,16
12.2		270	$\mathrm{~d}, \mathrm{p}$	7
12.62		190	$\mathrm{~d}, \mathrm{p}$	7
12.8		165	$\mathrm{~d}, \mathrm{p}$	7

7. ${ }^{14} \mathrm{C}(\mathrm{d}, \mathrm{p}){ }^{15} \mathrm{C}$
$Q_{\mathrm{m}}=-1.007$
$E_{\mathrm{b}}=10.481$

The excitation function has been studied from $E_{\mathrm{d}}=0.6$ to 3.0 MeV (1954RI1B, 1956DO37). Resonances are observed at $2.0,2.45$ and 2.7 MeV , with c.m. widths of 270,190 and 165 keV , respectively, corresponding to ${ }^{16} \mathrm{~N}^{*}(12.2,12.62,12.8 \mathrm{MeV})$ (1956DO37). See also (1950HU72, 1954RI1B) and ${ }^{15} \mathrm{C}$.
8. ${ }^{14} \mathrm{C}(\mathrm{d}, \alpha){ }^{12} \mathrm{~B}$
$Q_{\mathrm{m}}=0.358$
$E_{\mathrm{b}}=10.481$

See (1950HU72).
9. ${ }^{14} \mathrm{C}(\mathrm{t}, \mathrm{n}){ }^{16} \mathrm{~N}$
$Q_{\mathrm{m}}=4.223$

Not reported.
10. ${ }^{14} \mathrm{C}\left({ }^{3} \mathrm{He}, \mathrm{p}\right){ }^{16} \mathrm{~N}$
$Q_{\mathrm{m}}=4.988$

Not reported.
11. ${ }^{14} \mathrm{C}(\alpha, \mathrm{d}){ }^{16} \mathrm{~N} \quad Q_{\mathrm{m}}=-13.363$

Not reported.
12. ${ }^{14} \mathrm{~N}(\mathrm{t}, \mathrm{p}){ }^{16} \mathrm{~N} \quad Q_{\mathrm{m}}=4.851$

See (1953CU1D).
13. ${ }^{15} \mathrm{~N}(\mathrm{n}, \gamma){ }^{16} \mathrm{~N} \quad Q_{\mathrm{m}}=2.494$

The thermal cross section is $24 \pm 8 \mu \mathrm{~b}$ (1958HU18), $80 \pm 30 \mu \mathrm{~b}$ (1952FE1A).
14. ${ }^{15} \mathrm{~N}(\mathrm{n}, \mathrm{n}){ }^{15} \mathrm{~N} \quad E_{\mathrm{b}}=2.494$

The total cross section has been measured for $E_{\mathrm{n}}=2.8$ to 3.3 MeV : a resonance is observed at $E_{\mathrm{n}} \approx 2.95 \mathrm{MeV} . \sigma_{\max }=4 \mathrm{~b}, \Gamma=140 \pm 40 \mathrm{keV}$, corresponding to $E_{\mathrm{x}} \approx 5.26 \mathrm{MeV}, J=2^{-}$or $3^{ \pm}$ (1956BA1A).
15. ${ }^{15} \mathrm{~N}(\mathrm{n}, \alpha){ }^{12} \mathrm{~B}$
See (1948JE03).
16. ${ }^{15} \mathrm{~N}(\mathrm{~d}, \mathrm{p}){ }^{16} \mathrm{~N}$

$$
\begin{aligned}
& Q_{\mathrm{m}}=0.267 \\
& Q_{0}=0.286(1957 \mathrm{VA} 11) \\
& Q_{0}=0.269 \pm 0.010(1957 \mathrm{WA} 01)
\end{aligned}
$$

Levels derived from observed proton groups and γ-rays are listed in Table 16.2. Gamma transitions are shown in the inset of Fig. 31 (Energy Level Diagram of ${ }^{16} \mathrm{~N}$). Even at $E_{\mathrm{d}}=2.7 \mathrm{MeV}$, the stripping angular distribution patterns to the low-lying states are well-developed, and the theory yields quite good fits (1956ZI1A, 1957WA01). Shell-model theory in intermediate coupling predicts a close group of 4 levels within about 700 keV , with $J=0,1,2$, 3, odd parity (order

Table 16.2: Levels of ${ }^{16} \mathrm{~N}$ from ${ }^{15} \mathrm{~N}(\mathrm{~d}, \mathrm{p}){ }^{16} \mathrm{~N}$

$E_{\mathrm{x}}{ }^{\mathrm{a}}(\mathrm{keV})$	$\Gamma_{\text {c.m. }}(\mathrm{keV})$	$l_{\mathrm{n}}{ }^{\mathrm{b}}$	$J^{\pi \mathrm{b}}$	$\theta^{2 \mathrm{c}}$
0	sharp	2	2^{-}	0.05
120 ± 1	sharp	0	0^{-}	0.19
294 ± 5	sharp	2	3^{-}	0.05
392 ± 3	sharp	0	1^{-}	0.18
(3530 ± 30)	sharp			
3980 ± 20	sharp			
4800 ± 50	230 ± 40			
(5010 ± 50)				
5250 ± 50	290 ± 50			

${ }^{\text {a }}$ (1957WA01: $E_{\mathrm{d}}=14.8 \mathrm{MeV}$). No other proton groups are observed corresponding to ${ }^{16} \mathrm{~N}^{*}<9 \mathrm{MeV}$. Energies of first three excited states are from γ-ray measurements (1957FR56, 1957WI1B).
${ }^{\text {b }}$ (1957WA01) and (1956ZI1A: $E_{\mathrm{d}}=2.75 \mathrm{MeV}$); J assignments from stripping and gamma decay data: see text.
${ }^{c}$ (1957WA01).
uncertain), arising from the configurations $\mathrm{p}_{\frac{1}{2}}^{-1} \mathrm{~S}_{\frac{1}{2}}$ and $\mathrm{p}_{\frac{1}{2}}^{-1} \mathrm{~d}_{\frac{5}{2}}$. Levels from $\mathrm{p}_{\frac{1}{2}}^{-1} \mathrm{~d}_{\frac{3}{2}}$ should lie several MeV higher (1953IN1A, 1957EL1B). These results are strikingly confirmed by the experimental evidence. The ground state is assigned $J=2^{-}$on the basis of the β-decay (see ${ }^{16} \mathrm{~N}\left(\beta^{-}\right){ }^{16} \mathrm{O}$). The first excited state may have $J=0^{-}$or 1^{-}from the stripping pattern; however, the half-life $\tau_{1 / 2}=6.7 \pm 0.5 \mu \mathrm{sec}(1957 \mathrm{FR} 56), 5.43 \pm 0.22 \mu \mathrm{sec}$ (1959ZI18) is much too long for dipole radiation, and $J=0^{-}$is indicated (1957WI1B). The third excited state ($E_{\mathrm{x}}=392 \mathrm{keV}$), again limited to $J=0^{-}$or 1^{-}by the stripping pattern, decays to both ${ }^{16} \mathrm{~N}(0)$ and ${ }^{16} \mathrm{~N}^{*}(0.12) ; J=0^{-}$ is therefore excluded and $J=1^{-}$indicated. Of the possibilities $J=1^{-}, 2^{-}, 3^{-}$for the second excited state, ${ }^{16} \mathrm{~N}^{*}(0.285), J=1^{-}$is rendered unlikely by the low intensity of γ-decay to the second excited state and by the absence of an $l_{\mathrm{n}}=0$ component in the stripping pattern (1956ZI1 A, 1957WA01, 1957WI1B). The assignment $J=3^{-}$is strongly favored by the (p- γ) angular correlation (1957FR56).

The observed γ-branching of ${ }^{16} \mathrm{~N}^{*}(0.395)$ is in accord with the theory, which predicts lifetimes in the range 1 to $7 \times 10^{-11} \mathrm{sec}$. A considerable enhancement through collective excitation is required to account for the lifetime of the first excited state. The reduced neutron widths are expected to be of the order of the single-particle limit. Calculation of level shifts and comparison of observed reduced widths suggests that the ${ }^{16} \mathrm{O}^{*}$ analogues to the first four states of ${ }^{16} \mathrm{~N}$ are
${ }^{16} \mathrm{O}^{*}(12.95,12.78,13.24,13.09 \mathrm{MeV})(1957 \mathrm{EL} 1 \mathrm{~B})$: see also (1957WI1B) and ${ }^{15} \mathrm{~N}(\mathrm{p}, \mathrm{p}){ }^{15} \mathrm{~N}$.
17. ${ }^{15} \mathrm{~N}(\mathrm{t}, \mathrm{d}){ }^{16} \mathrm{~N}$

$$
Q_{\mathrm{m}}=-3.765
$$

Not reported.
18. ${ }^{15} \mathrm{~N}\left(\alpha,{ }^{3} \mathrm{He}\right){ }^{16} \mathrm{~N} \quad Q_{\mathrm{m}}=18.084$

Not reported.
19. ${ }^{16} \mathrm{O}(\mathrm{n}, \mathrm{p}){ }^{16} \mathrm{~N} \quad Q_{\mathrm{m}}=-9.619$

The possibility that ${ }^{16} \mathrm{~N}$ might have a long-lived $(\approx \mathrm{sec})$ isomeric state has been examined, with negative result (1956TO1A). See also (1952LI24) and ${ }^{17}$ O.
20. ${ }^{16} \mathrm{O}\left(\mathrm{t},{ }^{3} \mathrm{He}\right){ }^{16} \mathrm{~N}$
$Q_{\mathrm{m}}=-10.384$

Not reported.
21. ${ }^{17} \mathrm{O}\left(\mathrm{d},{ }^{3} \mathrm{He}\right){ }^{16} \mathrm{~N}$
$Q_{\mathrm{m}}=-8.271$

Not reported.
22. ${ }^{18} \mathrm{O}(\mathrm{n}, \mathrm{t}){ }^{16} \mathrm{~N}$
$Q_{\mathrm{m}}=-13.349$

Not reported.
23. ${ }^{18} \mathrm{O}\left(\mathrm{p},{ }^{3} \mathrm{He}\right){ }^{16} \mathrm{~N}$
$Q_{\mathrm{m}}=-14.114$

Not reported.
24. ${ }^{18} \mathrm{O}(\mathrm{d}, \alpha){ }^{16} \mathrm{~N}$

$$
\begin{aligned}
& Q_{\mathrm{m}}=4.237 \\
& Q_{0}=4.237 \pm 0.009 \text { (1955PA50). }
\end{aligned}
$$

Alpha groups are observed at $E_{\mathrm{d}}=0.85 \mathrm{MeV}$ corresponding to ${ }^{16} \mathrm{~N}^{*}(0,116 \pm 6,300 \pm 12,391 \pm$ 12 keV). No other states are observed below $E_{\mathrm{x}}=1.24 \mathrm{MeV}$ (1955PA50). See also (1957BO04) and ${ }^{20} \mathrm{~F}$.
25. ${ }^{19} \mathrm{~F}(\mathrm{n}, \alpha){ }^{16} \mathrm{~N}$

$$
Q_{\mathrm{m}}=-1.500
$$

At $E_{\mathrm{n}}=4.87 \mathrm{MeV}$, an α-group has been observed with $Q=-1.77 \pm 0.15 \mathrm{MeV}$, probably corresponding to a transition to one or more excited states of ${ }^{16} \mathrm{~N}$ (1955JA18). See also (1956TO1A) and ${ }^{20} \mathrm{~F}$.
(Fig. 32)

GENERAL:

Theory: See (1954DE1E, 1954FL1A, 1955HE1E, 1955JA1D, 1955MA1K, 1955MA1L, 1955SC1B, 1955WI1F, 1956EL1C, 1956FE1E, 1956JA1C, 1956KA1D, 1956MO1D, 1956PE1A, 1956RE1C, 1956WI1D, 1957EL1B, 1957FE1D, 1957GR1G, 1957HE1B, 1957RE1A, 1957TA1C, 1957TO1A, 1958CA1G, 1958DA1E, 1958DA1F, 1958FE1C, 1958FE1D, 1958HA1F, 1958MO17, 1958RA1F, 1958UM1A, 1958WI1E).

1. ${ }^{12} \mathrm{C}(\alpha, \gamma){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=7.148$

Resonant capture radiation to ${ }^{16} \mathrm{O}_{\text {g.s. }}$ is observed at $E_{\alpha} \approx 3.24 \mathrm{MeV}$, corresponding to the known $J=1^{-}$state at 9.58 MeV : see ${ }^{12} \mathrm{C}(\alpha, \alpha)^{12} \mathrm{C}$. The radiative width of $6 \times 10^{-3} \mathrm{eV}$ implies a $T=1$ admixture of the order of 3×10^{-4}, an amount slightly lower than usual for ${ }^{16} \mathrm{O}$ states. It is suggested that the $T=1$ admixture may derive from ${ }^{16} \mathrm{O}^{*}(13.09), J=1^{-} ; T=1$ (1957BL01): see also (1953JO1A, 1956WI1D). This state does not arise in any natural way from $\mathrm{p}^{-1} \mathrm{~s}$, or $\mathrm{p}^{-1} \mathrm{~d}$ (1957EL1B). The integrated capture cross section to $E_{\alpha}=1.60 \mathrm{MeV}$ is $<30 \mu \mathrm{~b}-\mathrm{MeV}$ (1955AL16). See also (1958PH37). The relevance of the capture of alpha particles by ${ }^{12} \mathrm{C}$ to the buildup of the elements in stars is discussed by (1956CA1F, 1956HA1C, 1956HA1D, 1957BU66, 1957SA1B).
2. ${ }^{12} \mathrm{C}(\alpha, \mathrm{n}){ }^{15} \mathrm{O}$
$Q_{\mathrm{m}}=-8.452$
$E_{\mathrm{b}}=7.148$

See (1939KI1A).
3. ${ }^{12} \mathrm{C}(\alpha, \alpha \mathrm{n}){ }^{11} \mathrm{C}$
$Q_{\mathrm{m}}=-18.722$
$E_{\mathrm{b}}=7.148$

See (1953LI28).
4. ${ }^{12} \mathbf{C}(\alpha, p){ }^{15} \mathrm{~N}$
$Q_{\mathrm{m}}=-4.965$
$E_{\mathrm{b}}=7.148$
See ${ }^{15} N$.
5. ${ }^{12} \mathrm{C}(\alpha, \mathrm{d}){ }^{14} \mathrm{~N}$
$Q_{\mathrm{m}}=-13.579$
$E_{\mathrm{b}}=7.148$

Table 16.3: Energy Levels of ${ }^{16} \mathrm{O}$

E_{x} $(\mathrm{MeV} \pm \mathrm{keV})$	$J^{\pi} ; T$	τ_{m} or $\Gamma(\mathrm{keV})$	Decay	Reactions
0	$0^{+} ; 0$	-	stable	$1,18,24,27,34,36,37,38,43$
6.056 ± 10	$0^{+} ; 0$	$\tau_{\mathrm{m}}=72 \pm 7 \mathrm{psec}$	π	$9,18,35,36,38,43$
6.135 ± 10	$3^{-} ; 0$	$\tau_{\mathrm{m}}=12 \pm 6 \mathrm{psec}$	γ	$18,24,27,35,36,38,43$
6.923 ± 10	$2^{+} ; 0$	$\tau_{\mathrm{m}}=12 \pm 3 \mathrm{fsec}$	γ	$18,33,36,38,43$
7.121 ± 10	$1^{-} ; 0$	$\tau_{\mathrm{m}}=10 \pm 3 \mathrm{fsec}$	γ	$18,24,27,33,36,38,43$
8.875 ± 10	$2^{-} ; 0$		γ	$18,24,27,36,38,43$
9.58	$1^{-} ; 0$	650	α, γ	1,6
9.843 ± 12	$2^{+} ; 0$	0.8	α	$6,36,43$
10.363 ± 14	$4^{+} ; 0$	27	α	$6,36,43$
(10.804)				(43)
10.937 ± 10	$0^{-} ; 0$		γ	$(18), 24,(43)$
11.070 ± 10	$3^{+} ;(0)$		α	$(6), 18,24,36,43$
11.25	$0^{+} ; 0$	2500	α	6
11.51 ± 30	$2^{+} ; 0$	80	α	6,36
11.62	$3^{-} ; 0$	1200	α	6
12.02 ± 30			(γ)	36
(12.29)		40	γ	20
12.43 ± 10	$1^{-} ; 0$	89	$\alpha, \gamma, \mathrm{p}$	$6,20,22$
12.52 ± 10	2^{-}	0.8	$\mathrm{p}, \gamma, \alpha$	$20,22,36$
12.78 ± 10	$0^{-} ; 1$	38	p, γ	20,21
12.96 ± 10	$2^{-} ; 1$	2 ± 0.2	p, α	21,22
13.09 ± 10	$1^{-} ; 1$	130 ± 10	$\mathrm{p}, \gamma, \alpha$	$20,21,22,36$
13.25 ± 10	$3^{-} ; 1$	21 ± 1	p, α	21,22
13.65 ± 10	$1^{+} ; 0$	64 ± 3	p, α	21,22
13.97 ± 10	2^{-}	22 ± 2	p, α	21,22
14.93 ± 40	4^{+}	43 ± 10	p, α	22
15.21 ± 40	$2^{-}, 3^{+}$	72 ± 15	p, α	22
15.25 ± 60	2^{+}	720 ± 100	p, α	22
15.41 ± 50		96 ± 25	p, α	22
15.79		30	p, α	22

Table 16.3: Energy Levels of ${ }^{16} \mathrm{O}$ (continued)

$\begin{gathered} E_{\mathrm{x}} \\ (\mathrm{MeV} \pm \mathrm{keV}) \end{gathered}$	$J^{\pi} ; T$	$\begin{gathered} \tau_{\mathrm{m}} \text { or } \\ \Gamma(\mathrm{keV}) \end{gathered}$	Decay	Reactions
16.21	1^{+}	23	p, n	23
16.3	0^{-}	250	p, n	23
16.44		24	p, α	22
(16.82)			p, α	22
(16.93)			p, α	22
17.0		≈ 200	p, n	23
17.12		41	p, n	23
17.29		84	p, n	23
17.5		≈ 250	p, n	23
17.63		66	p, n	23
17.85		100	p, n	23
17.96		49	p. n	23
18.05		38	p, n	23
22.05		broad	d, n	11
23.05		broad	d, n	11
23.54		300	α	6
24.38		broad	d, n	11
(25.7)			${ }^{3} \mathrm{He}, \mathrm{p}, \alpha$	7, 8
(26.4)			${ }^{3} \mathrm{He}, \mathrm{p}$	7

The angular distribution at $E_{\alpha}=42 \mathrm{MeV}$ shows three peaks and three valleys in the range $\theta_{\text {c.m. }}=40^{\circ}$ to 150°. The location of peaks and the absolute cross sections agree closely with those obtained in the inverse reaction at $E_{\mathrm{d}}=20 \mathrm{MeV}$. The experiment provides a test of the hypothesis of invariance under time reversal and places an upper limit of a few per cent on possible T-R odd forces (1958BO71).
6. ${ }^{12} \mathrm{C}(\alpha, \alpha){ }^{12} \mathrm{C}$

$$
E_{\mathrm{b}}=7.148
$$

Resonances derived from a phase-shift analysis of the elastic scattering are exhibited in Table 16.4 (1953HI05, 1954BI96). At the upper limit of these experiments $\left({ }^{16} \mathrm{O}^{*}(12.5)\right)$, the existence of higher $J=0^{+}$and 2^{+}levels is indicated by a pronounced increase in the $l=0$ and $l=2$ phase shifts (1953HI05, 1954BI96). The inelastic scattering for $E_{\alpha}=20.4$ to 22.6 MeV indicates

Table 16.4: Resonances in ${ }^{12} \mathrm{C}(\alpha, \alpha){ }^{12} \mathrm{C}$

$E_{\alpha}(\mathrm{MeV})$	$\Gamma_{\text {lab }}(\mathrm{keV})$	θ_{α}^{2}	${ }^{16} \mathrm{O}^{*}(\mathrm{MeV})$	J^{π}
3.24^{a}	860	0.85	9.58	1^{-}
3.582^{a}	1	0.0015	9.835	2^{+}
4.28^{b}	36	0.26	10.36	4^{+}
5.27^{b}	10		$(11.10)^{\mathrm{d}}$	
5.47^{b}	3300	0.76	11.25	0^{+}
5.82^{b}	106	0.03	11.51	2^{+}
5.96^{b}	1600	0.73	11.62	3^{-}
7.04^{b}	230	0.04	12.43	1^{-}
21.85^{c}	400		23.54	

${ }^{\text {a }}$ (1953HI05).
${ }^{\mathrm{b}}$ (1954BI96).
${ }^{\mathrm{c}}$ (1955RA1B).
${ }^{\text {d }}$ Assignment to present reaction not certain.
a resonance at $E_{\alpha}=21.85 \pm 0.1 \mathrm{MeV}, \Gamma \approx 0.4 \mathrm{MeV}\left({ }^{16} \mathrm{O}^{*}(23.54)\right)$. The asymmetry of the angular distribution is said to indicate at least one other level, of opposite parity (1955RA1B). See also (1954DE1E; theor.) and ${ }^{12} \mathrm{C}$.
7. ${ }^{13} \mathrm{C}\left({ }^{3} \mathrm{He}, \mathrm{p}\right){ }^{15} \mathrm{~N}$

$$
Q_{\mathrm{m}}=10.668
$$

$$
E_{\mathrm{b}}=22.780
$$

The yields of ground state protons have been studied at several angles in the region $E\left({ }^{3} \mathrm{He}\right)=$ 1.4 to 4.8 MeV . There are indications of resonances at $E\left({ }^{3} \mathrm{He}\right) \approx 3.6$ and $4.5 \mathrm{MeV}\left({ }^{16} \mathrm{O}^{*}(25.7\right.$ and 26.4)) (1956SC01, 1957IL01). See also ${ }^{15} \mathrm{~N}$.
8. ${ }^{13} \mathrm{C}\left({ }^{3} \mathrm{He}, \alpha\right){ }^{12} \mathrm{C}$
$Q_{\mathrm{m}}=15.632$
$E_{\mathrm{b}}=22.780$

The ground state α-group shows a broad weak resonance at $E\left({ }^{3} \mathrm{He}\right) \approx 3.6 \mathrm{MeV}$ (1956WO1C). See also ${ }^{12} \mathrm{C}$.
9. ${ }^{13} \mathrm{C}(\alpha, \mathrm{n}){ }^{16} \mathrm{O}$
$Q_{\mathrm{m}}=2.203$

A threshold for ${ }^{16} \mathrm{O}^{*}(6.05)$ is observed at $E_{\alpha}=5.05 \mathrm{MeV}$ (1956BO61). See also (1951JO1C) and ${ }^{17} \mathrm{O}$.
10. ${ }^{14} \mathrm{C}\left({ }^{3} \mathrm{He}, \mathrm{n}\right){ }^{16} \mathrm{O}$
$Q_{\mathrm{m}}=14.607$

Not reported.
11. ${ }^{14} \mathrm{~N}(\mathrm{~d}, \mathrm{n}){ }^{15} \mathrm{O}$
$Q_{\mathrm{m}}=5.073$
$E_{\mathrm{b}}=20.728$

Excitation functions have been measured for $E_{\mathrm{d}}=0.6$ to 4.5 MeV (1955MA85, 1956JO1D, 1957JO1C, 1957NO1C, 1958MO14, 1958WE31). The yield of ground-state neutrons shows broad but well-defined peaks at $E_{\mathrm{d}}=1.52,2.62$, and $4.19 \mathrm{MeV} ; E_{\mathrm{x}}=22.05,23.05$, and 24.38 MeV . It is not clear whether the structure is to be attributed to resonances or to surface interaction (1958WE31). See also ${ }^{15}$ O.
12. ${ }^{14} \mathrm{~N}(\mathrm{~d}, \mathrm{p}){ }^{15} \mathrm{~N}$
$Q_{\mathrm{m}}=8.615$
$E_{\mathrm{b}}=20.728$

Excitation functions and angular distributions are reported by (1954JO1F: $E_{\mathrm{d}}=0.4$ to 0.6 MeV) (1956KO26, 1956VA17: $E_{\mathrm{d}}=0.2$ to 0.7 MeV), and (1958BO18: $E_{\mathrm{d}}=0.6$ to 1.0 MeV): see also (1957JA37). At the lower energies, both stripping and compound nucleus effects are reported, although the distributions for $E_{\mathrm{d}}=0.6$ to 1.0 MeV (1958BO18) appear to be explicable entirely on the basis of overlapping resonance levels. See also ${ }^{15} \mathrm{~N}$ and (1954ST1C).
13. ${ }^{14} \mathrm{~N}(\mathrm{~d}, \mathrm{~d}){ }^{14} \mathrm{~N}$
$E_{\mathrm{b}}=20.728$
See ${ }^{14} N$.
14. ${ }^{14} \mathrm{~N}(\mathrm{~d}, \mathrm{t}){ }^{13} \mathrm{~N}$
See (1942BO1A).
$Q_{\mathrm{m}}=-4.292$
$E_{\mathrm{b}}=20.728$
15. ${ }^{14} \mathrm{~N}(\mathrm{~d}, \alpha){ }^{12} \mathrm{C}$

$$
Q_{\mathrm{m}}=13.579
$$

$$
E_{\mathrm{b}}=20.728
$$

The cross section rises gradually from $E_{\mathrm{d}}=0.45$ to 0.90 MeV (1954CA1D). Angular distributions for $E_{\mathrm{d}}=0.6$ to 1.0 MeV indicate that the stripping contribution is small in this range (1958BO18). The angular distribution at $E_{\mathrm{d}}=20 \mathrm{MeV}$ agrees closely with that of the inverse reaction at $E_{\alpha}=42 \mathrm{MeV}$ (1958BO71): see ${ }^{12} \mathrm{C}(\alpha, \mathrm{d})^{14} \mathrm{~N}$, (1957FI1C) and ${ }^{12} \mathrm{C}$.
16. ${ }^{14} \mathrm{~N}(\mathrm{~d}, 4 \alpha)$

$$
Q_{\mathrm{m}}=6.298
$$

$$
E_{\mathrm{b}}=20.728
$$

See (1947FO1A).
17. ${ }^{14} \mathrm{~N}(\mathrm{t}, \mathrm{n}){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=14.470$

Not reported.
18. ${ }^{14} \mathrm{~N}\left({ }^{3} \mathrm{He}, \mathrm{p}\right){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=15.235$

At $E\left({ }^{3} \mathrm{He}\right)=2.1 \mathrm{MeV}$, proton groups corresponding to ${ }^{16} \mathrm{O}$ levels up to $E_{\mathrm{x}}=13.6 \mathrm{MeV}$ have been identified. In the region $E_{\mathrm{x}} \approx 11 \mathrm{MeV}$, four groups are resolved, corresponding to ${ }^{16} \mathrm{O} *(10.94,11.087 \pm 0.020,11.25,11.51)$. The first two are presumably those observed in ${ }^{15} \mathrm{~N}(\mathrm{~d}$, n) ${ }^{16} \mathrm{O}$ at 10.937 and 11.063 MeV . The gamma decay of ${ }^{16} \mathrm{O} *(8.88,10.94$ and 11.07$)$ has been studied with coincidence techniques: branching ratios are given in Fig. 33 (Gamma-ray transitions in ${ }^{16} \mathrm{O}$). From the observed transition intensities and from ($\mathrm{p}-\gamma$) and $(\gamma-\gamma)$ correlations, the assignment $J=2^{-}$for ${ }^{16} \mathrm{O}^{*}(8.88)$ is confirmed, and assignments of $J=0^{-}$and 3^{+}are fixed for ${ }^{16} \mathrm{O}^{*}(10.94$ and 11.07), respectively. For the 10.94 MeV state, $\Gamma_{\alpha} / \Gamma_{\gamma}<0.2$, indicating an upper limit for the intensity of possible opposite-parity admixture of $\approx 2 \times 10^{-9}$ (1959BR68, 1959KU78). See also (1957BR17, 1957LI1D, 1958BR1D).
19. ${ }^{14} \mathrm{~N}(\alpha, \mathrm{~d}){ }^{16} \mathrm{O}$
$Q_{\mathrm{m}}=-3.116$

Not reported.
20. ${ }^{15} \mathrm{~N}(\mathrm{p}, \gamma){ }^{16} \mathrm{O}$

$$
Q_{\mathrm{m}}=12.113
$$

Ground-state capture radiation resonances occur at $E_{\mathrm{p}}=190,338 \mathrm{keV}$ (1958HE52) and 1050 keV (1952SC28, 1957HA98, 1958HE52): see Table 16.5. The large radiative width, $\Gamma_{\gamma}=150 \mathrm{eV}$, of the latter indicates E1 radiation and $J=1^{-} ; T=1$ for ${ }^{16} \mathrm{O}^{*}$ (13.09); on the other hand, the large
α-width speaks for a strong admixture of $T=0$ (1953WI1B, 1956WI1D: see also (1957BA03)). The 338 keV resonance is relatively weak, $\Gamma_{\gamma}=8 \mathrm{eV}$. The Breit-Wigner formula with destructive interference between these two $J=1^{-}$states gives a good account of the γ_{0} yield from $E_{\mathrm{p}}=200$ to 1200 keV (1958HE52). Cascade radiation, via ${ }^{16} \mathrm{O}^{*}\left(6\right.$ and 7), is weakly resonant at $E_{\mathrm{p}}=340$ keV (1958HE52): at the higher resonance, the relative amount of cascade radiation is $<1.3 \times 10^{-3}$ (1953DE1A, 1954GO1F). No further resonances for ground-state radiation appear for $E_{\mathrm{p}}<3.3$ MeV with intensity $>2 \%$ of that at $E_{\mathrm{p}}=1050 \mathrm{keV}$ (1957BA03). Within a few microbarns, the cross section for $E_{\mathrm{p}}<3 \mathrm{MeV}$ is completely accounted for by the 13.09 MeV state; a small rise from $E_{\mathrm{p}}=3$ to 4 MeV may reflect higher resonances. This result is in disagreement with that of (1955SP1B) on the inverse reaction in which a level at ${ }^{16} \mathrm{O}^{*}(14.7)\left(E_{\mathrm{p}}=2.8 \mathrm{MeV}\right)$ is reported. The isotropy of the radiation over the entire range from $E_{\mathrm{p}}=1$ to 4 MeV places an upper limit of 3% on the relative intensity of $\mathrm{p}^{-1} \mathrm{~d}$ in the 13.09 MeV state (1957WI1H); see also (1957EL1B).

At $E_{\mathrm{p}}=429 \mathrm{keV}$ (1958HE52) and 710 keV (1957HA98), resonances for cascade radiation are found; neither produces any detectable ground state radiation. See also (1958CA13).
21. ${ }^{15} \mathrm{~N}(p, p){ }^{15} \mathrm{~N}$

$$
E_{\mathrm{b}}=12.113
$$

Elastic scattering studies are reported for $E_{\mathrm{p}}=600$ to 1800 keV by (1957HA98) and for $E_{\mathrm{p}}=950$ to 3960 keV by (1956BA1H); see Table 16.5 . The $E_{\mathrm{p}}=710 \mathrm{keV}$ state, $\left({ }^{16} \mathrm{O}^{*}(12.78)\right)$ having $J=0^{-}$, does not appear in the (p, α) reaction or in the ground-state capture: see ${ }^{15} \mathrm{~N}(\mathrm{p}$, $\gamma)^{16} \mathrm{O}$. The assignment $J=3^{-}$to the state at $E_{\mathrm{p}}=1210 \mathrm{keV}\left({ }^{16} \mathrm{O} *(13.25)\right)$ is in disagreement with the observed angular distribution in ${ }^{15} \mathrm{~N}\left(\mathrm{p}, \alpha_{1}\right){ }^{12} \mathrm{C}^{*}$ but is confirmed by the $\alpha_{1}-\gamma$ correlation. The reason for this discrepancy is not known (1957HA98).

By comparison of J^{π} assignments and reduced widths, it is concluded that the ${ }^{16} \mathrm{O}$ levels formed at $E_{\mathrm{p}}=898,710,1210$, and 1028 keV are the analogues of the first four states of ${ }^{16} \mathrm{~N}$ (1956WI1G, 1956WI1H, 1957EL1B, 1957HA98). It is pointed out that the $E_{\mathrm{p}}=340$ and 429 keV states are also possible candidates, and that in any case appreciable isobaric spin mixing is to be expected (1957HA98). See also (1956WI1D).

Elastic scattering at $\theta=132^{\circ}$ shows structure at $E_{\mathrm{p}}=3000 \mathrm{keV}$ and a large peak of undetermined origin at $E_{\mathrm{p}}=3920 \pm 40 \mathrm{keV}$ (1956BA1H). See also (1958CA13).
22. ${ }^{15} \mathrm{~N}(\mathrm{p}, \alpha){ }^{12} \mathrm{C}$

$$
Q_{\mathrm{m}}=4.964
$$

$$
E_{\mathrm{b}}=12.113
$$

Two groups of α-particles occur, to ${ }^{12} \mathrm{C}(0)\left(\alpha_{0}\right)$ and to ${ }^{12} \mathrm{C}^{*}\left(4.43, J=2^{+}\right)\left(\alpha_{1}, \gamma\right)$. Observed resonances are exhibited in Table 16.5. The cross section for $\left(\mathrm{p}, \alpha_{0}\right)$ is $5 \times 10^{-7} \mathrm{~b}$ at $E_{\mathrm{p}}=100$ keV (1950SC1A: see also (1952SC28, 1957BA03)). See (1957JA37).

Angular distributions ($\mathrm{p}-\alpha_{0}$) have been studied in the range $E_{\mathrm{p}}=230$ to 960 keV by (1953CO1D), $E_{\mathrm{p}}=500$ to 1000 keV by (1953NE1B), $E_{\mathrm{p}}=920$ to 1260 keV by (1957HG01). At and below the 338 keV resonance, the distribution is isotropic. Strong $\cos \theta$ terms develop for $E_{\mathrm{p}}>400$

Table 16.5: Levels of ${ }^{16} \mathrm{O}$ from ${ }^{15} \mathrm{~N}(\mathrm{p}, \mathrm{p}){ }^{15} \mathrm{~N},{ }^{15} \mathrm{~N}(\mathrm{p}, \gamma){ }^{16} \mathrm{O}$ and ${ }^{15} \mathrm{~N}(\mathrm{p}, \alpha){ }^{12} \mathrm{C}$

$\begin{gathered} E_{\mathrm{p}} \\ (\mathrm{keV}) \end{gathered}$	$\begin{gathered} \hline \Gamma_{\text {lab }} \\ (\mathrm{keV}) \end{gathered}$	$\begin{gathered} \Gamma_{\mathrm{p}} \\ (\mathrm{keV}) \end{gathered}$	$\begin{gathered} \hline \sigma\left(\alpha_{0}\right) \\ (\mathrm{mb}) \end{gathered}$	$\begin{gathered} \hline \sigma\left(\alpha_{1}\right) \\ (\mathrm{mb}) \\ \hline \end{gathered}$	$\begin{gathered} \sigma\left(\gamma_{0}\right) \\ (\mu \mathrm{b}) \end{gathered}$	$\begin{gathered} \hline \sigma\left(\gamma_{1}\right) \\ (\mu \mathrm{b}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \theta_{\mathrm{p}}^{2} \\ (\%) \\ \hline \end{gathered}$	$J^{\pi} ; T$	$\begin{gathered} E_{\mathrm{x}} \\ (\mathrm{MeV}) \end{gathered}$
(190)	40				res ${ }^{\text {f }}$				12.29
$338{ }^{\text {a }}$	94	$0.8{ }^{\text {a, f }}$	$75^{\text {a, f }}$	$0.03{ }^{\text {f }}$	$7{ }^{\text {f }}$	$0.4{ }^{\text {f }}$	$4^{\text {f, c }}$	$1^{-} ; 0^{\text {c }}$	12.430
$429 \pm 1^{\text {a }}$	0.9	$0.020^{\text {f }}$	n.r. ${ }^{\text {g }}$	$200{ }^{\text {a, f }}$		$1300{ }^{\text {f }}$	$4^{\text {b }}$	2^{-}	12.515
$710 \pm 7^{\text {b }}$	40 ± 4	$40^{\text {b }}$	n.r.	n.r.	n.r.	res	11	$0^{-} ; 1^{\text {b }}$	12.779
$898 \pm 1^{\text {a }}$	2.2 ± 0.2	1.2	n.r.	800			8.8	$2^{-} ; 1$	12.955
$1028 \pm 10^{\text {b }}$	140 ± 10	110	$500{ }^{\text {i }}$	15	$1000{ }^{\text {a }}$	$<1.3{ }^{\text {h }}$	10	$1^{-} ; 1$	13.088
$1210 \pm 3^{\text {a }}$	22.5 ± 1	4.1	$600^{\text {i }}$	$425{ }^{\text {d }}$			7.4	$3^{-} ; 1$	13.247
$1640 \pm 3^{\text {c }}$	68 ± 3	10	n.r. ${ }^{\text {d }}$	340			0.8	$1^{+} ; 0$	13.651
1979 ± 3	23 ± 2	$0.5{ }^{\text {c }}$	n.r.	35				$2^{-\mathrm{d}}$	13.968
$3000 \pm 30^{\text {d }}$	45 ± 10		50	600				4^{+}	14.93
3300 ± 35	75 ± 15		n.r.	270				$2^{-}, 3^{+}$	15.21
3350 ± 50	750 ± 100		50	205				2^{+}	15.25
3520 ± 40	100 ± 25		100	80					15.41
$3920{ }^{\text {e }}$	30			res ${ }^{\text {e }}$					15.79
4610	25			res					16.44
(5020)				(res)					(16.82)
(5140)				(res)					(16.93)

${ }^{\text {a }}$ (1952SC28); values for 338-kev resonance corrected for s-wave penetration: observed $E_{\max }=360 \mathrm{keV}, \sigma_{\alpha_{0}}(\max)=90 \mathrm{mb}$.
b (1957HA98).
c (1957HG01).
d (1957BA03).
${ }^{\text {e }}$ (1956LI1C); see also Table 16.6.
${ }^{\mathrm{f}}$ (1958HE52).
${ }^{\mathrm{g}}$ n.r. $=$ non-resonant.
${ }^{h}$ (1954GO1F).
${ }^{\text {i }}$ (1952SC28): (1957HG01) find 340 and 300 mb respectively.
keV , with $\cos ^{2} \theta$ terms gradually increasing above 700 keV , and higher-order terms above 1 MeV . The terms in $\cos \theta$ indicate interference between states of opposite parity. Analysis of this effect led (1953CO1D) to the conclusion that the resonances in question were $E_{\mathrm{p}}=338 \mathrm{keV}$, assigned $J=0^{+}$, and $E_{\mathrm{p}}=1028 \mathrm{keV}, J=1^{-}$. Subsequent work has shown, however, that the lower state is $J=1^{-}$, formed by s-wave protons: evidently the interfering even parity state or states remain to be identified; see also ${ }^{12} \mathrm{C}(\alpha, \alpha){ }^{12} \mathrm{C}$. The 1028 keV resonance has a large width both for α-particles and E1 radiation and appears to have a mixed character as regards isobaric spin (1953WI1A, 1953WI1B, 1956WI1D, 1957HA98).

Analysis of the ($\mathrm{p}-\alpha_{0}$) distribution at the $E_{\mathrm{p}}=1210 \mathrm{keV}$ resonance indicates $J=3^{-}$, although $J=4^{+}$is not clearly excluded (1957HG01). Angular distributions of (p, α_{1}) and the $4.4 \mathrm{MeV} \gamma-$ ray have been studied at the $E_{\mathrm{p}}=429,898$, and 1210 keV resonances by (1952BA1C, 1952SE1B, 1953KR1B). Channel-spin ratios have been interpreted in terms of $L-S$ and $j-j$ coupling models by (1953CH1A). The α_{1}-distribution at $E_{\mathrm{p}}=1210 \mathrm{keV}$ appears to require $J=4^{+}(1953 \mathrm{KR} 1 \mathrm{~B}$, 1957HA98), but the ($\alpha_{1}-\gamma$) correlation requires $J=3^{-}$, in agreement with elastic scattering results; the reason for this discrepancy is not clear (1957HA98). Angular distributions of the 4.4 $\mathrm{MeV} \gamma$-rays are reported for $E_{\mathrm{p}}=1050$ and 1640 keV by (1954KR1C) and for various energies from $E_{\mathrm{p}}=1210$ to 3900 keV by (1957BA03). See also (1958CA13).

A pronounced anomaly appears at $E_{\mathrm{p}}=1.87 \mathrm{MeV}$ in the (p, α_{0}) excitation curve which is faintly reproduced in (p, α_{1}) but not in (p, p) (1957HG01).
23. ${ }^{15} \mathrm{~N}(\mathrm{p}, \mathrm{n}){ }^{15} \mathrm{O}$
$Q_{\mathrm{m}}=-3.542$
$E_{\mathrm{b}}=12.113$

The excitation function has been measured from threshold to 6.4 MeV , and angular distributions have been studied at several energies: see Table 16.6. Only four levels are found with $\Gamma \lesssim 40 \mathrm{keV}$, as contrasted with the ten or more reported in ${ }^{16} \mathrm{O}(\gamma, \mathrm{n}){ }^{15} \mathrm{O}$ (1958JO28).

$$
\text { 24. }{ }^{15} \mathrm{~N}(\mathrm{~d}, \mathrm{n}){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=9.886
$$

Slow neutron thresholds have been observed at $E_{\mathrm{d}}=1.192$ and 1.335 MeV , corresponding to ${ }^{16} \mathrm{O} *(10.937 \pm 0.010,11.063 \pm 0.015)(1957 \mathrm{WE} 1 \mathrm{~A})$. At $E_{\mathrm{d}}=5.1 \mathrm{MeV}$, in this reaction, and at $E_{\mathrm{p}}=5.77 \mathrm{MeV}$ in ${ }^{19} \mathrm{~F}(\mathrm{p}, \alpha){ }^{16} \mathrm{O}$, four γ-ray lines are observed which are assigned to ${ }^{16} \mathrm{O}: E_{\gamma}=$ $2.73(8.87 \rightarrow 6.14), 3.86 \pm 0.04(10.94 \rightarrow 7.12), 6.14(6.14 \rightarrow 0)$, and $7.1 \mathrm{MeV}(6.9+7.1 \rightarrow 0)$. The 10.94 MeV state is not observed to decay in any way other than through the $J=1^{-}$state at 7.12 MeV ; upper limits to transitions to ${ }^{16} \mathrm{O}^{*}(0,6.06,6.14,6.92,8.87)$ are, respectively, 5,1 , 6,20 , and 40% of the observed cascade. The strong transition to ${ }^{16} \mathrm{O}^{*}(7.1), J=1^{-}$, suggests $J=0^{-}$for ${ }^{16} \mathrm{O}^{*}(10.94)$, although $J=1^{+}$is not ruled out. The $\gamma-\gamma$ correlation strongly favors $J=0^{-}$. It is suggested that this γ-emitting state is to be identified with the first neutron threshold: ${ }^{16} \mathrm{O}^{*}(10.94)$, above, and is distinct from either the (doubtful) ${ }^{16} \mathrm{O}^{*}(11.1)$ reported in ${ }^{12} \mathrm{C}(\alpha, \alpha){ }^{12} \mathrm{C}$ or the ${ }^{16} \mathrm{O}^{*}(11.08)$ reported in ${ }^{16} \mathrm{O}\left(\mathrm{p}, \mathrm{p}^{\prime}\right)^{16} \mathrm{O}^{*}$. Possibly both ${ }^{16} \mathrm{O}^{*}(10.94$ and 11.08$)$ are involved

Table 16.6: Resonances in ${ }^{15} \mathrm{~N}(\mathrm{p}, \mathrm{n})^{15} \mathrm{O}$ (1958JO28)

$E_{\mathrm{p}}(\mathrm{MeV})$	$\Gamma_{\text {lab }}(\mathrm{keV})$	J^{π}	E_{x} in ${ }^{16} \mathrm{O}(\mathrm{MeV})$
4.372	24	1^{+}	16.21
≈ 4.5	≈ 250	0^{-}	16.3
≈ 5.3	≈ 200		17.0
5.35	44		17.12
5.52	90		17.29
≈ 5.8	≈ 250		17.5
5.88	70		17.63
6.12	105		17.85
6.24	52		17.96
6.33	40		18.05

in ${ }^{14} \mathrm{~N}\left({ }^{3} \mathrm{He}, \mathrm{p}\right){ }^{16} \mathrm{O}(1957 \mathrm{BE} 61)$. It is noted that the ${ }^{19} \mathrm{~F}(\mathrm{p}, \alpha){ }^{16} \mathrm{O}$ spectrum of (1956SQ1A) shows three groups in this range, of which one is definitely attributed to ${ }^{16} \mathrm{O}^{*}(11.085)$ (1957WE1A). The 8.87 MeV state has a $7 \pm 2 \%$ direct transition to ${ }^{16} \mathrm{O}_{\text {g.s. }}$ (1957BE61). Angular distributions of ground-state neutrons for $E_{\mathrm{d}}=1.1$ to 5.2 MeV are well accounted for by the exchange stripping theory of (1957OW03) (1958WE31: see ${ }^{17}$ O). See also (1955AJ61) and (1957EL1B; theor.).
25. ${ }^{15} \mathrm{~N}\left({ }^{3} \mathrm{He}, \mathrm{d}\right){ }^{16} \mathrm{O}$
$Q_{\mathrm{m}}=6.619$

Not reported.
26. ${ }^{15} \mathrm{~N}(\alpha, \mathrm{t}){ }^{16} \mathrm{O}$
$Q_{\mathrm{m}}=-7.700$

Not reported.
27. ${ }^{16} \mathrm{~N}\left(\beta^{-}\right){ }^{16} \mathrm{O}$

$$
Q_{\mathrm{m}}=10.402
$$

${ }^{16} \mathrm{~N}$ decays to several states of ${ }^{16} \mathrm{O}$: reported branching fractions are listed in Table 16.7. The ground-state transition, with $E_{\beta}(\max)=10.33 \pm 0.08 \mathrm{MeV}(1957 \mathrm{MO} 1 \mathrm{~A}), 10.40 \pm 0.05 \mathrm{MeV}$ (1958BR95), has the unique first-forbidden shape corresponding to $\Delta J=2$, yes, fixing J^{π} of ${ }^{16} \mathrm{~N}$ as 2^{-}(1957MO1A, 1958BR95, 1959AL1M). This assignment is also indicated by the fact

Table 16.7: Beta-decay of ${ }^{16} \mathrm{~N}$

Final State		A		B		C		D
16 O^{*}	J^{π}	Branch $(\%)$	$\log f_{0} t$	Branch $(\%)$	$\log f_{0} t$	Branch $(\%)$	$\log f_{0} t$	
0	0^{+}	26 ± 2	6.7	28	6.67^{a}	24 ± 2	8.2^{b}	
6.06	0^{+}	≤ 0.015	≥ 8.2					
6.14	3^{-}	68	4.5	54	4.6	55 ± 4	4.5	14 ± 1
6.92	2^{+}							
7.12	1^{-}	4.9	5.1	18	4.6	21 ± 4	4.4	1
8.88	2^{-}	1.1	4.4					

A: (1956WI1A, 1958AL13, 1959AL1M): includes data of B, C, D.
B: (1958BR95).
C: (1957MO1A).
D: γ-rays (1951MI1B, 1956TO1A, 1957BO04).
${ }^{\mathrm{a}} \log \left(f_{1} t\right)=8.0$.
${ }^{\mathrm{b}} \log \left(f_{1} t\right)$.
that the transitions to ${ }^{16} \mathrm{O}$ (6.1 and 7.1) are both allowed (1951MI1B). There appears to be some discrepancy between the branching ratios of ${ }^{16} \mathrm{O}^{*}$ (6.1 and 7.1) as determined by decomposition of the β-spectrum (1958BR95) and by comparison of the γ-ray intensities (1951MI1B, 1957BO04: see, however, (1959AL1M)). The low $f t$-value for ${ }^{16} \mathrm{O}^{*}(7.1)$ presents some difficulty for the theory (1957EL1B). Transitions to the nuclear pair emitting state are $<1.5 \times 10^{-4}$: $\log f t>8.2$ (1958AL13: see also (1956EL1C, 1957EL1B)). A 1.1% branch leads to ${ }^{16} \mathrm{O}^{*}(8.87)$ which decays via the $7.1,6.9$, and 6.1 MeV levels in the ratio $3: 1: 30$. Since the β-transition is allowed, J^{π} of ${ }^{16} \mathrm{O}^{*}(8.8)$ is $1^{-}, 2^{-}$or 3^{-}; the first and last would permit α-decay, so $J^{\pi}=2^{-}$. The γ-branching and the $\gamma-\gamma$ correlation $(8.88 \rightarrow 6.1 \rightarrow$ g.s.) are consistent with this assignment (1956WI1A).

The half-life is $7.35 \pm 0.05 \mathrm{sec}$ (1947BL1A), $7.38 \pm 0.05 \mathrm{sec}$ (1954MA97). (1956TO1A) finds no evidence for β-decay of excited states of ${ }^{16} \mathrm{~N}$.

$$
\text { 28. }{ }^{16} \mathrm{O}(\gamma, \mathrm{n})^{15} \mathrm{O} \quad \begin{array}{ll}
\mathrm{m}=-15.655 \\
& E_{\text {thresh. }}=15.60 \pm 0.05 \text { (1957BA27: see also (1955BA1P)). }
\end{array}
$$

The cross section exhibits a slow rise for $\approx 3 \mathrm{MeV}$ above threshold followed by the usual giant resonance. Characteristics of the giant resonance are: $E_{\gamma}=24 \mathrm{MeV}, \Gamma=3.5 \mathrm{MeV}, \sigma_{\max }=10$ $\mathrm{mb} ; \int \sigma \mathrm{d} E=40 \mathrm{MeV}-\mathrm{mb}$ (1951JO1B, 1953MO1B, 1954FE16, 1957CA1D).

Discontinuities in the activation curve are said to indicate absorption into discrete levels of ${ }^{16} \mathrm{O}$: see Table 16.8 (1955BA1P, 1955CO1C, 1955PE1D, 1957BA27, 1958BE74, 1958KA1D). From the cross section it would appear that a substantial fraction of the absorption takes place through discrete levels (1954KA1A, 1955PE1D). However, in a measurement of the absorption in water for $E_{\gamma}=15$ to 25 MeV , using various detectors including ${ }^{16} \mathrm{O}$, (1958SI1A) conclude that the absorption is generally continuous, with only a small contribution from discrete, narrow levels. See also (1954BI04, 1955CA1E, 1955SA1F, 1957SP1A, 1957SV1A, 1958LI1D, 1958WO51), (1955MO1C, 1956WI1D, 1957BA1H, 1957EL1B, 1958FE1C, 1958FE1D, 1958WI1E; theor.) and (1955AJ61).
29. ${ }^{16} \mathrm{O}(\gamma, \mathrm{p}){ }^{15} \mathrm{~N}$

$$
Q_{\mathrm{m}}=-12.113
$$

Resonances are observed at $E_{\gamma}=19.6,20.6,22.4 \mathrm{MeV} ; \int \sigma \mathrm{d} E=2,2$, and 20 MeV mb for ground-state protons (1956CO59), $E_{\gamma}=20.7,21.9,24.0 \mathrm{MeV}$ (1956LI1D). See also (1955JO1D). The 22 MeV resonance appears to be the giant resonance. Proton angular distributions have been measured by (1956CO59, 1956LI1D, 1957MI1C). A resonance reported at $E_{\gamma}=14.7 \mathrm{MeV}$ (1955SP1B: see also (1956CO59)) does not appear in the inverse reaction ${ }^{15} \mathrm{~N}(\mathrm{p}$, $\gamma)^{16} \mathrm{O}(1955 \mathrm{WI} 1 \mathrm{~F}, 1957 \mathrm{WI} 1 \mathrm{H})$. (1958SI1A) find that the absorption in the range $E_{\gamma}=15$ to 25 MeV is generally continuous, with only small contributions from narrow resonances: see also ${ }^{16} \mathrm{O}(\gamma, \mathrm{n})^{15}$ O. See also (1955ST1D, 1956JO1C, 1957BR55, 1957MI1B, 1957SV1A, 1958LI1D, 1958MI89, 1958PE1A) and (1955MO1B, 1956GO1G, 1957BA1K, 1957WI1J; theor.).
30. ${ }^{16} \mathrm{O}(\gamma, \alpha){ }^{12} \mathrm{C} \quad Q_{\mathrm{m}}=-7.148$

The cross section for production of ${ }^{12} \mathrm{C}$ exhibits a maximum near $17.5 \mathrm{MeV}(\Gamma \approx 5 \mathrm{MeV})$, $\sigma(\max) \approx 50 \mu \mathrm{~b}$ (1953MI31). Evidence is also reported for excited states of ${ }^{16} \mathrm{O}^{*}((14.2), 16.75$, 17.3, 22.6, (23.15), and 24.6) with $J=2^{+} ; T=0$ (1954ST89). See also (1955HA1D, 1955TI1A, 1956DA1C) and (1955AJ61).
31. ${ }^{16} \mathrm{O}(\gamma, 4 \alpha)$

$$
Q_{\mathrm{m}}=-14.429
$$

The cross section for production of 4-pronged stars shows a number of maxima: see Table 16.9 (1952GO1A, CO54I, 1956DA1C). An appreciable fraction of the stars appear to involve excited states of ${ }^{12} \mathrm{C}$ and ${ }^{8} \mathrm{Be}$ (1955AJ61, 1956DA1C: see, however, (1953MI31)). See also (1955RA1E, 1955HA1D) and (1955AJ61).
32. (a) ${ }^{16} \mathrm{O}(\gamma, \mathrm{n} \alpha)^{11} \mathrm{C} \quad Q_{\mathrm{m}}=-25.870$
(b) ${ }^{16} \mathrm{O}(\gamma, \mathrm{t}){ }^{13} \mathrm{~N} \quad Q_{\mathrm{m}}=-25.020$

Table 16.8: Levels in ${ }^{16} \mathrm{O}$ from ${ }^{16} \mathrm{O}(\gamma, \mathrm{n}){ }^{15} \mathrm{O}$

$E_{\gamma}(\mathrm{MeV})$			
(1955PE1D)	$(1954 \mathrm{KA1A})$	$(1955 \mathrm{BA} 1 \mathrm{P}, 1957 \mathrm{BA} 27)$	$(1955 \mathrm{CO} 1 \mathrm{C}, 1958 \mathrm{BE} 74)$
15.85	15.9^{a}	(15.8)	15.93^{b}
16.03		16.03	16.17^{b}
16.47	16.4	16.50	16.37^{c}
16.75	16.7	(16.7)	
16.95	16.9	16.82	16.84^{c}
17.02		17.04	
17.13	17.1		
17.18			
17.55			
17.68			
17.84			
18.04			
18.70			
19.01			
19.18	19.3		
20.33			
20.58			
20.79	20.7		
20.93			
21.21			
21.52	21.54 ± 0.05		
22.57			
23.02			

[^0]Table 16.9: Maxima in ${ }^{16} \mathrm{O}(\gamma, 4 \alpha)^{\text {a }}$

$E_{\gamma}(\mathrm{MeV})$		
$(1952 \mathrm{GO} 1 \mathrm{~A})$	$(1956 \mathrm{DA1C})$	$(\mathrm{CO} 54 \mathrm{I})$
22.6	22.5	23.2
25.8	(26.0)	24.7
	(27.5)	27.2
29.5	(29.5)	29.2
	32.5	
	(35.2)	

${ }^{a}$ Maxima in number of 4-pronged stars.

See (1955SC36, 1957ER24).
33. ${ }^{16} \mathrm{O}\left(\gamma, \gamma^{\prime}\right)^{16} \mathrm{O}^{*}$

Measurement of the resonance scattering cross section for 6.9 and $7.1 \mathrm{MeV} \gamma$-rays from ${ }^{19} \mathrm{~F}(\mathrm{p}$, $\alpha)^{16} \mathrm{O}$ yields mean lifetimes of $(1.2 \pm 0.3) \times 10^{-14}$ and $(1.0 \pm 0.3) \times 10^{-14} \mathrm{sec}$ for ${ }^{16} \mathrm{O} *(6.92$ and 7.12), respectively. Values obtained from self absorption measurements are consistent with these. The observed life of the $7.1 \rightarrow$ g.s., E1 transition is consistent with an isobaric spin inhibition of the order of 300 (see (1955 MA 1 K)). The lifetime of the 6.9 MeV state is longer than that expected from a collective model but can be accounted for by one version of the α-particle model (1957SW17). See also (1956KA1D, 1957GR1G; theor.) and ${ }^{19} \mathrm{~F}(\mathrm{p}, \alpha){ }^{16} \mathrm{O}$.
34. ${ }^{16} \mathrm{O}\left(\mathrm{e}, \mathrm{e}^{\prime}\right)^{16} \mathrm{O}^{*}$

Elastic scattering angular distributions at $E_{\mathrm{e}}=240,360$, and 420 MeV strongly favor a shellmodel charge distribution based on a harmonic well with a length parameter $a=(1.76 \pm 0.02) \times$ $10^{-13} \mathrm{~cm}$. The rms radius of the charge distribution is $2.70 \times 10^{-13} \mathrm{~cm}(1958 \mathrm{EH} 1 \mathrm{~B})$; see also (1956FE1B, 1957HO1E, 1958FE1D, 1958RA43).
35. ${ }^{16} \mathrm{O}\left(\mathrm{n}, \mathrm{n}^{\prime}\right)^{16} \mathrm{O}^{*}$

At $E_{\mathrm{n}}=7.06 \mathrm{MeV}$, a $6.094 \pm 0.06 \mathrm{MeV} \gamma$-ray is observed with a cross section of $104 \pm 25 \mathrm{mb}$ (1956DA23). See also (1954TH42, 1955BE1H).
36. ${ }^{16} \mathrm{O}\left(\mathrm{p}, \mathrm{p}^{\prime}\right)^{16} \mathrm{O}^{*}$

At $E_{\mathrm{p}}=19 \mathrm{MeV}$, proton groups are observed corresponding to ${ }^{16} \mathrm{O}^{*}(6.14,7.02,8.87,9.85$, $10.34,11.08,11.51,12.02,12.53,13.06$, and $(13.39) \mathrm{MeV})(\pm 30 \mathrm{keV})$. Of these, three have not been reported elsewhere: ${ }^{16} \mathrm{O} *(11.08,12.02,13.39)$. The level at 11.08 MeV decays via cascade through the 6 to 7 MeV states; it is presumably not to be identified with the (doubtful) 11.10 MeV state reported by (1954BI96) in ${ }^{12} \mathrm{C}(\alpha, \alpha){ }^{12} \mathrm{C}$ since the 10 keV width of the latter would preclude observation of the γ-decay. If it is a pure γ-emitting state, $J=2^{-}$is favored. The 12.02 MeV state appears to give weak γ-radiation; the state at 12.53 MeV yields $4.4 \mathrm{MeV} \gamma$-rays via ${ }^{16} \mathrm{O}(\mathrm{p}$, $\left.\mathrm{p}^{\prime} \alpha\right)^{12} \mathrm{C}^{*}$ as expected from its behavior in ${ }^{15} \mathrm{~N}+\mathrm{p}$. The 8.87 MeV state cascades 80% via ${ }^{16} \mathrm{O}^{*}(6.1)$ and 20% via ${ }^{16} \mathrm{O}^{*}(6.9-7.1)(1955 \mathrm{HO} 68)$.

At higher bombarding energies, evidence is reported for the excitation of states at 6 to $7,12.5$, and $\approx 20 \mathrm{MeV}$ (1956ST30, 1957TY36: $E_{\mathrm{p}}=96$ and 177 MeV$)$. The elastic scattering at high energies is generally characterized by direct interaction and may be described in terms of the optical model: see (1953BU72, 1955FU1A, 1955KI43, 1956BU95, 1956KI54, 1957CH32, 1957GI14, 1957VA1B). Polarization of scattered protons has been studied at $E_{\mathrm{p}}=173 \mathrm{MeV}$ by (1957AL39, 1957HI98, 1957MA58). See also (1955KO1A, 1957JA1B, 1958MA1B, 1958TY49).
37. ${ }^{16} \mathrm{O}(\mathrm{d}, \mathrm{d}){ }^{16} \mathrm{O}$

See ${ }^{18} \mathrm{~F}$.
38. ${ }^{16} \mathrm{O}\left(\alpha, \alpha^{\prime}\right)^{16} \mathrm{O}^{*}$

Both elastic and inelastic scattering distributions $\left({ }^{16} \mathrm{O}^{*}(6-7,8.8)\right)$ have been studied at $E_{\alpha}=$ 19 MeV by (1957CO1H, 1958CO59). The elastic scattering shows strong diffraction effects.
39. ${ }^{17} \mathrm{O}(\mathrm{p}, \mathrm{d}){ }^{16} \mathrm{O}$
$Q_{\mathrm{m}}=-1.919$

Not reported.
40. ${ }^{17} \mathrm{O}(\mathrm{d}, \mathrm{t}){ }^{16} \mathrm{O}$
$Q_{\mathrm{m}}=2.113$

Not reported.
41. ${ }^{17} \mathrm{O}\left({ }^{3} \mathrm{He}, \alpha\right){ }^{16} \mathrm{O}$
$Q_{\mathrm{m}}=16.432$

Not reported.
42. ${ }^{18} \mathrm{O}(\mathrm{p}, \mathrm{t}){ }^{16} \mathrm{O}$
$Q_{\mathrm{m}}=-3.730$

Not reported.
43. ${ }^{19} \mathrm{~F}(\mathrm{p}, \alpha){ }^{16} \mathrm{O}$
$Q_{\mathrm{m}}=8.119$
$Q_{0}=8.110 \pm 0.010(1956 \mathrm{SQ} 1 \mathrm{~A})$.

Levels derived from observed α-particle groups are listed in Table 16.10 (1956SQ1A, 1957YO04: see also (1952AJ38)). There is some evidence for a broad level near 9.58 MeV (compare ${ }^{12} \mathrm{C}(\alpha$, $\alpha)^{12} \mathrm{C}$) and for two additional unidentified groups which may represent levels near 11 MeV (see $\left.{ }^{15} \mathrm{~N}(\mathrm{~d}, \mathrm{n})^{16} \mathrm{O}\right)$; no other groups appear with intensity $>5 \%$ of that corresponding to ${ }^{16} \mathrm{O} *(8.87)$ (1956SQ1A). (1957YO04) find no other groups corresponding to ${ }^{16} \mathrm{O} *(6-9)$ with $\mathrm{d} \sigma / \mathrm{d} \Omega>0.4$ $\mathrm{mb} / \mathrm{sr}$. The indicated assignments for the first five states derive from a variety of evidence; see (1955AJ61).

$6.06-\mathrm{MeV}$ state

$W_{\pi}=6.065 \pm 0.009 \mathrm{MeV}$ (1956AL1G). The angular correlation of the monopole pairs is given by $W(\theta)=1+(0.955 \pm 0.007) \cos \theta$, consistent with $J=0^{+} \rightarrow 0^{+}$(1955GO1E, 1958AR1B: see also (1954DE36)). The mean life is $(7.2 \pm 0.7) \times 10^{-11} \mathrm{sec}$, considerably longer than is given by the α-model (1954DE36). Calculations on various models are summarized by (1957GR1G); see also (1956EL1C, 1957EL1B, 1957FE1D).

6.14-MeV state

The mean life is $(1.2 \pm 0.6) \times 10^{-11} \sec (1958 \mathrm{KO} 63), 0.5$ to $1 \times 10^{-11} \mathrm{sec}(1955 \mathrm{DE} 51)$. This transition rate is somewhat faster than that predicted on the α-particle model (1956KA1D) and is an order of magnitude faster than indicated by shell-model calculations (1957EL1B). It accounts for about one third of the total E3 width to the ground state from $T=0$ states (1958KO63). See also (1958KN1B).

6.92-MeV state

$E_{\gamma}=6.97 \pm 0.05 \mathrm{MeV}$ (1955BE62: Doppler corrected). The mean life is $\leq 2.5 \times 10^{-14} \mathrm{sec}$ (1956DE22: see also (1955DE51)). Compare ${ }^{16} \mathrm{O}\left(\gamma, \gamma^{\prime}\right)^{16} \mathrm{O}^{*}$: (1957SW17).

7.12-MeV state

Table 16.10: ${ }^{16} \mathrm{O}$ levels from ${ }^{19} \mathrm{~F}(\mathrm{p}, \alpha){ }^{16} \mathrm{O}$

A		B		
$E_{\mathrm{x}}(\mathrm{MeV})$	$\Gamma(\mathrm{keV})$	$E_{\mathrm{x}}(\mathrm{MeV})$	$\frac{\mathrm{d} \sigma}{} \mathrm{d} \Omega^{\mathrm{a}}$	J^{π}
0	<20	0		0^{+}
6.051 ± 0.010	<20	6.058 ± 0.017	0.1	0^{+}
6.131 ± 0.010	<20	6.138 ± 0.011	0.8	3^{-}
6.920 ± 0.010	<20	6.926 ± 0.011	1	2^{+}
7.120 ± 0.010	<20	7.122 ± 0.011	2	1^{-}
8.874 ± 0.012	<20	8.882 ± 0.011	0.6	2^{-}
9.852 ± 0.012	<20			
10.363 ± 0.014	$\approx 25-30$			
11.085 ± 0.014	$\approx 25-30$			

A: (1956SQ1A): $E_{\mathrm{p}}=7 \mathrm{MeV}$.
B: (1957YO04): $E_{\mathrm{p}}=5.2 \mathrm{MeV} ; E_{\mathrm{x}}$ calculated from reported Q-values and Q_{m}.
${ }^{\text {a }}$ Cross sections in $\mathrm{mb} / \mathrm{sr}$ at $\theta=180^{\circ}$.

The mean life is $\leq 1.2 \times 10^{-14} \sec$ (1955DE51); compare ${ }^{16} \mathrm{O}\left(\gamma, \gamma^{\prime}\right)^{16} \mathrm{O}^{*}$: (1957SW17). A search for circular polarization of the γ-ray yields an upper limit of 2.0×10^{-3} indicating a maximum of $F^{2}=3 \times 10^{-8}$ for the intensity of any parity non-conserving part of the wave function (1958WI41).

8.87-MeV state

The direct ground state transition is $7 \pm 2 \%$ (1957BE61), $9 \pm 4 \%$ (1957MC35), 0.6% (1957WA1B) of the cascade decays. The cascade decays take place via the $6.14,6.92$, and 7.12 MeV states with relative intensities $27: 1: 3$. The three γ-rays have energies 2.75 ± 0.02, 1.90 ± 0.03, and $1.72 \pm 0.03 \mathrm{MeV}$, fixing the energy of the state as $8.87 \pm 0.02 \mathrm{MeV}$. The observed branching ratios, together with the absence of α-decay fix the assignment as $J^{\pi}=2^{-}$ (1956WI1A, 1957MC35). The separation of this state from the nearest 2^{+}state $\left({ }^{16} \mathrm{O}^{*}(9.85)\right)$ is too large to be accounted for in the α-model of (1954DE1E) (1956WI1A: see also (1956KA1D)).

$10.94-\mathrm{MeV}$ state

At $E_{\mathrm{p}}=5.77 \mathrm{MeV}$, a γ-ray of energy $3.86 \pm 0.03 \mathrm{MeV}$ is observed in coincidence with the 7.1 MeV radiation, indicating a level energy of $10.98 \pm 0.04 \mathrm{MeV}$. It is presumed that this level is to be identified with one of the unassigned groups observed by (1956SQ1A, 1957BE61). The direct ground state decay is $<5 \%$ and cascades via ${ }^{16} \mathrm{O}^{*}(6.0,6.1,6.9$, and 8.9) are less than 1,6 ,

20, and 40%, respectively. The strong branch to ${ }^{16} \mathrm{O}^{*}(7.1), J=1^{-}$, and the weakness of other branches suggests $J(10.94)=0^{-}$, although 1^{+}is not excluded. The $\gamma-\gamma$ correlation favors $J=0^{-}$ (1957BE61: see also $\left.{ }^{15} \mathrm{~N}(\mathrm{~d}, \mathrm{n})^{16} \mathrm{O}\right)$. ((1957WA1B) find the γ-ray energy to be $3.86 \pm 0.02 \mathrm{MeV}$ and report a weak $4.9 \mathrm{MeV} \gamma$-ray). A search for possible nuclear pairs from the $0^{-} \rightarrow 0^{+}$ground-state transition yielded an upper limit of $<2 \times 10^{-5}$ for the pair branch (1958EK36). The importance of a definitive assignment of J^{π} for this state is stressed by (1957EL1B).

The influence of isobaric spin selection rules on cascade decays in ${ }^{16} \mathrm{O}$ has been discussed by (1953WI1E, 1956WI1D: see also (1955MA1K, 1955MA1L)). At $E_{\mathrm{p}}=18.5 \mathrm{MeV}$, the α_{0} angular distribution has been studied by (1956LI37): see ${ }^{19} \mathrm{~F}$.

The reaction exhibits a large number of resonances: see ${ }^{20}$ Ne. See also (1956IS1A, 1957BI75, MO57C, 1958MO1J).
(Not illustrated)

Mass of ${ }^{16} F$: From the threshold of the ${ }^{14} \mathrm{~N}\left({ }^{3} \mathrm{He}, \mathrm{n}\right)^{16} \mathrm{~F}$ reaction and the Wapstra (1955WA1A) masses for ${ }^{14} \mathrm{~N},{ }^{3} \mathrm{He}$ and n , the mass excess of ${ }^{16} \mathrm{~F}$ is $15.63 \pm 0.02 \mathrm{MeV}$. A semi-empirical computation of the level shifts of the low $T=1$ levels of ${ }^{16} \mathrm{~N}$ and ${ }^{16} \mathrm{O}$ suggests that the ground state of ${ }^{16} \mathrm{~F}$ should have $J=0^{-}$, and be unstable to proton emission by about 1 MeV (1957EL1B). Using the $(M-A)$ stated above, ${ }^{16} \mathrm{~F}$ is unstable with respect to proton emission by 0.81 MeV . The binding energies of a deuteron, a ${ }^{3} \mathrm{He}$-particle, and an α-particle in ${ }^{16} \mathrm{~F}$ are, respectively, 10.24, 9.37 and 8.98 MeV .

1. ${ }^{14} \mathrm{~N}\left({ }^{3} \mathrm{He}, \mathrm{n}\right){ }^{16} \mathrm{~F} \quad Q_{\mathrm{m}}=-1.18$

A slow neutron threshold has been observed at $E\left({ }^{3} \mathrm{He}\right)=1.434 \pm 0.015 \mathrm{MeV}$ corresponding to the ground state of ${ }^{16} \mathrm{~F}\left(Q_{0}=-1.18 \pm 0.01 \mathrm{MeV}\right)$. There is some indication of another threshold corresponding to an excited state at $\approx 60 \mathrm{keV}$. The lifetime of ${ }^{16} \mathrm{~F}$ for decay into ${ }^{15} \mathrm{O}+\mathrm{p}$ is computed to be $\approx 10^{-19} \sec (H$. Bichsel, private communication). See also (1956BU22).
2. ${ }^{16} \mathrm{O}(\mathrm{p}, \mathrm{n}){ }^{16} \mathrm{~F} \quad Q_{\mathrm{m}}=-16.41$

See ${ }^{17} F$.
3. ${ }^{16} \mathrm{O}\left({ }^{3} \mathrm{He}, \mathrm{t}\right){ }^{16} \mathrm{~F}$
$Q_{\mathrm{m}}=-15.61$

Not reported.

References

(Closed 01 December 1958)

References are arranged and designated by the year of publication followed by the first two letters of the firstmentioned author's name and then by two additional characters. Most of the references appear in the National Nuclear Data Center files (Nuclear Science References Database) and have NNDC key numbers. Otherwise, TUNL key numbers were assigned with the last two characters of the form $1 \mathrm{~A}, 1 \mathrm{~B}$, etc. In response to many requests for more informative citations, we have, when possible, included up to ten authors per paper and added the authors' initials.

1939KI1A L.D.P. King, W.J. Henderson and J.R. Risser, Phys. Rev. 55 (1939) 1118; 41
1942BO1A L.B. Borst, Phys. Rev. 61 (1942) 106; 20
1947BL1A Bleuler, Scherrer, Walter and Zunti, Helv. Phys. Acta 20 (1947) 96
1947FO1A Fowler, Burrows and Curry, Nature 159 (1947) 569
1948JE03 J.V. Jelley and E.B. Paul, Proc. Cambridge Phil. Soc. 44 (1948) 133
1950HU72 E.L. Hudspeth, C.P. Swann and N.P. Heydenburg, Phys. Rev. 80 (1950) 643
1950SC1A A.W. Schardt, W.A. Fowler and C.C. Lauritsen, Phys. Rev. 80 (1950) 136; N5
1951JO1B H.E. Johns, R.J. Horsley, R.N. Haslam and A. Quinton, Phys. Rev. 84 (1951) 856
1951JO1C Jones and Wilkinson, Proc. Phys. Soc. (London) A64 (1951)756
1951MI1B C.H. Millar, G.A. Bartholomew and B.B. Kinsey, Phys. Rev. 81 (1951) 150
1952AJ38 F. Ajzenberg and T. Lauritsen, Rev. Mod. Phys. 24 (1952) 321
1952BA1C Barnes, James and Neilson, Can. J. Phys. 30 (1952) 717
1952FE1A A.J. Ferguson and J.H. Montague, Phys. Rev. 87 (1952) 215; Q3
1952GO1A Goward and Wilkins, Proc. Phys. Soc. (London) A65 (1952) 671
1952 LI24 A.B. Lillie, Phys. Rev. 87 (1952) 716
1952 SC28 A. Schardt, W.A. Fowler and C.C. Lauritsen, Phys. Rev. 86 (1952) 527
1952SE1B Seed and French, Phil. Mag. 43 (1952) 1214
$1953 B U 72$ W.E. Burcham, W.M. Gibson, A. Hossain and J. Rotblat, Phys. Rev. 92 (1953) 1266
1953CH1A Christy, Phys. Rev. 89 (1953) 839
1953CO1D Cohen and French, Phil. Mag. 44 (1953) 1259
1953CU1D Cuer and Magnac-Valette, J. Phys. Rad. 14 (1953) 15S
1953DE1A Devons, Rept. of Birmingham Conf. on Nucl. Phys. (1953)
1953HI05 R.W. Hill, Phys. Rev. 90 (1953) 845
1953IN1A Inglis, Rev. Mod. Phys. 25 (1953) 390
1953JO1A Jones and Wilkinson, Proc. Phys. Soc. (London) A66 (1953) 1176

1953KR1B A.A. Kraus, A.P. French, W.A. Fowler and C.C. Lauritsen, Phys. Rev. 89 (1953) 299
$1953 L I 28$ M. Lindner and R.N. Osborne, Phys. Rev. 91 (1953) 1501
1953MI31 C.H. Millar and A.G.W. Cameron, Can. J. Phys. 31 (1953) 723
1953MO1B Montalbetti, Katz and Goldemberg, Phys. Rev. 91 (1953) 659
1953NE1B Neilson, James and Barnes, Phys. Rev. 92 (1953) 1084
1953WI1A Wilkinson, Phil. Mag. 44 (1953) 450
1953WI1B Wilkinson, Phys. Rev. 90 (1953) 721
1953WI1E Wilkinson and Jones, Phil. Mag. 44 (1953) 542
1954BI04 M. Birnbaum, Phys. Rev. 93 (1954) 146
1954BI96 J.W. Bittner and R.D. Moffat, Phys. Rev. 96 (1954) 374
1954CA1D Cartwright, Green and Willmott, Phil. Mag. 45 (1954) 742
1954DE1E D.M. Dennison, Phys. Rev. 96 (1954) 378
1954 DE36 S. Devons, G. Goldring and G.R. Lindsey, Proc. Phys. Soc. (London) A67 (1954) 134
$1954 F E 16$ G.A. Ferguson, J. Halpern, R. Nathans and P.F. Yergin, Phys. Rev. 95 (1954) 776
1954FL1A Florian, Urban and Wildermuth, Z. Naturforsch. A9 (1954) 748
1954GO1F Goldring, Proc. Phys. Soc. (London) A67 (1954) 930
1954JO1F Jongerius, Valckx and Endt, Physica 20 (1954) 29
1954KA1A L. Katz, R.N. Haslam, R.J. Horsley, A.G. Cameron and R. Montalbetti, Phys. Rev. 95 (1954) 464

1954KR1C A.A. Kraus, Phys. Rev. 94 (1954) 975
1954MA97 H.C. Martin, Phys. Rev. 93 (1954) 498
1954RI1B J.A. Rickard, E.L. Hudspeth and W.W. Clendenin, Phys. Rev. 96 (1954) 1272
1954ST1C A.G. Stanley, Phil. Mag. 45 (1954) 807
1954 ST89 P. Stoll, Helv. Phys. Acta 27 (1954) 395
1954 TH42 L.C. Thompson and J.R. Risser, Phys. Rev. 94 (1954) 941
1955 AJ61 F. Ajzenberg and T. Lauritsen, Rev. Mod. Phys. 27 (1955) 77
1955 AL16 H.R. Allan and N. Sarma, Proc. Phys. Soc. (London) A68 (1955) 535
1955BA1P Basile and Schuhl, Compt. Rend. 240 (1955) 2399
1955BE1H Beghian, Hicks and Milman, Phil. Mag. 464 (1955) 924
1955BE62 R.D. Bent, T.W. Bonner and R.F. Sippel, Phys. Rev. 98 (1955) 1237
1955CA1E Campbell, Aust. J. Phys. 8 (1955) 449
1955CO1C Collie, Proc. Glasgow Conf. (Pergamon Press, 1955)

1955 DE51 S. Devons, G. Manning and D.St.P. Bunbury, Proc. Phys. Soc. (London) A68 (1955) 18

1955FU1A Fujimoto and Hossain, Phil. Mag. 46 (1955) 542
1955GO1E Gorodetzky, Armbruster, Chevallier, Gallman and Manquenouille, Compt. Rend. 241 (1955) 482, 698; J. Phys. Rad. 16 (1955) 594

1955HA1D Havlicek and Dobovisek, Phys. Rev. 100 (1955) 1355
1955HE1E Herzenberg, Nuovo Cim. 1 (1955) 986, 1008
$1955 H O 68$ W.F. Hornyak and R. Sherr, Phys. Rev. 100 (1955) 1409
1955JA18 D.B. James, W. Kubelka, S.A. Heiberg and J.B. Warren, Can. J. Phys. 33 (1955) 219
1955JA1D Jancovici, Compt. Rend. 240 (1955) 1608
1955JO1D S.A. Johansson and B. Forkman, Phys. Rev. 99 (1955) 1031
1955KI43 B.B. Kinsey, Phys. Rev. 99 (1955) 332
1955KO1A Kolar, UCRL 3012 (1955)
1955MA1K W.M. MacDonald, Phys. Rev. 98 (1955) 60
1955MA1L W.M. MacDonald, Phys. Rev. 100 (1955) 51
1955MA85 J.B. Marion, R.M. Brugger and T.W. Bonner, Phys. Rev. 100 (1955) 46
1955MO1B H. Morinaga, Phys. Rev. 97 (1955) 1185
1955MO1C H. Morinaga, Phys. Rev. 97 (1955) 444
1955 PA50 R.T. Pauli, Ark. Fys. 9 (1955) 571
1955PE1D A.S. Penfold and B.M. Spicer, Phys. Rev. 100 (1955) 1377
1955RA1B Rasmussen, Miller and Sampson, Phys. Rev. 100 (1955) 181
1955RA1E D. Raymond, D. Cooper and Dan J. Zaffarano, Phys. Rev. 98 (1955) 1199, X13
1955SA1F Santos, Goldemberg, Pieroni, Silva, Borelli, Villaca and Leite Lopes, Anais Acad. Brasil. Ciencias 27 (1955) 437
1955SC1B L.I. Schiff, Phys. Rev. 98 (1955) 1281
1955 SC36 J. Schmouker, P. Erdos, P. Jordan and P. Stoll, J. Phys. Rad. 16 (1955) 169
1955SP1B B.M. Spicer, Phys. Rev. 99 (1955) 33
1955ST1D W.E. Stephens, A.K. Mann, B.J. Patton and E.J. Winhold, Phys. Rev. 98 (1955) 839
1955TI1A Titterton, Prog. Nucl. Phys. 4 (1955) 1
1955WA1A Wapstra, Physica 21 (1955) 367
1955WI1F D.H. Wilkinson, Phys. Rev. 99 (1955) 1347
1956AL1G Alburger, Rev. Sci. Instrum. 27 (1956) 991
1956BA1A Baumgartner et al., Helv. Phys. Acta 29 (1956) 255

1956BA1H Bashkin, Carlson and Jacobs, Bull. Amer. Phys. Soc. 1 (1956) 212; Physica 22 (1956) 1124A

1956BO61 T.W. Bonner, A.A. Kraus Jr., J.B. Marion and J.P. Schiffer, Phys. Rev. 102 (1956) 1348
1956BU22 J.W. Butler, Bull. Amer. Phys. Soc. 1 (1956) 94
1956 BU95 E.J. Burge, Y. Fujimoto and A. Hossain, Phil. Mag. 1 (1956) 19
1956CA1F Cameron, Bull. Amer. Phys. Soc. 1 (1956) 191
1956CO59 L. Cohen, A.K. Mann, B.J. Patton, K. Reibel, W.E. Stephens and E.J. Winhold, Phys. Rev. 104 (1956) 108
1956DA1C Dawson and Livesey, Can. J. Phys. 34 (1956) 241
1956DA23 R.B. Day, Phys. Rev. 102 (1956) 767
1956 DE22 S. Devons, G. Manning and J.H. Towle, Proc. Phys. Soc. (London) A69 (1956) 173
1956DO37 R.A. Douglas, B.R. Gasten and A. Mukerji, Can. J. Phys. 34 (1956) 1097
1956EL1C Elliott, Phys. Rev. 101 (1956) 1212
1956FE1B R.A. Ferrell and W.M. Visscher, Phys. Rev. 104 (1956) 475
1956FE1E R.A. Ferrell and W.M. Visscher, Phys. Rev. 102 (1956) 450
1956GO1G Goldanskii, Zh. Eksp. Teor. Fiz. 30 (1956) 969; JETP (Sov. Phys.) 3 (1956) 791
1956HA1C Hayakawa, Hayashi, Imoto and Kikuchi, Prog. Theor. Phys. 16 (1956) 507
1956HA1D Hayashi and Nishida, Prog. Theor. Phys. 16 (1956) 613
1956IS1A Isoya, Goto and Momota, J. Phys. Soc. Jpn. 11 (1956) 899
1956JA1C Jancovici, Compt. Rend. 242 (1956) 883
1956JO1C Johansson, Physica 22 (1956) 1144A
1956JO1D Jones, Weil, Kruse, Baicker and Lidofsky, Bull. Amer. Phys. Soc. 1 (1956) 326
1956KA1C Kassecker and Urban, Acta Phys. Aust. 10 (1956) 95
1956KA1D S.L. Kameny, Phys. Rev. 103 (1956) 358
1956 KI54 B.B. Kinsey and T. Stone, Phys. Rev. 103 (1956) 975
1956 KO26 B. Koudijs, Ph.D. Thesis, Univ. of Utrecht (1956)
1956LI1C Lidofsky, Jones, Bent, Weil, Kruse, Bardon and Havens, Bull. Amer. Phys. Soc. 1 (1956) 212

1956LI1D Livesey, Can. J. Phys. 34 (1956) 1022
1956LI37 J.G. Likely and F.P. Brady, Phys. Rev. 104 (1956) 118
1956MO1D H. Morinaga, Phys. Rev. 101 (1956) 254
1956PE1A Perring and Skyrme, Proc. Phys. Soc. (London) A69 (1956) 600

1956RE1C P.J. Redmond, Phys. Rev. 101 (1956) 751
1956 SC01 J.P. Schiffer, T.W. Bonner, R.H. Davis and F.W. Prosser Jr., Phys. Rev. 104 (1956) 1064

1956SQ1A Squires, Bockelman and Buechner, Phys. Rev. 104 (1956) 413
1956 ST30 K. Strauch and F. Titus, Phys. Rev. 104 (1956) 191
1956TO1A B.J. Toppel, Phys. Rev. 103 (1956) 141
1956VA17 F.P.G. Valckx, Ph.D. Thesis, Univ. of Utrecht (1956)
1956WI1A Wilkinson, Toppel and Alburger, Phys. Rev. 101 (1956) 673
1956WI1D Wilkinson, Phil. Mag. 1 (1956) 379
1956WI1G Wilkinson, Phil. Mag. 1 (1956) 127
1956WI1H Wilkinson, Phil. Mag. 1 (1956) 1031
1956WO1C Wolicki, Holmgren, Johnston and Geer, Bull. Amer. Phys. Soc. 1 (1956) 325
1956ZI1A Zimmerman, Phys. Rev. 104 (1956) 387
1957AL39 R. Alphonce, A. Johansson and G. Tibell, Nucl. Phys. 4 (1957) 672
1957BA03 S. Bashkin and R.R. Carlson, Phys. Rev. 106 (1957) 261
1957BA1H Barker, Phil. Mag. 2 (1957) 780
1957BA1K Barker and Mann, Phil. Mag. 2 (1957) 5
1957 BA 27 R. Basile, Ann. Phys. 2 (1957) 267
1957BE61 R.D. Bent and T.H. Kruse, Phys. Rev. 108 (1957) 802
1957BI75 G.R. Bishop and J.C. Bizot, J. Phys. Rad. 18 (1957) 434
1957BL01 S.D. Bloom, B.J. Toppel and D.H. Wilkinson, Phil. Mag. 2 (1957) 57
1957BO04 N.A. Bostrom, E.L. Hudspeth and I.L. Morgan, Phys. Rev. 105 (1957) 1545
1957BR17 D.A. Bromley, A.J. Ferguson, H.E. Gove, A.E. Litherland and E. Almqvist, Bull. Amer. Phys. Soc. 2 (1957) 51, RA4
1957BR55 P. Brix and E.K. Maschke, Z. Naturforsch. A12 (1957) 1013
1957 BU66 E.M. Burbidge, G.R. Burbidge, W.A. Fowler and F. Hoyle, Rev. Mod. Phys. 29 (1957) 547

1957CA1D Carver and Lokan, Aust. J. Phys. 10 (1957) 312
1957CH32 R.H. Chow and B.T. Wright, Can. J. Phys. 35 (1957) 184
1957CO1H Corelli, Bleuler and Tendam, Bull. Amer. Phys. Soc. 2 (1957) 34
1957EL1B Elliott and Flowers, Proc. Roy. Soc. A242 (1957) 57
1957ER24 P. Erdos, P. Scherrer and P. Stoll, Helv. Phys. Acta 30 (1957) 639
1957FE1D R.A. Ferrell, Phys. Rev. 107 (1957) 1631

1957FI1C Fischer and Fischer, Bull. Amer. Phys. Soc. 2 (1957) 182
1957FR56 J.M. Freeman and R.C. Hanna, Nucl. Phys. 4 (1957) 599
1957 GI14 W.M. Gibson, D.J. Prowse and J. Rotblat, Proc. Roy. Soc. A243 (1957) 237
1957GR1G J.J. Griffin, Phys. Rev. 108 (1957) 328
1957HA98 F.B. Hagedorn, Phys. Rev. 108 (1957) 735
1957HE1B A. Herzenberg, Nucl. Phys. 3 (1957) 1
1957HG01 F.B. Hagedorn and J.B. Marion, Phys. Rev. 108 (1957) 1015
1957HI98 P. Hillman, A. Johansson and H. Tyren, Nucl. Phys. 4 (1957) 648
1957HO1E Hofstadter, Ann. Rev. Nucl. Sci., Vol. 7 (1957)
1957 IL01 E.G. Illsley, H.D. Holmgren, R.L. Johnston and E.A. Wolicki, Phys. Rev. 107 (1957) 538

1957JA1B Jannelli and Mezzanares, Nuovo Cim. 5 (1957) 1047
1957JA37 N. Jarmie, J.D. Seagrave et al., LA-2014 (1957)
1957JO1C Johnston and Bostrom, Bull. Amer. Phys. Soc. 2 (1957) 104
1957LI1D Litherland, Almqvist, Bromley, Gove and Ferguson, Bull. Amer. Phys. Soc. 2 (1957) 51

1957MA58 Th.A.J. Maris and H. Tyren, Nucl. Phys. 4 (1957) 662
1957MC35 J.H. McCrary, T.W. Bonner and W.A. Ranken, Phys. Rev. 108 (1957) 392
1957MI1B Milone, Ricamo and Rinzivillo, Nuovo Cim. 5 (1957) 532
1957MI1C Milone and Ricamo, Nuovo Cim. 5 (1957) 1338
1957MO1A Morton and Lewis, Bull. Amer. Phys. Soc. 2 (1957) 286
1957 NO17 E. Norbeck Jr. and C.S. Littlejohn, Phys. Rev. 108 (1957) 754
1957NO1C Nonaka, Morita, Kawai, Ishimatsu, Takeshita, Nakajima and Takano, J. Phys. Soc. Jpn. 12 (1957) 841

1957OW03 G.E. Owen and L. Madansky, Phys. Rev. 105 (1957) 1766; Erratum Phys. Rev. 108 (1957) 1647

1957RE1A Reiner, Physica 23 (1957) 338
1957SA1B E.E. Salpeter, Phys. Rev. 107 (1957) 516
1957SP1A Spicer, Aust. J. Phys. 10 (1957) 326
1957SV1A N.L. Svantesson, Nucl. Phys. 3 (1957) 273
1957 SW17 C.P. Swann and F.R. Metzger, Phys. Rev. 108 (1957) 982
1957TA1C G.E. Tauber and T.-Y. Wu, Phys. Rev. 105 (1957) 1772
1957TO1A Touchard, Compt. Rend. 244 (1957) 2499

1957 TY36 H. Tyren and Th.A.J. Maris, Nucl. Phys. 4 (1957) 637
1957 VA11 D.M. Van Patter and W. Whaling, Rev. Mod. Phys. 29 (1957) 757
1957VA1B Vanetsian and Fedchenko, Sov. J. At. Energy 2 (1957) 141
1957WA01 E.K. Warburton and J.N. McGruer, Phys. Rev. 105 (1957) 639
1957WA1B Wakatsuki, Hirao, Okada and Miura, J. Phys. Soc. Jpn. 12 (1957) 1178
1957WE1A Weil, Jones and Lidofsky, Phys. Rev. 108 (1957) 800
1957WI1B Wilkinson, Phys. Rev. 105 (1957) 686
1957WI1H D.H. Wilkinson and S.D. Bloom, Phys. Rev. 105 (1957) 683
1957WI1J H. Wilhelmsson and M. Nilsson, Nucl. Phys. 4 (1957) 234
1957 YO04 T.E. Young, G.C. Phillips and R.R. Spencer, Phys. Rev. 108 (1957) 72
1958AL13 D.E. Alburger, Phys. Rev. 111 (1958) 1586
1958AL1D Alkhazov, Gangpskii and Lemberg, JETP (Sov. Phys.) 6 (1958) 892
1958AR1B Armbuster, Ann. Phys. (France) 3 (1958) 88
1958BE74 W.L. Bendel, J. McElhinney and R.A. Tobin, Phys. Rev. 111 (1958) 1297
1958 BO18 D.L. Booth, F.V. Price, D. Roaf and G.L. Salmon, Proc. Phys. Soc. (London) A71 (1958) 325

1958BO71 D. Bodansky, S.F. Eccles, G.W. Farwell, M. Rickey and P.C. Robinson, Bull. Amer. Phys. Soc. 3 (1958) 327, K9
1958BR1D Bromley, Proc. Rehovoth Conf. (North-Holland Pub. Co., Amsterdam, 1958)
1958BR95 G. Brunhart, V.P. Kenney and B.C. Kern, Phys. Rev. 110 (1958) 924
1958 CA13 R.R. Carlson, R.A. Douglas, S. Bashkin and C. Broude, Bull. Amer. Phys. Soc. 3 (1958) 199, P3

1958CA1G Cameron, Bull. Amer. Phys. Soc. 3 (1958) 269
1958 CO59 J.C. Corelli, E. Bleuler and D.J. Tendam, Bull. Amer. Phys. Soc. 3 (1958) 200, P9
1958DA1E Dabrowski, Proc. Phys. Soc. (London) A71 (1958) 658
1958DA1F Dabrowski, Proc. Phys. Soc. (London) A72 (1958) 499
1958EH1B Ehrenberg, Hofstadter, Meyer-Berkhout, Ravenhall and Sobottka, HEPL 149 (1958)
1958EK36 K.E. Eklund and R.D. Bent, Phys. Rev. 112 (1958) 488
1958FE1C Ferrell, Bull. Amer. Phys. Soc. 3 (1958) 49
1958FE1D Ferrell, Conf. on Photonucl. Reactions, National Bureau of Standards (1958)
1958HA1F R.B. Hall and R.J. Eden, Nucl. Phys. 6 (1958) 157
1958HE52 D.F. Hebbard, Bull. Amer. Phys. Soc. 3 (1958) 406, F6

1958HU18 D.J. Hughes and R.B. Schwartz, BNL-325, 2nd Ed. (1958); BNL-325, 2nd Ed., Suppl. I (1960)
1958 JO28 K.W. Jones, L.J. Lidofsky and J.L. Weil, Phys. Rev. 112 (1958) 1252
1958KA1D Katz, Conf. on Photonucl. Reactions, National Bureau of Standards (1958)
1958KN1B Knipper, Ph.D. Thesis, Univ. of Strasbourg (1958)
1958 KO63 D. Kohler and H.H. Hilton, Phys .Rev. 110 (1958) 1094
1958LI1D Lindenberger, Conf. on Photonucl. Reactions, National Bureau of Standards (1958)
1958MA1B Th.A.J. Maris, P. Hillman and H. Tyren, Nucl. Phys. 7 (1958) 1
1958MI89 C. Milone, S. Milone-Tamburino, R. Rinzivillo, A. Rubbino and C. Tribuno, Nuovo Cim. 7 (1958) 729
1958MO14 S. Morita, J. Phys. Soc. Jpn. 13 (1958) 126
1958MO17 G. Morpurgo, Phys. Rev. 110 (1958) 721
1958MO1J Morinaga and Johansson, Proc. Rehovoth Conf. (North-Holland Pub. Co., Amsterdam, 1958)
1958PE1A Penner and Leiss, Bull. Amer. Phys. Soc. 3 (1958) 56
1958 PH37 W.R. Phillips, Phys. Rev. 110 (1958) 1408
1958RA1F Rapoport and Butusov, JETP (Sov. Phys.) 6 (1958) 1163
1958RA43 D.G. Ravenhall, Rev. Mod. Phys. 30 (1958) 430
1958SI1A Siddig and Haslam, Can. J. Phys. 36 (1958) 963
1958 TY49 H. Tyren, P. Hillman and T.A.J. Marris, Nucl. Phys. 7 (1958) 10
1958UM1A Umezawa, Proc. Rehovoth Conf. (North-Holland Pub. Co., Amsterdam, 1958)
1958WE31 J.L. Weil and K.W. Jones, Phys. Rev. 112 (1958) 1975
1958WI1E Wildermuth and Kanellopoulos, Nucl. Phys. 7 (1958) 150
1958WI41 D.H. Wilkinson, Phys. Rev. 109 (1958) 1610
1958WO51 M. Wolff, E.J. Winhold, W.E. Stephens and E.E. Carroll, Bull. Amer. Phys. Soc. 3 (1958) 173, E8; see Halpern in Conf. on Photonucl. Reactions, National Bureau of Standards (1958)
1959AL1M Alburger, Wilkinson and Gallmann, Bull. Amer. Phys. Soc. 4 (1959) 56
1959 BR68 D.A. Bromley, H.E. Gove, J.A. Kuehner, A.E. Litherland and E. Almqvist, Phys. Rev. 114 (1959) 758
1959KU78 J.A. Kuehner, A.E. Litherland, E. Almqvist, D.A. Bromley and H.E. Gove, Phys. Rev. 114 (1959) 775

1959ZI18 W. Zimmermann Jr., Phys. Rev. 114 (1959) 867
CO54I Unknown Source

MO57C Unknown Source

[^0]: ${ }^{\text {a }}$ See also (1958KA1D).
 ${ }^{\mathrm{b}}$ (1958BE74).
 ${ }^{\text {c }}$ (1955CO1C).

