Energy Levels of Light Nuclei $A=15$

F. Ajzenberg-Selove ${ }^{\mathrm{a}}$ and T. Lauritsen ${ }^{\text {b }}$
${ }^{\text {a }}$ University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396
${ }^{\text {b }}$ California Institute of Technology, Pasadena, California

Abstract

An evaluation of $A=5-24$ was published in Nuclear Physics 11 (1959), p. 1. This version of $A=15$ differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the NNDC/TUNL format.

(References closed December 1, 1958)

The original work of Fay Ajzenberg-Selove was supported by the US Department of Energy [DE-AC02-76-ER02785]. Later modification by the TUNL Data Evaluation group was supported by the US Department of Energy, Office of High Energy and Nuclear Physics, under: Contract No. DEFG05-88-ER40441 (North Carolina State University); Contract No. DEFG05-91-ER40619 (Duke University).

Table of Contents for $A=15$

Below is a list of links for items found within the PDF document. Figures from this evaluation have been scanned in and are available on this website or via the link below.
A. Nuclides: ${ }^{15} \mathrm{C},{ }^{15} \mathrm{~N},{ }^{15} \mathrm{O},{ }^{15} \mathrm{~F}$

B. Tables of Recommended Level Energies:

Table 15.1: Energy levels of ${ }^{15} \mathrm{C}$
Table 15.2: Energy levels of ${ }^{15} \mathrm{~N}$
Table 15.11: Energy levels of ${ }^{15} \mathrm{O}$
C. References
D. Figures: ${ }^{15} \mathrm{C},{ }^{15} \mathrm{~N},{ }^{15} \mathrm{O}$

${ }^{15} \mathrm{C}$

(Fig. 28)

GENERAL:

Mass of ${ }^{15} C$: From the Q of the ${ }^{14} \mathrm{C}(\mathrm{d}, \mathrm{p}){ }^{15} \mathrm{C}$ reaction given by (1956DO41) ($Q_{0}=-1.007 \pm$ 0.001 MeV), and using the Wapstra masses for ${ }^{14} \mathrm{C}, \mathrm{d}$ and ${ }^{1} \mathrm{H}$, the mass excess of ${ }^{15} \mathrm{C}$ is $14.305 \pm$ 0.005 MeV . Application of Coulomb corrections indicates an excitation of 11.72 to 11.87 MeV for the first $T=\frac{3}{2}$ state of ${ }^{15} \mathrm{~N}(1956$ BA16, 1956DO37, 1957MU99).

1. ${ }^{15} \mathrm{C}\left(\beta^{-}\right)^{15} \mathrm{~N}$
$Q_{\mathrm{m}}=9.777$

The half-life is $2.25 \pm 0.05 \mathrm{sec}$. The β-spectrum is complex, with $32 \pm 2 \%$ of transitions $(\log f t=6.0)$ to the ${ }^{15} \mathrm{~N}$ ground state $\left(E_{\beta}(\max)=9.82 \pm 0.04 \mathrm{MeV}\right)$ and $68 \%(\log f t=4.1)$ to the upper of the 5.3 MeV levels of ${ }^{15} \mathrm{~N}$. A $5.299 \pm 0.006 \mathrm{MeV} \gamma$-ray is observed (1959AL1M): no other γ-rays with $E_{\gamma}>5.3 \mathrm{MeV}$ are observed with intensities $>5 \%$, and the intensity of a 1.9 $\mathrm{MeV} \gamma$-ray (expected if the ${ }^{15} \mathrm{~N}^{*}$ (7.16) level were involved) is $<10 \%$ (1956DO37). The internal pair conversion coefficient of the $5.30 \mathrm{MeV} \gamma$-ray is consistent with E1. All data are consistent with $J=\frac{1}{2}^{+}$for the 5.305 MeV state in ${ }^{15} \mathrm{~N}$ and $J=\frac{1}{2}^{+}$for ${ }^{15} \mathrm{C}$ (1959AL1M). See also (1955AJ61, 1956BA16, 1956DO37).
2. ${ }^{9} \mathrm{Be}\left({ }^{7} \mathrm{Li}, \mathrm{p}\right){ }^{15} \mathrm{C}$
$Q_{\mathrm{m}}=9.098$

At $E\left({ }^{7} \mathrm{Li}\right)=2.0 \mathrm{MeV}\left(\theta=90^{\circ}\right)$ proton groups are observed corresponding to the ground state of ${ }^{15} \mathrm{C}$ and to excited states at $0.62 \pm 0.06,2.48 \pm 0.05,3.08 \pm 0.04,4.26 \pm 0.04,5.93 \pm 0.04$, 6.58 ± 0.04, and $8.16 \pm 0.06 \mathrm{MeV}$. The ground state Q is $9.04 \pm 0.05 \mathrm{MeV}$ (1957MU99). In an earlier experiment, (1957 NO 14) found $Q_{0}=9.05 \pm 0.05$ and $Q_{1}=8.35 \pm 0.05 \mathrm{MeV}\left(E_{\mathrm{x}}=0.70 \pm 0.05\right.$ $\mathrm{MeV})$. Calculation of Coulomb and ($\mathrm{n}-{ }^{1} \mathrm{H}$) energy difference places the analogue state of ${ }^{15} \mathrm{~N}$ at 11.72 to 11.87 MeV . Identification with the known $J=\frac{1}{2}{ }^{+} ; T=\frac{3}{2}$ level of ${ }^{15} \mathrm{~N}$ at 11.61 MeV supports $J=\frac{1^{+}}{}{ }^{+}$for ${ }^{15} \mathrm{C}_{\text {g.s. }}$ (1956BA16, 1957MU99, 1957NO14).

$$
\text { 3. }{ }^{14} \mathrm{C}(\mathrm{~d}, \mathrm{p})^{15} \mathrm{C} \quad \begin{array}{ll}
& Q_{\mathrm{m}}=-1.007 \\
& Q_{0}=-1.007 \pm 0.001(1956 \mathrm{DO} 41) .
\end{array}
$$

Identification of ${ }^{15} \mathrm{C}_{\text {g.s. }}$ with ${ }^{15} \mathrm{~N}^{*}(11.62), J^{\pi}=\frac{1}{2}{ }^{+} ; T=\frac{3}{2}$, is suggested by (1956BA16). Proton groups corresponding to the ground state and to levels at 0.7 ± 0.1 and $6.2 \pm 0.15 \mathrm{MeV}$ are reported by (1958 MO 95). The weak activity previously reported at $E_{\mathrm{d}}<1.3 \mathrm{MeV}$, indicating a $Q \approx 0.1 \mathrm{MeV}$ (see (1955AJ61)), is now attributed to contamination (1956BO1L). See also ${ }^{16} \mathrm{~N}$.

Table 15.1: Energy levels of ${ }^{15} \mathrm{C}$

$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})$	J^{π}	$\tau_{1 / 2}$	Decay	Reactions
0	$\left(\frac{1}{2}^{+}, \frac{3}{2}^{+}\right)$	$2.25 \pm 0.05 \mathrm{sec}$	β^{-}	$1,2,3$
0.66 ± 50				2,3
2.48 ± 50				2
3.08 ± 40			2	
4.26 ± 40			2	
5.93 ± 40			2	
(6.2 ± 150)			3	
6.58 ± 40				
8.16 ± 60				

4. ${ }^{14} \mathrm{C}(\mathrm{n}, \gamma){ }^{15} \mathrm{C}$
$Q_{\mathrm{m}}=1.220$

The capture cross section is $<1 \mu \mathrm{~b}$ (1951YA1A, 1955HU1B, 1958HU18).
The following reactions leading to ${ }^{15} \mathrm{C}$ are not reported: ${ }^{13} \mathrm{C}(\mathrm{t}, \mathrm{p})^{15} \mathrm{C}\left(Q_{\mathrm{m}}=0.909\right),{ }^{14} \mathrm{C}(\mathrm{t}$, d) ${ }^{15} \mathrm{C}\left(Q_{\mathrm{m}}=-5.039\right),{ }^{14} \mathrm{C}\left(\alpha,{ }^{3} \mathrm{He}\right){ }^{15} \mathrm{C}\left(Q_{\mathrm{m}}=-19.358\right),{ }^{15} \mathrm{~N}(\mathrm{n}, \mathrm{p}){ }^{15} \mathrm{C}\left(Q_{\mathrm{m}}=-8.994\right),{ }^{18} \mathrm{O}(\mathrm{n}$, $\alpha)^{15} \mathrm{C}\left(Q_{\mathrm{m}}=-5.024\right)$.

${ }^{15} \mathrm{~N}$

(Fig. 29)

GENERAL:

Theory: See (1956KA1C, 1957FE1A, 1957HA1E, 1957PE1D, 1958FR1C).

1. ${ }^{9} \operatorname{Be}\left({ }^{7} \mathrm{Li}, \mathrm{n}\right){ }^{15} \mathrm{~N}$
$Q_{\mathrm{m}}=18.092$

See (1957NO17).
2. ${ }^{11} \mathrm{~B}(\alpha, \mathrm{n}){ }^{14} \mathrm{~N}$
$Q_{\mathrm{m}}=0.152$
$E_{\mathrm{b}}=10.993$

Reported resonances are listed in Table 15.3 (1954BE08, 1954TR09, 1955SH46, 1956BO61, 1958HA1B: see also (1950HO80)). Some absolute cross sections are given by (1956BO61). See also ${ }^{14} \mathrm{~N}$.

Table 15.2: Energy levels of ${ }^{15} \mathrm{~N}$

$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})$	J^{π}	$\Gamma(\mathrm{keV})$	Decay	Reactions
0	$\frac{1}{2}$	-	stable	$\begin{aligned} & 1,5,11,16,19,20,27,28, \\ & 31,32,33,34,36,37,38 \end{aligned}$
5.276 ± 6	$\leq \frac{7}{2}^{+}$		γ	$5,11,16,19,20,27,32$
5.305 ± 6	$\frac{1}{2}^{+}, \frac{3}{2}^{+}$		γ	$5,11,16,19,20,27,32$
6.328 ± 6	$\leq \frac{5}{2}$		γ	$5,11,16,20,27,32,34$
7.164 ± 6	$\leq \frac{7}{2}^{+}$		γ	13, 20, 27
7.309 ± 6	$\frac{1}{2}^{+}, \frac{3}{2}^{+}$		γ	16, 20, 27
7.572 ± 8	$\leq \frac{7}{2}^{+}$		(γ)	16, 27
8.316 ± 6	$\frac{1}{2}^{+}, \frac{3}{2}^{+}$		γ	20, 27
8.575 ± 8	$\leq \frac{7}{2}^{+}$		γ	20, 27
9.062 ± 10	$\frac{1}{2}^{+}, \frac{3}{2}^{+}$		γ	20, 27
9.165 ± 10			γ	20, 27
9.834 ± 10			(γ)	27
10.069 ± 10	$\leq \frac{5}{2}^{-}$		γ	27
10.458 ± 10			γ	13, 27
10.548 ± 10	$\frac{5}{2}, \frac{7}{2}$		γ	13, 27
10.710 ± 10	$\frac{3}{2}{ }^{+}$		γ	13, 14, 27
10.815 ± 10	$\frac{3}{2}$		γ	13, 27
11.243 ± 10	$>\frac{1}{2}^{-}$	3.3	n	21, 27
11.299 ± 10	$\frac{1}{2}$	5.5 ± 1	$\gamma, \mathrm{n}, \mathrm{p}$	13, 15, 21, 23
11.438 ± 10	$\frac{1}{2}+$	40 ± 3	$\gamma, \mathrm{n}, \mathrm{p}, \alpha$	2, 13, 15, 21, 23
11.61	$\frac{1}{2}^{+} \mathrm{a}$	450	$\gamma, \mathrm{n}, \mathrm{p}$	13, 15, 30
11.773 ± 10	$\frac{3}{2}+$	39 ± 3	n, p, α	2, 15, 21, 23
11.885 ± 10	$\frac{3}{2}$	20 ± 2	n, p, α	2, 15, 21
11.950 ± 10	$>\frac{1}{2}$	≤ 3	n, α	2, 21
11.972 ± 10	$\frac{1}{2}$	16	n, p, α	15, 21
12.103 ± 10	$\frac{5}{2}$	19 ± 5	$\mathrm{n}, \mathrm{p}, \alpha$	2, 3, 15, 21
12.152 ± 10	$\frac{3}{2}$	49	n, p, α	2, 3, 15, 21, 23, 24
12.333 ± 10	$\frac{5}{2}$	21 ± 3	n, p, α	15, 21
12.502 ± 10	$\frac{5}{2}+$	28	n, p, α	2, 3, 15, 21, 24
12.928 ± 10	$\frac{3}{2}$	60	n, p, α	3, 15, 21
12.93	$\frac{7}{2}^{-}$	30	p, α	3
13.15		<2	$\mathrm{n}, \mathrm{p}, \alpha$	2,3

Table 15.2: Energy levels of ${ }^{15} \mathrm{~N}$ (continued)

$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})$	J^{π}	$\Gamma(\mathrm{keV})$	Decay	Reactions
13.18	$\begin{gathered} \frac{3}{2}^{-} \\ \frac{5}{2}^{+} \\ {\left(\frac{5}{2}^{-}\right)}^{\text {a }} \end{gathered}$	6	$\mathrm{n}, \mathrm{p}, \alpha$	2, 3
13.36		20	n, α	2, 3
13.41		30	p, α	3
13.61		15	n, α	2, 3
13.71		30	n, α	2
13.85		50	n, α	2
14.08		≈ 7	n, α	2
14.17		25	n, α	2
14.63		53	n, α	2
14.90			n, α	2
15.01			n, α	2
15.08			n, α	2
15.29			n, α	2
15.37			n, α	2
15.61			n, α	2
15.92			n, α	2
15.93			n, α	2
15.99			n, α	2
16.04			n, α	2
16.47			p	7
16.72		≈ 90	$\mathrm{n}, \mathrm{p}, \mathrm{d}$	6,7
16.90		≈ 350	n, d	6
17.11		broad	d, α	9
17.24		≈ 170	t, d	8
17.37		≈ 350	$\mathrm{p}, \alpha, \mathrm{t}, \mathrm{d}, \mathrm{n}$	6, 7, 8, 9
17.58		≈ 170	t, d	8
17.70		≈ 500	d, n, α	6,9
17.72		48 ± 9	$\mathrm{p}, \alpha, \mathrm{d}, \mathrm{t}$	7, 8, 9
18.07		19 ± 4	α, d	9
18.09		≈ 45	$\mathrm{p}, \mathrm{d}, \mathrm{t}$	7, 8
18.28		230 ± 60	$\mathrm{n}, \mathrm{p}, \alpha, \mathrm{d}$	6,7,9
19.16		≈ 130	n, d	6

${ }^{\mathrm{a}} T=\frac{3}{2}$.
3. ${ }^{11} \mathrm{~B}(\alpha, p){ }^{14} \mathrm{C}$
$Q_{\mathrm{m}}=0.780$
$E_{\mathrm{b}}=10.993$

Reported resonances are listed in Table 15.3 (1955SH46, 1958LE23, 1959LE28). Angular distributions of the ground state protons have been measured at 150 energies in the range $E_{\alpha}=2$ to 4 MeV . The assignment $J=\frac{5}{2}^{+}$to ${ }^{15} \mathrm{~N}^{*}(12.50)$ agrees with an independent determination in ${ }^{14} \mathrm{~N}(\mathrm{n}, \mathrm{n}){ }^{14} \mathrm{~N}$ (1958LE23). Partial widths for several resonances are listed by (1959LE28). See also ${ }^{14} \mathrm{C}$.
4. ${ }^{12} \mathrm{C}(\mathrm{t}, \mathrm{p}){ }^{14} \mathrm{C}$
$Q_{\mathrm{m}}=4.634$
$E_{\mathrm{b}}=14.848$

See (1951PO1A).
5. ${ }^{12} \mathrm{C}(\alpha, \mathrm{p}){ }^{15} \mathrm{~N} \quad Q_{\mathrm{m}}=-4.965$

Proton groups have been observed corresponding to the ground state of ${ }^{15} \mathrm{~N}$ and to ${ }^{15} \mathrm{~N}^{*}(5.4$, 6.5) and to other unresolved excited states up to $E_{\mathrm{x}} \approx 13.5 \mathrm{MeV}$ (1951BU1D, 1951BU1E, 1957SH1C). Angular distributions have been studied at $E_{\alpha}=30.5 \mathrm{MeV}$ (1957HU1E) and 41.5 MeV (1957SH1C). They all show strong anisotropic structure typical of direct interaction. The ground state angular distribution is qualitatively similar to that of the inverse reaction. An excellent fit is obtained to the data $>30^{\circ}$ under the assumption l (triton) $=1, R=5.10 \times 10^{-13} \mathrm{~cm}$ (1957SH1B, 1957SH1C: see also (1957BU52)).
6. ${ }^{13} \mathrm{C}(\mathrm{d}, \mathrm{n}){ }^{14} \mathrm{~N}$
$Q_{\mathrm{m}}=5.319$

$$
E_{\mathrm{b}}=16.161
$$

Observed resonances are displayed in Table 15.4 (1950RI57, 1955MA76). Absolute cross sections are given by (1955MA76). See also ${ }^{14} \mathrm{~N}$ and (1957JA37).
7. ${ }^{13} \mathrm{C}(\mathrm{d}, \mathrm{p}){ }^{14} \mathrm{C}$
$Q_{\mathrm{m}}=5.947$
$E_{\mathrm{b}}=16.161$

Observed resonances are displayed in Table 15.4 (1941BE1A, 1950CU13, 1953KO42, 1956MA46). Angular distributions have been measured at a number of energies in the range $E_{\mathrm{d}}=0.3$ to 2.8 MeV (1953KO42, 1956KO26, 1956MA46, 1956VA17). At most energies some stripping contribution is observed, although compound nucleus formation appears to be quite important for $E_{\mathrm{d}}<3$ MeV (1956MA46). There is some disagreement on absolute cross sections; see (1953KO42, 1956MA46, 1956VA17, 1957HO63). See also ${ }^{14}$ C.

Table 15.3: Resonances in ${ }^{11} \mathrm{~B}+\alpha$

$E_{\alpha}(\mathrm{MeV})$	$\Gamma_{\text {lab }}(\mathrm{keV})$	Particle out	$E_{\mathrm{x}}(\mathrm{MeV})$	J^{π}	Ref.
0.60		n	11.43		a
1.03		n	11.75		a
1.18		n	11.86		a
1.30		n	11.95		a
1.51		n, p	12.10		b
1.58		n, p	12.15		b
2.06	66	$\mathrm{n}_{0}, \mathrm{p}_{0}$	12.50	$\frac{5}{2}^{+}$	c
2.63	80	$\mathrm{n}_{0}, \mathrm{p}_{0}$	12.92	$\frac{3}{2}^{-}$	d
2.64	40	p_{0}	12.93	$\frac{7}{2}^{-}$	e
2.94	<3	$\mathrm{n}_{0}, \mathrm{p}_{0}$	13.15		d
2.99	8	$\mathrm{n}_{0}, \mathrm{p}_{0}$	13.18		d
3.23	29	$\mathrm{n}_{0}, \mathrm{p}$	13.36	$\frac{3}{2}^{-}$	d
3.30	40	p	13.41	$\frac{5}{2}$	e
3.56	20	$\mathrm{n}_{0}, \mathrm{p}$	13.61	$\left(\frac{5}{2}{ }^{-}\right)$	d
3.71	40	n_{0}	13.71		f
3.90	70	$\left.\mathrm{n}_{0}, \mathrm{n}_{1}\right)$	13.85		f
4.21	≈ 10	$\mathrm{n}_{0}, \mathrm{n}_{1}$	14.08		f
4.33	35	n_{0}	14.17		f
4.96	72	n_{0}	14.63		f
5.34		n_{0}	14.90		g
5.49		n_{0}	15.01		g
5.58		n_{0}	15.08		g
5.86		n_{0}	15.29		g
5.98		$\mathrm{n}_{0}, \mathrm{n}_{2}$	15.37		g
6.30		$\mathrm{n}_{0},\left(\mathrm{n}_{2}\right)$	15.61		g
6.72		$\mathrm{n}_{0},\left(\mathrm{n}_{2}\right)$	15.92		g
6.74		$\mathrm{n}_{0}, \mathrm{n}_{2}$	15.93		g
6.82		$\mathrm{n}_{0}, \mathrm{n}_{2}$	15.99		g
6.89			16.04		g

[^0]Table 15.4: Resonances in ${ }^{13} \mathrm{C}+\mathrm{d}$

E_{d} (MeV)	Emitted particles	Γ (keV)	${ }^{15} \mathrm{~N}^{*}$ (MeV)	References
0.37	p		16.47	$($ (1956VA17)
0.64	$\mathrm{n}, \mathrm{p}_{0}$	≈ 100	16.72	$($ (1950CU13, 1950RI57, 1953KO42, 1956MA46, 1956VA17)
0.85	n	≈ 400	16.90	$($ 1950RI57)
1.10	α_{0}	broad	17.11	$($ (1956MA35)
1.24 ± 0.04	t_{0}	≈ 200	17.24	$($ (1956MA35)
1.40 ± 0.04	$\mathrm{p}_{0}, \alpha_{0}, \mathrm{t}_{0}$	≈ 400	17.37	$($ (1956MA35, 1956MA46)
1.55^{a}	n	≈ 100		$($ 1941BE1A, 1950RI57)
1.64 ± 0.04	t_{0}	≈ 200	17.58	$($ (1956MA35)
1.78 ± 0.05	n, α_{0}	≈ 600	17.70	$($ (1950RI57, 1955MA76, 1956MA35)
1.80 ± 0.01	$\left(\mathrm{p}_{0}\right), \alpha_{1}, \mathrm{t}_{0}$	55 ± 10	17.72	$($ (1956MA35, 1956MA46)
2.20 ± 0.01	α_{0}, α_{1}	22 ± 4	18.07	(1956MA35)
2.23 ± 0.02	$\mathrm{p}_{0}, \mathrm{t}$	≈ 50	18.09	(1956MA35, 1956MA46)
2.45 ± 0.03	$\mathrm{n}, \mathrm{p}_{0}, \alpha_{0}$	270 ± 70	18.28	(1955MA76, 1956MA35, 1956MA46)
3.46 ± 0.03	n	≈ 150	19.16	(1955MA76)

${ }^{\text {a }}$ Possibly to be identified with 1.40 MeV resonance (1956MA35).
8. ${ }^{13} \mathrm{C}(\mathrm{d}, \mathrm{t})^{12} \mathrm{C}$
$Q_{\mathrm{m}}=1.313$
$E_{\mathrm{b}}=16.161$

Observed resonances are listed in Table 15.4. Angular distributions and absolute cross sections are reported (1956MA35). See also ${ }^{12}$ C.
9. ${ }^{13} \mathrm{C}(\mathrm{d}, \alpha){ }^{11} \mathrm{~B}$
$Q_{\mathrm{m}}=5.167$
$E_{\mathrm{b}}=16.161$

Observed resonances are listed in Table 15.4. Angular distributions and absolute cross sections are reported. Analysis of the narrow $E_{\alpha}=2.2 \mathrm{MeV}$ resonance suggests that it is formed by $l_{\mathrm{d}}=3$ or 4 (1956MA35). See also ${ }^{11}$ B.
10. ${ }^{13} \mathrm{C}(\mathrm{t}, \mathrm{n}){ }^{15} \mathrm{~N}$
$Q_{\mathrm{m}}=9.903$

Not reported.

Table 15.5: Low-energy ${ }^{14} \mathrm{C}(\mathrm{p}, \gamma){ }^{15} \mathrm{~N}$ resonances ${ }^{\text {a }}$

E_{p} (keV)	${ }^{15} \mathrm{~N}^{*}$ (MeV)	$\omega \Gamma_{\mathrm{p}}$ (eV)	$\omega \Gamma_{\gamma_{0}}$ (eV)	$\omega \Gamma_{\gamma_{5}}$ (eV)	$\omega \Gamma_{\gamma_{3,4}}$ (eV)	l_{p}	J^{π}
261	10.458	$\approx 5 \times 10^{-4 \mathrm{~b}}$	$\approx 1 \times 10^{-4}$	$\approx 4 \times 10^{-4}$	$\approx 1 \times 10^{-4}$	≤ 4	
351	10.542	≥ 0.04	$\leq 3 \times 10^{-4}$	0.018^{d}	0.025^{e}	≤ 3	$\left(\frac{5}{2}^{ \pm}, \frac{7}{2}^{-}\right)$
527	10.706	$\approx 200^{\mathrm{c}}$	0.36	0.18		2	$\frac{3}{2}^{+}$
634	10.806	$\approx 0.4^{\mathrm{b}}$	0.11	0.04			

a (1957HE1C, 1958HE48, 1959HE1D); see also Table 15.6.
${ }^{\mathrm{b}}$ Estimated from γ-intensities in ${ }^{14} \mathrm{~N}(\mathrm{~d}, \mathrm{p}){ }^{15} \mathrm{~N}$: see (1958RA13).
${ }^{c} \theta_{\mathrm{p}}^{2} \approx 0.2$ (1957HE1C, 1959HE1D).
${ }^{\mathrm{d}} \mathrm{To}^{15} \mathrm{~N}^{*}(5.28)$.
${ }^{\mathrm{e}} \mathrm{To}{ }^{15} \mathrm{~N}^{*}(7.16)$. The ground state transition $(7.16 \rightarrow 0)$ is 3 times as strong as $(7.16 \rightarrow 5.28)(1959 \mathrm{HE} 1 \mathrm{D})$.
11. ${ }^{13} \mathrm{C}\left({ }^{3} \mathrm{He}, \mathrm{p}\right){ }^{15} \mathrm{~N}$

$$
Q_{\mathrm{m}}=10.668
$$

Proton groups have been observed corresponding to the ground state of ${ }^{15} \mathrm{~N}$ and to the levels at 5.3 MeV (unresolved) and $6.3 \mathrm{MeV} ; E\left({ }^{3} \mathrm{He}\right)$ to 4.5 MeV . Angular distributions show strong forward and backward peaking, roughly symmetric about 90°, and may indicate either compound nucleus formation or exchange stripping (1956SC01, 1957IL01, 1957JO1B). See also (1957BR18) and ${ }^{16} \mathrm{O}$.

$$
\text { 12. }{ }^{13} \mathrm{C}(\alpha, \mathrm{~d}){ }^{15} \mathrm{~N} \quad Q_{\mathrm{m}}=-7.683
$$

Not observed.

$$
\text { 13. }{ }^{14} \mathrm{C}(\mathrm{p}, \gamma){ }^{15} \mathrm{~N} \quad Q_{\mathrm{m}}=10.214
$$

Resonances for capture γ-radiation are listed in Tables 15.5 and 15.6. The energies of the first four resonances (Table 15.5) agree well with level energies derived from ${ }^{14} \mathrm{~N}(\mathrm{~d}, \mathrm{p}){ }^{15} \mathrm{~N}(1958 \mathrm{HE} 48$, 1959HE1D); corresponding values given by (1955BA44) are 8 to 10 keV higher. Quoted limits on l_{p} in Table 15.5 are based on estimates of Γ_{p}. The assignment $\frac{3^{+}}{}{ }^{1}$ to ${ }^{15} \mathrm{~N}^{*}(10.71)$ is based on ${ }^{14} \mathrm{C}(\mathrm{p}$, p) ${ }^{14} \mathrm{C}$ (1958HE48, 1959HE1D); the assignment $\frac{3}{2}^{-}$gives a more satisfactory account of the p, γ_{0} angular distribution both for this level and for ${ }^{15} \mathrm{~N}^{*}(10.81)$ (1955BA44); $J=\frac{3}{2}^{+}$is, however, not excluded for either (1957BA18). Combination of ${ }^{15} \mathrm{~N}^{*}(10.81)$ and ${ }^{15} \mathrm{~N}^{*}(9.84)$ permits a good acc-

Table 15.6: Resonances in ${ }^{14} \mathrm{C}\left(\mathrm{p}, \gamma_{0}\right)^{15} \mathrm{~N}$ and ${ }^{14} \mathrm{C}(\mathrm{p}, \mathrm{n}){ }^{14} \mathrm{~N}$

$\begin{aligned} & E_{\mathrm{p}}{ }^{\mathrm{a}} \\ & (\mathrm{keV}) \end{aligned}$	Yields ${ }^{\text {b }}$		$\begin{gathered} \Gamma^{\mathrm{b}} \\ (\mathrm{keV}) \end{gathered}$	$\begin{aligned} & \Gamma_{\mathrm{n}}{ }^{\mathrm{b}} \\ & (\mathrm{keV}) \end{aligned}$	$\begin{aligned} & \Gamma_{\mathrm{p}}{ }^{\mathrm{b}} \\ & (\mathrm{keV}) \end{aligned}$	$\begin{aligned} & \Gamma_{\alpha}{ }^{\mathrm{a}} \\ & (\mathrm{keV}) \end{aligned}$	$\begin{gathered} \hline \Gamma_{\gamma_{0}}{ }^{\mathrm{b}} \\ (\mathrm{eV}) \end{gathered}$	$J^{\pi \mathrm{b}}$	$l_{\text {n }}$	$\theta_{\mathrm{n}}^{2} \mathrm{c}$	l_{p}	$\theta_{\mathrm{p}}^{2} \mathrm{c}$	$\begin{gathered} E_{\mathrm{x}} \\ (\mathrm{MeV}) \end{gathered}$
	$\begin{gathered} 10^{-11} \\ \gamma / \mathrm{p} \end{gathered}$	$\begin{gathered} 10^{-8} \\ \mathrm{n} / \mathrm{p} \end{gathered}$											
361	0.01						$(<0.004)^{\mathrm{h}}$						10.551
537	5.7						$(0.12)^{\mathrm{h}}$	$\left(\frac{3}{2}^{-}\right)^{\mathrm{h}}$					10.715
646	0.49						$(0.010)^{\mathrm{h}}$	$\left(\frac{3}{2}^{-}\right)$					10.817
1163 ± 2	3.1	20	12	1.6	10.4	0	0.29	$\frac{1}{2}^{-}$e	1	0.002	1	0.04	11.299
1312 ± 3	7.9	120	$43 \pm 5^{\text {d }}$	24.4	15.0	0	2.4	$\frac{1}{2}^{+}{ }^{\text {f }}$	0	0.01	0	0.007	11.438
1500	49	88	$520{ }^{\text {d }}$	18.4	506		26.3	$\frac{1}{2}^{+} \mathrm{g}$	0	0.001	0	1.0	11.61
1668 ± 3		17	37	36.5	0.5	0		$\frac{3}{2}+$	0	0.01	2	0.004	11.771
1788 ± 3		1.5	24.5	24.5	0.03	0.05		$\frac{3}{2}^{-},\left(\frac{5}{2}^{-}\right)$	1	0.01	3	0.003	11.883
1884 ± 3		5.6	21.5	21.2	0.3	0.26		$\frac{1}{2}$	1	0.009	1	0.0004	11.972
2025 ± 4		40	18	17.2	0.8	0.6		$\frac{5}{2}^{(-)}$	1	0.007	3	0.05	12.104
2079 ± 4		290	53	38	15	2.2		$\frac{3}{2}^{(+)} \mathrm{e}$	0	0.008	2	0.06	12.154
2272 ± 4		10	22	21.7	0.3	0.1		$\frac{5}{2}^{(+)}$	2	0.007	2	0.0009	12.335
2450 ± 4			34 ± 4	28	0.3	5.5		$\left(\frac{3}{2}\right)$					12.501
2908 ± 4			71 ± 5										12.928

a (1956SA06).
b (1955BA44): see comparable values in (1951RO16, 1956SA06).
${ }^{\text {c }} \theta^{2}$ as defined by (1955BA44).
d (1956FE1C).
${ }^{\text {e }}$ See also (1953KA1A).
${ }^{\mathrm{f}}$ Assignment from ${ }^{14} \mathrm{~N}(\mathrm{n}, \mathrm{n})^{14} \mathrm{~N}$: see also (1953KA1A).
${ }^{\mathrm{g}} T=\frac{3}{2}$.
${ }^{\mathrm{h}}$ Compare Table 15.5 .
ount of the low energy (n, n) and (n, γ) cross sections (1959HE1D). The thermal (n, p) cross section can be ascribed to the $E_{\mathrm{p}}=1.5 \mathrm{MeV}$ resonance $\left({ }^{15} \mathrm{~N}^{*}(11.61)\right)\left(1955 \mathrm{BA} 44\right.$: see also $\left.{ }^{14} \mathrm{~N}(\mathrm{n}, \gamma){ }^{15} \mathrm{~N}\right)$.

Strong interference effects in the (p, γ) yield curve indicate that the $E_{\mathrm{p}}=1.31$ and 1.50 MeV states have the same J^{π} (the former is given as $\frac{1}{2}^{+}$from ${ }^{14} \mathrm{~N}(\mathrm{n}, \mathrm{n})^{14} \mathrm{~N}$) and that the $E_{\mathrm{p}}=1.16 \mathrm{MeV}$ state has opposite (odd) parity: $J=\frac{1}{2}^{-}, \frac{3}{2}^{-} ; J=\frac{1}{2}^{-}$is favored by $\sigma(\mathrm{n}, \mathrm{n})$.

The $E_{\mathrm{p}}=1.66 \mathrm{MeV}$ state has even parity. Assignments for these four levels indicated in Table 15.6 are consistent with the ${ }^{14} \mathrm{C}(\mathrm{p}, \mathrm{n})^{14} \mathrm{~N}$ results (1955BA44: see also (1953KA1A)). The state at $E_{\mathrm{p}}=1.50 \mathrm{MeV}$ probably has $T=\frac{3}{2}$ and corresponds to ${ }^{15} \mathrm{C}_{\text {g.s. }}$ (1955BA44, 1956BA16: see $\left.{ }^{14} \mathrm{C}(\mathrm{p}, \mathrm{n}){ }^{14} \mathrm{~N}\right)$. See also (1954SP1B, 1956FE1C).
14. ${ }^{14} \mathrm{C}(\mathrm{p}, \mathrm{p}){ }^{14} \mathrm{C}$

$$
E_{\mathrm{b}}=10.214
$$

Elastic scattering has been studied for $E_{\mathrm{p}}=340$ to 690 keV . At the $E_{\mathrm{p}}=527 \mathrm{keV}$ resonance (see Table 15.5), the scattering is consistent with d-wave formation of a $J=\frac{3}{2}^{+}$state, $\Gamma_{\mathrm{p}}=0.2$ keV . No anomalies are observed at $E_{\mathrm{p}}=351$ or 635 keV (1958HE48, 1959HE1D).

$$
\text { 15. }{ }^{14} \mathrm{C}(\mathrm{p}, \mathrm{n})^{14} \mathrm{~N} \quad Q_{\mathrm{m}}=-0.628 \quad E_{\mathrm{b}}=10.214
$$

Resonances reported by (1951RO16, 1953KA1A, 1954BA1C, 1955BA44, 1956SA06) are listed in Table 15.6: see also (1959GI47). Neutron distributions are essentially isotropic at the $E_{\mathrm{p}}=1.16,1.31$ and 1.50 MeV resonances and agree with the assignments derived from ${ }^{14} \mathrm{C}(\mathrm{p}$, $\gamma)^{15} \mathrm{~N}$ and ${ }^{14} \mathrm{~N}(\mathrm{n}, \mathrm{n}){ }^{14} \mathrm{~N}$; the distribution at $E_{\mathrm{p}}=1.67 \mathrm{MeV}$ favors $J=\frac{3}{2}$. At $E_{\mathrm{p}}=1.79 \mathrm{MeV}$, the distributions favor $\frac{5}{2}^{-}$, but $\frac{3}{2}$ is not excluded (1955BA44: see also (1953KA1A)); a computation of the cross section favors $J=\frac{3}{2}$ (1956SA06). At $E_{\mathrm{p}}=1.88 \mathrm{MeV}$, the angular distribution is consistent with the $J=\frac{1}{2}^{-}$assignment from ${ }^{14} \mathrm{~N}(\mathrm{n}, \mathrm{n})^{14} \mathrm{~N}$ and at $E_{\mathrm{p}}=2.02 \mathrm{MeV}$ the appearance of a $\mathrm{P}_{4}(\cos \theta)$ term supports the assignment $J=\frac{5}{2}$, excluding $J=\frac{5}{2}^{+}$(1955BA44: compare Table 15.7). Parities of this and the next two states disagree with ${ }^{14} \mathrm{~N}(\mathrm{n}, \mathrm{n}){ }^{14} \mathrm{~N}$ results. The $E_{\mathrm{p}}=2.27$ MeV state has $J=\frac{3}{2}$ or $\frac{5}{2}$; the σ_{nn} clearly indicates the latter (1955BA44, 1956SA06).

For ${ }^{15} \mathrm{~N}^{*}(11.61)\left(E_{\mathrm{p}}=1.50 \mathrm{MeV}\right)$, the proton reduced width indicates a single-particle level, while the neutron reduced width is only 10^{-3}. This behavior is taken to indicate that the level has $T=\frac{3}{2}$ and corresponds to ${ }^{15} \mathrm{C}_{\text {g.s. }}$; the predicted energy from $\mathrm{M}\left({ }^{15} \mathrm{C}\right)$ is ${ }^{15} \mathrm{~N}^{*}(11.7$ to 11.9 MeV$)$ (1955BA44, 1956BA16).
16. ${ }^{14} \mathrm{C}(\mathrm{d}, \mathrm{n}){ }^{15} \mathrm{~N} \quad Q_{\mathrm{m}}=7.987$

Neutron groups have been observed corresponding to levels in ${ }^{15} \mathrm{~N}$ at $5.34,6.32$, and 7.46 MeV (1950HU72). See also (1956FR1A; theor.).

$$
Q_{\mathrm{m}}=4.720
$$

Not reported.
18. ${ }^{14} \mathrm{C}(\alpha, \mathrm{t}){ }^{15} \mathrm{~N}$
$Q_{\mathrm{m}}=-9.599$

Not reported.
19. ${ }^{15} \mathrm{C}\left(\beta^{-}\right)^{15} \mathrm{~N}$

$$
Q_{\mathrm{m}}=9.777
$$

See ${ }^{15} C$.

$$
\text { 20. }{ }^{14} \mathrm{~N}(\mathrm{n}, \gamma)^{15} \mathrm{~N} \quad \begin{array}{ll}
Q_{\mathrm{m}}=10.842 \\
& Q_{0}=10.833 \pm 0.008 \text { (1957BA18). }
\end{array}
$$

The thermal cross section is $80 \pm 20 \mathrm{mb}$ (1957BA18). Observed γ-rays are given in Table 15.7 together with the ${ }^{15} \mathrm{~N}$ levels with which they are presumed to be associated. The decay scheme is in good accord with that derived from ${ }^{14} \mathrm{~N}(\mathrm{~d}, \mathrm{p}){ }^{15} \mathrm{~N}$ (1957BA18). It does not appear that any of the known levels in this region can account for the large thermal cross section. The $J=\frac{1}{2}^{+}$; $T=\frac{3}{2}$ level at ${ }^{15} \mathrm{~N}^{*}(11.61)$ gives the same capture radiation spectrum and accounts very well for the thermal ${ }^{14} \mathrm{~N}(\mathrm{n}, \mathrm{p}){ }^{14} \mathrm{C}$ cross section, but contributes only 0.4 mb to $\sigma_{\mathrm{n} \gamma}$. The required level is presumably to be found below the neutron threshold, ${ }^{15} \mathrm{~N}^{*}(10.2$ to 10.7 MeV$)$, and should have a large neutron and a small proton width, $=\frac{1}{2}^{+}$or $\frac{3}{2}^{+}$, and $\Gamma_{\gamma_{0}}=1 \mathrm{eV}$ (1955BA44): compare ${ }^{14} \mathrm{C}(\mathrm{p}$, γ) (1959HE1D). See also (1958RA13).
21. ${ }^{14} \mathrm{~N}(\mathrm{n}, \mathrm{n}){ }^{14} \mathrm{~N}$ $E_{\mathrm{b}}=10.842$

The coherent scattering cross section is $11.0 \pm 0.5 \mathrm{~b}$; the total scattering cross section is $11.4 \pm$ 0.5 b (bound atoms, epithermal neutrons: see (1958HU18)). The large thermal scattering reflects a nearby bound level (1949ME51). The approximate equality of the two values indicates that the scattering has little spin dependence (1955FO27). See (1959HE1D).

Resonances in the range $E_{\mathrm{n}}=0.4$ to 2.3 MeV are listed in Table 15.8 (1951JO23, 1952HI12, 1955FO27, 1955HU1B, 1957HU1D, 1958HU18). Angular distributions at and between these resonances have been studied by (1950BA1C, 1955FO27). The potential s-wave phase shift approximately fits hard-sphere scattering $\left(R=3.7 \times 10^{-13} \mathrm{~cm}\right)$ for $E_{\mathrm{n}}<1.3 \mathrm{MeV}$: from 1.3 to 1.7 MeV , an abrupt increase (negative) appears, which may be associated with a shape resonance. The

Table 15.7: Gamma radiation from ${ }^{14} \mathrm{~N}(\mathrm{n}, \quad \gamma)^{15} \mathrm{~N}$ (1957BA18, 1958BA52)

$E_{\gamma}(\mathrm{MeV})$	γ rays $/ 100$ captures $^{\mathrm{a}}$	Assignment $^{\mathrm{b}}$
10.833 ± 0.008	11	$\mathrm{C} \rightarrow 0$
>9.152	≤ 0.3	
9.152 ± 0.010	1	$9.16 \rightarrow 0$
9.03 ± 0.03	0.2	$9.06 \rightarrow 0$
8.54 ± 0.04	0.2	$8.57 \rightarrow 0$
8.313 ± 0.013	4	$8.32 \rightarrow 0$
7.305 ± 0.012	9	$7.31 \rightarrow 0$
(7.164)	≤ 0.8	
6.323 ± 0.008	17	$6.33 \rightarrow 0$
5.559 ± 0.005	14	$\mathrm{C} \rightarrow 5.28$
5.530 ± 0.008	18	$\mathrm{C} \rightarrow 5.31$
5.293 ± 0.007	35	$5.31 \rightarrow 0$
5.263 ± 0.010	22	$5.28 \rightarrow 0$
4.497 ± 0.011	16	$\mathrm{C} \rightarrow 6.33$
3.669 ± 0.016	17	$\mathrm{C} \rightarrow 7.16^{\mathrm{c}}$
3.520 ± 0.016	15	$\mathrm{C} \rightarrow 7.31$
(3.267)	≤ 6	

${ }^{\text {a }}$ The intensity of the $7.57 \rightarrow 0$ transition is ≤ 0.7.
${ }^{\mathrm{b}} \mathrm{C}=$ capture state.
${ }^{\text {c }}$ The direct ground state decay is ≤ 0.8.
p-wave phase shift is somewhat smaller than the hard-sphere value; the d-wave shift is $<3^{\circ}$ (1955FO27: $E_{\mathrm{n}}<2.0 \mathrm{MeV}$).

The narrow $E_{\mathrm{n}}=430 \mathrm{keV}$ resonance is formed by $l_{\mathrm{n}} \geq 1$; the proton width is very small, and the level has not been detected in ${ }^{14} \mathrm{C}+\mathrm{p}$. The $E_{\mathrm{n}}=495 \mathrm{keV}$ resonance appears strongly in ${ }^{14} \mathrm{~N}(\mathrm{n}$, $\mathrm{p}){ }^{14} \mathrm{C}$ and ${ }^{14} \mathrm{C}(\mathrm{p}, \mathrm{n}){ }^{14} \mathrm{~N}$, but not in elastic scattering. The two resonances at $E_{\mathrm{n}}=639$ and 998 keV are s-wave, assigned $J=\frac{1}{2}^{+}$and $\frac{3^{+}}{}{ }^{+}$, respectively from $\sigma_{\max }-\sigma_{\min }$ (1951JO23, 1952HI12). According to (1956FE1C) an additional broad $J=\frac{1^{+}}{}{ }^{+}$level is located in this region $\left({ }^{14} \mathrm{C}(\mathrm{p}, \mathrm{n}){ }^{14} \mathrm{~N}\right.$; $E_{\mathrm{p}}=1.5 \mathrm{MeV}:{ }^{14} \mathrm{~N}^{*}=11.61 \mathrm{MeV}$), presumably the first $T=\frac{3}{2}$ state. This level has not appeared in ${ }^{14} \mathrm{~N}(\mathrm{n}, \mathrm{n}){ }^{14} \mathrm{~N}$; see e.g. (1955FO27). The $E_{\mathrm{n}}=1120 \mathrm{keV}$ resonance is given as $J=\frac{3}{2}$ or $\frac{5}{2}$ from cross sections; the angular distributions favor $\frac{3}{2}^{-}$(1955FO27). The narrow 1188 keV resonance does not appear in $\left({ }^{14} \mathrm{C}+\mathrm{p}\right)(1956 \mathrm{SA} 06)$. Aside from the $J=\frac{1}{2}^{-}$resonance at $E_{\mathrm{n}}=1211 \mathrm{keV}$, the

Table 15.8: Resonances in ${ }^{14} \mathrm{~N}+\mathrm{n}$

$\begin{gathered} E_{\mathrm{n}} \\ (\mathrm{keV}) \end{gathered}$	$\begin{gathered} \hline \Gamma_{\mathrm{lab}} \\ (\mathrm{keV}) \end{gathered}$	$\begin{gathered} \Gamma_{\mathrm{n}} \\ (\mathrm{keV}) \end{gathered}$	$\begin{gathered} \Gamma_{\mathrm{p}} \\ (\mathrm{keV}) \end{gathered}$	$\begin{gathered} \Gamma_{\alpha} \\ (\mathrm{keV}) \end{gathered}$	$l_{\text {n }}$	J^{π}	$\theta_{\mathrm{n}}^{2} \mathrm{a}$ (\%)	$\theta_{\mathrm{p}}^{2 \mathrm{a}}$ (\%)	$\begin{gathered} \theta_{\alpha}^{2}{ }^{\text {a }} \\ (\%) \end{gathered}$	$\begin{aligned} & \hline{ }^{15} \mathrm{~N}^{*} \\ & (\mathrm{MeV}) \end{aligned}$	References ${ }^{\text {b }}$
430 ± 5	3.5	<3	< 0.01		≥ 1	$\geq \frac{3}{2}$				11.243	(1951JO23, 1952HI12)
495 ± 5	7.5	<3	< 10		(1)	$\frac{1}{2}^{-} \mathrm{c}$	(0.1)	(1.8)		11.301	(1952HI12)
639 ± 5	43	34	9		0	$\frac{1}{2}{ }^{+}$	0.9	0.4		11.439	(1951JO23, 1952HI12)
998 ± 5	46	45	0.8		0	$\frac{3}{2}{ }^{+}$	1.0	0.6		11.774	(1951JO23, 1952HI12)
1120 ± 6	19	19	0.20	d	1	$\frac{3}{2}^{-}$	0.8	0.08		11.887	(1951JO23, 1952HI12,
											1955FO27)
1188 ± 6	≤ 3.2	<2	<0.1		≥ 1	$\geq \frac{3}{2}$				11.950	(1952HI12)
1211 ± 7	13	12	0.4	d	1	$\frac{1}{2}^{-}$	0.5	0.2		11.972	(1952HI12)
1350 ± 7	22	21	1.0	d	(2)	$\frac{5}{2}^{(+)}$	6	0.7		12.102	(1951JO23, 1952HI12,
											1955FO27)
1401 ± 8	54	42	10	2	1	$\frac{3}{2}^{(-)}$	1.5	0.7	5	12.150	(1951JO23, 1952HI12,
											1955FO27)
1595 ± 8	22	21	0.4	0.2	(1)	$\frac{5}{2}^{(-)}$	0.7	3.0		12.331	(1952HI12, 1955FO27)
1779 ± 10	24	18	6	0.2	2	$\left(\frac{5}{2}^{+}\right)$	3.0	0.07	14	12.503	(1952HI12, 1955FO27)
2250		0.48Γ			1	$\left(3^{-}{ }^{-}\right)$				12.94	(1953ME1B, 1955FO27,
											1957HU1D)

${ }^{\text {a }} \theta^{2}$ as defined by (1952HI12).
${ }^{\mathrm{b}}$ See (1958HU18).
${ }^{\text {c }}$ Assignment by (1956SA06), based on quoted $\sigma_{\mathrm{nn}}, \sigma_{\mathrm{n} \alpha}, \sigma_{\mathrm{np}}$.
${ }^{\mathrm{d}}$ See Table 15.6.
remaining J^{π} assignments disagree with those derived from ${ }^{14} \mathrm{C}+\mathrm{p}$ (compare (1955FO27) and (1955BA44)). For the $E_{\mathrm{n}}=2250 \mathrm{keV}$ resonance, (1955FO27) find $J=\frac{3}{2}^{-}$, while (1953ME1B) report $J=\frac{1}{2}^{-}$. From $E_{\mathrm{n}}=1.8$ to 4.0 MeV , there is evidence for considerable structure in the cross section curve, but little agreement as to the exact location of the levels involved. (1953ME1B) list 14 maxima in the total cross section for $E_{\mathrm{n}}=1.9$ to 3.6 MeV . Angular distributions have been studied by (1954HU1B) for energies between 3.2 and 3.9 MeV . The observed distributions can be accounted for by seven levels in the range 2.5 to 4.4 MeV with $J=\frac{3}{2}^{+}$to $\frac{7}{2}^{+}$(1954SP1C, 1954SP1D). See also (1955AJ61, 1956BE98, 1956FL1B, 1957HU1D).
22. ${ }^{14} \mathrm{~N}(\mathrm{n}, 2 \mathrm{n}){ }^{13} \mathrm{~N}$
$Q_{\mathrm{m}}=-10.551$
$E_{\mathrm{b}}=10.842$

At $E_{\mathrm{n}}=14.3 \mathrm{MeV}$, the cross section is $4.5 \pm 0.8 \mathrm{mb}$ (1955HU1B), $19 \pm 10 \mathrm{mb}$ (1958AS63), 8.5 mb (1958RA18). See also (1955SM1B).
23. ${ }^{14} \mathrm{~N}(\mathrm{n}, \mathrm{p}){ }^{14} \mathrm{C} \quad Q_{\mathrm{m}}=0.628 \quad E_{\mathrm{b}}=10.842$

The thermal cross section is $1.75 \pm 0.05 \mathrm{~b}$ (1958HU18). A major portion of this cross section can be ascribed to ${ }^{15} \mathrm{~N}^{*}(11.61)$ (1955BA44). Resonances reported by (1950JO57) occur at $E_{\mathrm{n}}=$ 495, 640, (993), and 1415 keV ; parameters are listed in Table 15.8 (1955HU1B, 1958HU18). Many additional levels have been reported through analysis of particle groups induced by continuous neutron spectra: see (1952AJ38, 1953GI1B, 1957BE71).
24. ${ }^{14} \mathrm{~N}(\mathrm{n}, \alpha){ }^{11} \mathrm{~B}$
$Q_{\mathrm{m}}=-0.152$
$E_{\mathrm{b}}=10.842$
(1950JO57) report resonances at $E_{\mathrm{p}}=1415$ and 1800 keV : see Table 15.8 (1955HU1B). See also ${ }^{14} \mathrm{~N}(\mathrm{n}, \mathrm{p}){ }^{14} \mathrm{C}$ above.
25. ${ }^{14} \mathrm{~N}(\mathrm{n}, \mathrm{d}){ }^{13} \mathrm{C}$

$$
Q_{\mathrm{m}}=-5.319
$$

$$
E_{\mathrm{b}}=10.842
$$

See (1952LI24, 1957CA07, 1957ZA1A), ${ }^{14} \mathrm{~N}$ and ${ }^{13} \mathrm{C}$.
26. (a) ${ }^{14} \mathrm{~N}(\mathrm{n}, \mathrm{t})^{12} \mathrm{C}$
$Q_{\mathrm{m}}=-4.007$
$E_{\mathrm{b}}=10.842$
(b) ${ }^{14} \mathrm{~N}(\mathrm{n}, \mathrm{t}){ }^{4} \mathrm{He}^{4} \mathrm{He}^{4} \mathrm{He}$
$Q_{\mathrm{m}}=-11.287$
For reaction (a), see (1953FI28). For reaction (b), see (1956FR18).
27. ${ }^{14} \mathrm{~N}(\mathrm{~d}, \mathrm{p}){ }^{15} \mathrm{~N} \quad Q_{\mathrm{m}}=8.615$

Proton groups corresponding to levels of ${ }^{15} \mathrm{~N}$ are listed in Table 15.9. The J^{π} assignments are based on stripping analysis of angular distributions (1950MA65, 1952GI01, 1954SP01, 1955SH28, 1956DO41, 1956GR37, 1957WA01). A detailed comparison of the experimental observations with shell-model calculations is made by (1957HA1E: see also (1957WA01)). Angular distributions have also been studied by (1954EB02, 1954JO1F, 1956VA17, 1958BO18). The ratio of the reduced widths of the ground states of ${ }^{15} \mathrm{~N}$ and ${ }^{15} \mathrm{O}$ is 1.71 (1956CA1D: $E_{\mathrm{d}}=9 \mathrm{MeV}$).

Observed gamma rays are listed in Table 15.10 (1955BE81, 1958RA13). The observation of a $10.81 \mathrm{MeV} \gamma$-ray indicates a small proton width for the ${ }^{15} \mathrm{~N}$ level; it is suggested that this level may account for the large (n, γ) cross section (1958RA13). According to (1955BA44, 1958HE48), however, the γ-spectra are quite different: see Tables 15.5 and 15.7 . A $1.88 \mathrm{MeV} \gamma$-ray is reported by (1954 TH 1 B), attributed to ${ }^{15} \mathrm{~N}^{*}(7.16 \rightarrow 5.2)$. A p- γ correlation experiment suggests that the 5.3 MeV radiation is dipole (1954ST1C). The relative intensities of the $7.31 \mathrm{MeV} \gamma$-ray and of the ${ }^{15} \mathrm{O}$ 6.81 MeV radiation have been determined at several energies by (1955BE1G). See (1956EL1B, 1956FR1A, 1957HA1E, 1957SH1B; theor.).
28. ${ }^{14} \mathrm{~N}(\mathrm{t}, \mathrm{pn}){ }^{15} \mathrm{~N} \quad Q_{\mathrm{m}}=2.357$

See (1952CU1B).
29. ${ }^{14} \mathrm{~N}\left(\alpha,{ }^{3} \mathrm{He}\right){ }^{15} \mathrm{~N}$
$Q_{\mathrm{m}}=-9.736$

Not reported.
30. ${ }^{15} \mathrm{~N}(\gamma, \mathrm{p}){ }^{14} \mathrm{C}$
$Q_{\mathrm{m}}=-10.214$

With bremsstrahlung of $E_{\max }=18.7$ and 24.6 MeV , photoprotons corresponding to the ground state and excited states of ${ }^{14} \mathrm{C}$ are observed. Peaks in the yield appear at $E_{\gamma}=11.6, \approx 15, \approx 18.6$ MeV , in addition to the giant resonance at $\approx 20 \mathrm{MeV}$. The first peak corresponds to excitation of ${ }^{15} \mathrm{~N}^{*}\left(J=\frac{1}{2}{ }^{+} ; T=\frac{3}{2}\right)$: the angular distribution is consistent with isotropic emission. At 15 MeV , the distribution indicates dipole absorption, while the giant resonance shows a predominantly $\sin ^{2} \theta$ distribution (1958RH1A, 1958RH30).
31. ${ }^{15} \mathrm{O}\left(\beta^{+}\right){ }^{15} \mathrm{~N}$

$$
Q_{\mathrm{m}}=2.759
$$

See ${ }^{15} \mathrm{O}$.
32. ${ }^{16} \mathrm{O}(\gamma, \mathrm{p}){ }^{15} \mathrm{~N}$

$$
Q_{\mathrm{m}}=-12.113
$$

Transitions have been observed to the 5.3 and 6.3 MeV levels of ${ }^{15} \mathrm{~N}$ (1955ST1D, 1957SV1A). See also ${ }^{16} \mathrm{O}$.
33. ${ }^{16} \mathrm{O}(\mathrm{n}, \mathrm{d}){ }^{15} \mathrm{~N}$
$Q_{\mathrm{m}}=-9.884$

See (1952LI24).
34. ${ }^{16} \mathrm{O}(\mathrm{p}, 2 \mathrm{p}){ }^{15} \mathrm{~N}$
$Q_{\mathrm{m}}=-12.113$

Table 15.9: ${ }^{15} \mathrm{~N}$ levels from ${ }^{14} \mathrm{~N}(\mathrm{~d}, \mathrm{p}){ }^{15} \mathrm{~N}$

$E_{\mathrm{x}}(\mathrm{MeV})$			$l_{\text {n }}$	$(2 J+1) \theta^{2} \mathrm{j}$	J^{π}
A	B	C			
0			$1^{\text {a }}$	0.097	$\frac{1}{2}^{-}, \frac{3}{2}^{-}, \frac{5}{2}$
5.276 ± 0.006	5.280 ± 0.010		$2^{\text {b }}$	0.03	$\leq \frac{7}{2}^{+}$
5.305 ± 0.006			$\mathrm{X}^{\mathrm{b}, \mathrm{c}}$		
6.328 ± 0.006	6.330 ± 0.010		$1{ }^{\text {d }}$	0.035	$\frac{1}{2}^{-}, \frac{3}{2}^{-}, \frac{5}{2}^{-}$
7.164 ± 0.006	7.165 ± 0.010		$2{ }^{\text {e }}$	0.32	$\leq \frac{7}{2}^{+}$
7.309 ± 0.006	7.314 ± 0.010	7.307 ± 0.008	$0{ }^{\text {e }}$	0.45	$\frac{1}{2}^{+}, \frac{3}{2}^{+}$
8.315 ± 0.006	7.575 ± 0.010	7.570 ± 0.008	$2^{\text {f }}$	0.41	$\leq \frac{7}{2}^{+}$
	8.316 ± 0.010	8.319 ± 0.008	$0{ }^{\text {d }}$	0.40	$\frac{1}{2}^{+}, \frac{3}{2}^{+}$
	8.571 ± 0.010	8.577 ± 0.008	$0+2^{\mathrm{g}}$	0.03	$\leq \frac{7}{2}^{+}$
	9.062 ± 0.010		$0{ }^{\text {h }}$		$\frac{1}{2}^{+}, \frac{3}{2}^{+}$
	9.165 ± 0.010		$\mathrm{X}^{\mathrm{c}, \mathrm{h}}$		
	9.834 ± 0.010				
	10.069 ± 0.010		$1{ }^{\text {e }}$	0.14	$\frac{1}{2}^{-}, \frac{3}{2}^{-}, \frac{5}{2}^{-}$
	10.458 ± 0.010		$\mathrm{X}^{\mathrm{c}, \mathrm{h}}$		
	10.544 ± 0.010		$\mathrm{X}^{\mathrm{c}, \mathrm{h}}$		
	10.705 ± 0.010		$\mathrm{X}^{\mathrm{c}, \mathrm{h}}$		
	10.811 ± 0.010		$\mathrm{X}^{\mathrm{c}, \mathrm{h}}$		
	11.2		$1{ }^{\text {i }}$	0.24	$\frac{1}{2}^{-}, \frac{3}{2}^{-}, \frac{5}{2}^{-}$

A: (1950MA65); $E_{\mathrm{d}}=1.4 \mathrm{MeV}, \theta=90^{\circ}$.
B: (1954SP01); $E_{\mathrm{d}}=5$ to $8.5 \mathrm{MeV}, \theta=90^{\circ}$. Accurate level separations are also given.
C: (1956DO41); E_{x} based on Q_{m}; Q's given by (1956DO41) are given to ± 1 or 1.5 keV .
${ }^{\text {a }}$ (1952GI01, 1957WA01).
${ }^{\text {b }}$ (1955SH28: see (1958WA1C)).
${ }^{\text {c }}$ Isotropic: no clear stripping pattern.
${ }^{\text {d }}$ (1952GI01, 1955SH28, 1956GR37, 1957WA01).
e (1955SH28, 1956GR37).
${ }^{\mathrm{f}}$ (1956GR37): (1957WA01) find a possible $l=0$ component.
${ }^{\mathrm{g}}$ (1955SH28, 1957WA01).
${ }^{\mathrm{h}}$ Sharp, Buechner and Sperduto, to be published.
${ }^{\mathrm{i}}$ (1956GR37).
${ }^{\text {j }}$ (1956GR37, 1957HA1E, 1957WA01).

Table 15.10: Gamma rays from ${ }^{14} \mathrm{~N}(\mathrm{~d}, \mathrm{p}){ }^{15} \mathrm{~N}^{\mathrm{a}}$

$E_{\gamma}(\mathrm{MeV})^{\mathrm{b}}$	Relative gamma intensity $^{\mathrm{c}}$
5.25 ± 0.04	47^{d}
6.33 ± 0.05	10
7.31 ± 0.04	33
8.321 ± 0.020	10
9.07 ± 0.04	3.0
10.03 ± 0.04	3.6
10.81 ± 0.04	0.8

$$
\begin{aligned}
& \mathrm{a}(1955 \mathrm{BE} 81,1958 \mathrm{RA} 13) . \\
& \mathrm{b} \text { Doppler corrected. } \\
& { }^{\mathrm{c}} \text { The ground state decay of a number of known levels } \\
& \text { of }{ }^{15} \mathrm{~N} \text { (see Table } 15.9 \text {) has not been observed; the } \\
& \text { upper limit to the relative gamma intensity is given } \\
& \text { in parenthesis following the energy of the level: } 7.17 \\
& (2.0), 7.58(1.4), 8.57(0.7), 9.17(1.5), 9.83(1.1), 10.46 \\
& (<0.4), 10.54(0.3) . \text { See also }{ }^{14} \mathrm{~N}(\mathrm{n}, \gamma)^{15} \mathrm{~N} \text {. } \\
& { }^{\mathrm{d}} \text { Includes some contribution from }{ }^{14} \mathrm{~N}(\mathrm{~d}, \mathrm{n})^{15} \mathrm{O}^{*} \text {. }
\end{aligned}
$$

At $E_{\mathrm{p}}=185 \mathrm{MeV}$, the summed proton spectrum shows two peaks, corresponding to ejection of $\mathrm{p}_{\frac{1}{2}}$ and $\mathrm{p}_{\frac{3}{2}}$ protons with binding energies of ≈ 12 and $\approx 19 \mathrm{MeV}$, respectively. The separation is consistent with the interpretation of ${ }^{15} \mathrm{~N}^{*}(6.3)$ as a state with a hole in the $\mathrm{p}_{\frac{3}{2}}$ shell (1958MA1B, 1958TY49).
35. ${ }^{16} \mathrm{O}\left(\mathrm{d},{ }^{3} \mathrm{He}\right){ }^{15} \mathrm{~N}$
$Q_{\mathrm{m}}=-6.619$

Not reported.
36. ${ }^{16} \mathrm{O}(\mathrm{t}, \alpha){ }^{15} \mathrm{~N}$

$$
Q_{\mathrm{m}}=7.700
$$

See (1956BA1E, 1956JA31, 1956MA09).
37. ${ }^{17} \mathrm{O}(\mathrm{d}, \alpha){ }^{15} \mathrm{~N}$

$$
\begin{aligned}
& Q_{\mathrm{m}}=9.812 \\
& Q_{0}=9.807 \pm 0.012 \text { (1954PA39). }
\end{aligned}
$$

38. ${ }^{18} \mathrm{O}(\mathrm{p}, \alpha){ }^{15} \mathrm{~N}$

$$
\begin{aligned}
& Q_{\mathrm{m}}=3.970 \\
& Q_{0}=3.961 \pm 0.009(1954 \mathrm{MI} 60)
\end{aligned}
$$

See (1952AJ38, 1955RI1A) and ${ }^{19} \mathrm{~F}$.

${ }^{15} \mathrm{O}$

(Fig. 30)

GENERAL:

Theory: See (1957TA1C, 1958FR1C).
Mass of ${ }^{15} \mathrm{O}$: The most precise determination of the mass difference ${ }^{15} \mathrm{O}-{ }^{15} \mathrm{~N}$ comes from ${ }^{15} \mathrm{~N}(\mathrm{p}, \mathrm{n}){ }^{15} \mathrm{O}$, where (1958JO28) find $E_{\text {thresh. }}=3.7808 \pm 0.0011 \mathrm{MeV}$: this value, with $\left(\mathrm{n}-{ }^{1} \mathrm{H}\right)=$ 0.783 MeV leads to ${ }^{15} \mathrm{O}-{ }^{15} \mathrm{~N}=2.7595$. Including the (p, n) value of (1955KI28) and the two ${ }^{15} \mathrm{O}\left(\beta^{+}\right){ }^{15} \mathrm{~N}$ values of (1957KI22), one obtains a weighted mean of ${ }^{15} \mathrm{O}-{ }^{15} \mathrm{~N}=2.7586 \pm 0.0012$, or ${ }^{15} \mathrm{O}$ (mass excess) $=7.287 \pm 0.005 \mathrm{MeV}, 54 \mathrm{keV}$ higher than the value of (1955WA1A).

$$
\text { 1. }{ }^{15} \mathrm{O}\left(\beta^{+}\right)^{15} \mathrm{~N} \quad Q_{\mathrm{m}}=2.759
$$

The maximum positon energy is $1.723 \pm 0.005 \mathrm{MeV}, 1.736 \pm 0.010 \mathrm{MeV}$; the mean of these and two values from ${ }^{15} \mathrm{~N}(\mathrm{p}, \mathrm{n}){ }^{15} \mathrm{O}$ is $1.733 \pm 0.005 \mathrm{MeV}$ (1957KI22); an earlier report by (1950BR29) appears to be in error. The half-life is $123.4 \pm 1.3 \mathrm{sec}$ (1954KL36), $121 \pm 3 \mathrm{sec}$ (1955BA83), $120 \pm 2 \sec (1957 \mathrm{KI} 22), 123.95 \pm 0.50 \mathrm{sec}$ (1957PE12): mean $=123.6 \pm 0.45 \mathrm{sec} . \log f t=3.64$. See also (1958BE1G; theor.).
2. ${ }^{7} \mathrm{Li}\left({ }^{14} \mathrm{~N},{ }^{6} \mathrm{He}\right){ }^{15} \mathrm{O}$
$Q_{\mathrm{m}}=-2.706$

See (1958AL1D).
3. (a) ${ }^{10} \mathrm{~B}\left({ }^{6} \mathrm{Li}, \mathrm{n}\right){ }^{15} \mathrm{O}$
$Q_{\mathrm{m}}=15.218$
(b) ${ }^{10} \mathrm{~B}\left({ }^{7} \mathrm{Li}, 2 \mathrm{n}\right){ }^{15} \mathrm{O}$
$Q_{\mathrm{m}}=7.965$

See (1957NO17).
4. (a) ${ }^{12} \mathrm{C}\left({ }^{3} \mathrm{He}, \mathrm{p}\right){ }^{14} \mathrm{~N}$

$$
Q_{\mathrm{m}}=4.772
$$

$$
E_{\mathrm{b}}=12.071
$$

(b) ${ }^{12} \mathrm{C}\left({ }^{3} \mathrm{He}, \mathrm{n}\right){ }^{14} \mathrm{O}$
$Q_{\mathrm{m}}=-1.159$
(c) ${ }^{12} \mathrm{C}\left({ }^{3} \mathrm{He}, \alpha\right){ }^{11} \mathrm{C}$
$Q_{\mathrm{m}}=1.856$
(d) ${ }^{12} \mathrm{C}\left({ }^{3} \mathrm{He}, \mathrm{d}\right){ }^{13} \mathrm{~N}$
$Q_{\mathrm{m}}=-3.553$

Table 15.11: Energy levels of ${ }^{15} \mathrm{O}$

$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})$	J^{π}	$\tau_{1 / 2}$ or $\Gamma(\mathrm{keV})$	Decay	Reactions
0	$\left(\frac{1}{2}\right)^{-}$	$\tau_{1 / 2}=123.6 \pm 0.45 \mathrm{sec}$	β^{+}	1,2, 3, 5, 12, 15, 18, 21
5.195 ± 10				7, 12, 21
$5.247 \pm 10\}$			γ	7,12, 21
6.15 ± 30	$\left(\leq \frac{5}{2}^{-}\right)$		γ	7, 12
$6.792 \pm 9\}$	$\frac{1}{2}^{+}, \frac{3}{2}^{+}$			7, 12
6.860 ± 9 \}	$\overline{2}, \overline{2}$		γ	7,12
7.560 ± 2	$\frac{1}{2}^{+}$	$\Gamma=1.5 \pm 0.5$	p, γ	7, 9, 12
8.291 ± 4	$\frac{3}{2}+$	3 ± 1	p, γ	7, 9, 12
8.747 ± 7	$\frac{1}{2}+$	32	p, γ	7,9
8.928 ± 5	$\left(\leq \frac{5}{2}\right)$	4 ± 1	p, γ	7,9
8.988 ± 6	$\frac{1}{2}^{-}, \frac{3}{2}^{-}$	4 ± 1	p, γ	7, 9, 12
9.47	$\frac{1}{2}$	510	p, γ	7, 9
9.497 ± 12		13 ± 4	p, γ	7,9
9.619 ± 12		10 ± 3	p, γ	7,9
9.666 ± 4		< 8	p	9
10.29 ± 80			p	9
10.47			p	9
10.949 ± 8	$\geq \frac{3}{2}$	77 ± 14	p	9
11.030 ± 10		<14	p	9
11.780 ± 20		75	p	9
11.846 ± 15		65	p, α	9, 11
12.3		broad	p, α	11
12.5		broad	p, α	11
13.04 ± 20	$\left(\frac{5}{2}^{-}\right)$		p, $\alpha,{ }^{3} \mathrm{He}$	4,11
13.1			p, ${ }^{3} \mathrm{He}$	4
13.79	$\left(>\frac{5}{2}\right)$		p, n, ${ }^{3} \mathrm{He}$	4
14.09	$\left(\frac{1}{2}^{+}\right)$		p, n, ${ }^{3} \mathrm{He}$	4
14.2			p, n, ${ }^{3} \mathrm{He}$	4
14.5			p, ${ }^{3} \mathrm{He}$	4
15.0			p, ${ }^{3} \mathrm{He}$	4
15.6			p, ${ }^{3} \mathrm{He}$	4
15.9			p, ${ }^{3} \mathrm{He}$	4

Table 15.12: Resonances in ${ }^{12} \mathrm{C}+{ }^{3} \mathrm{He}$

$E\left({ }^{3} \mathrm{He}\right)^{\mathrm{a}}$ (MeV)	Resonant for:	E_{x} (MeV)	J^{π}
1.21	$\mathrm{p}_{0}, \mathrm{p}_{2}$	13.04	$\left(\frac{5}{2}^{-}\right)$
1.3	$\mathrm{p}_{0}, \mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{3}$	13.1	
2.15	$\mathrm{p}_{0}, \mathrm{n}$	13.79	$\left(>\frac{5}{2}\right)$
2.52	$\mathrm{p}_{0}, \mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{3}, \mathrm{n}$	14.09	$\left(\frac{1}{2}^{+}\right)$
2.7	$\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{n}$	14.2	
3.0	$\mathrm{p}_{0}, \mathrm{p}_{1}, \mathrm{p}_{2}$	14.5	
3.6	$\mathrm{p}_{0}, \mathrm{p}_{1}, \mathrm{p}_{2}$	15.0	
4.4	$\mathrm{p}_{0}, \mathrm{p}_{1}, \mathrm{p}_{2}$	15.6	
4.8	$\mathrm{p}_{0}, \mathrm{p}_{1}, \mathrm{p}_{2}$	15.9	

${ }^{\text {a }}$ The first five resonances are primarily from (1957BR18), the last four are from (1958JO20).

Resonances in the yields of reactions (a) and (b) are displayed in Table 15.12 (1957BR18, 1958JO20). Differential cross sections and angular distributions have been determined to $E\left({ }^{3} \mathrm{He}\right)=$ 5 MeV for the $\mathrm{p}_{0}, \mathrm{p}_{1}$ and p_{2} groups. At low energies, the distributions tend to be symmetric; at the higher energies they become more complex; they seem to conform neither to compound nucleus or stripping theory, and it must be concluded that features of both processes are present (1957BR18, 1958JO20). Consideration of the relative yields of the first four resonances lead to the tentative J^{π} assignments given in the table (1957BR18). Neutron angular distributions have been determined in the range $E\left({ }^{3} \mathrm{He}\right)=1.89$ to 2.51 MeV : they are asymmetric at the higher energies. The ratio of the cross sections of the $\left({ }^{3} \mathrm{He}, \mathrm{n}\right)$ and $\left({ }^{3} \mathrm{He}, \mathrm{p}_{1}\right)$ reactions (both to the first $T=1$ states of the $A=14$ triad) has been determined at a number of energies for $E\left({ }^{3} \mathrm{He}\right)=1.8$ to 2.6 MeV . The ratio approaches the theoretically predicted value of 2 at the higher energies. The ratio of the $\left({ }^{3} \mathrm{He}, \alpha_{0}\right)$ to the $\left({ }^{3} \mathrm{He}, \mathrm{n}_{0}\right)$ cross sections has been determined at two energies; the large cross section for the former suggests a direct interaction (1957BR18). The yields of ${ }^{11} \mathrm{C}$ and ${ }^{13} \mathrm{~N}$ have been determined for $E\left({ }^{3} \mathrm{He}\right)=13$ to 21 MeV by (1958CO1G). See also ${ }^{11} \mathrm{C},{ }^{14} \mathrm{~N}$ and ${ }^{14} \mathrm{O}$.

$$
\text { 5. }{ }^{12} \mathrm{C}(\alpha, \mathrm{n})^{15} \mathrm{O} \quad Q_{\mathrm{m}}=-8.507
$$

See (1939KI1A, 1957KI22).
6. ${ }^{13} \mathrm{C}\left({ }^{3} \mathrm{He}, \mathrm{n}\right){ }^{15} \mathrm{O}$

$$
Q_{\mathrm{m}}=7.126
$$

Table 15.13: Resonances from ${ }^{14} \mathrm{~N}(\mathrm{p}, \gamma)^{15} \mathrm{O}$ (1951DU08)

$E_{\mathrm{p}}{ }^{\mathrm{e}}$ (keV)	Γ^{e} (keV)	$\omega \Gamma_{\gamma}{ }^{\mathrm{e}}$ (eV)	J^{π}	${ }^{15} \mathrm{O}^{* \mathrm{e}}$ (MeV)
277	$1.9 \pm 0.5^{\mathrm{c}}$	0.013^{b}	$\left(\frac{5}{2}\right)^{\mathrm{b}},\left(\frac{1^{+}}{}{ }^{+}\right)^{\mathrm{c}}$	7.559
1064 ± 2	4.8 ± 1	0.63	$\frac{3}{2}^{\mathrm{d}}$	8.293
1550 ± 20	50 ± 20	0.16	$\frac{1}{2}^{+\mathrm{a}}$	8.747
1748 ± 5	11 ± 3	0.21		8.931
1815 ± 4	7 ± 1.5	0.52		8.994
2356 ± 8	14 ± 4	2.4		9.499
2489 ± 7	11 ± 3	3.3		9.623
$2600 \pm 50^{\mathrm{f}}$	1270 ± 50	46	$\left(\frac{1}{2}^{+}, \frac{3}{2}^{+}\right)$	9.73

${ }^{\text {a }}$ From ${ }^{14} \mathrm{~N}(\mathrm{p}, \mathrm{p})^{14} \mathrm{~N}$.
${ }^{\mathrm{b}}(1955 \mathrm{BA} 83)$.
${ }^{\mathrm{c}}(1956 \mathrm{OV} 1 \mathrm{~A}, 1957$ PIZZ $)$.
${ }^{\text {d }}(1957 \mathrm{GA} 1 \mathrm{~B}, 1957 \mathrm{GO} 1 \mathrm{E}, 1957 \mathrm{GO} 1 \mathrm{H})$.
e See also Table $15.14\left({ }^{14} \mathrm{~N}(\mathrm{p}, \mathrm{p})^{14} \mathrm{~N}\right)$.
${ }^{\mathrm{f}}$ Presumably to be identified with ${ }^{15} \mathrm{O}^{*}(9.465)$, see Table 15.14 (1959FE1E).

Not reported.
7. ${ }^{14} \mathrm{~N}(\mathrm{p}, \gamma){ }^{15} \mathrm{O} \quad Q_{\mathrm{m}}=7.300$

Observed resonances are listed in Table 15.13 (1951DU08, 1955BA83, 1956OV1A, 1957PIZZ). The cross section increases from $(8.5 \pm 3.7) \times 10^{-12} \mathrm{~b}$ at 100 keV to $(140 \pm 30) \times 10^{-12} \mathrm{~b}$ at 135 keV (1957LA13). Extrapolation of the 278 keV resonant yield and s-wave background from the broad 2600 keV resonance yields cross section values in good agreement with those of (1957LA13). Judging from ${ }^{15} \mathrm{~N}$, one level near 7 MeV in ${ }^{15} \mathrm{O}$ remains undiscovered (1957PIZZ); see ${ }^{14} \mathrm{~N}(\mathrm{p}$, p) ${ }^{14} \mathrm{~N}$.

At the 277 keV resonance ($E_{\mathrm{x}}=7.56 \mathrm{MeV}$), capture gamma rays resulting from cascades through ${ }^{15} \mathrm{O}$ states at $5.2,6.1$ and 6.7 MeV are observed, with partial radiative widths of 0.003 $\mathrm{eV}, 0.008 \mathrm{eV}$ and 0.002 eV , respectively $(\pm 25 \%)$. The direct ground state transition has not been observed: the relative intensity is less than 5% of the 6.10 MeV line (1955BA83: see also (1952JO1C)). Asymmetry ($7 \pm 3 \%$) in the ratio of 6.1 and $5.2 \mathrm{MeV} \gamma$-rays indicates that the 7.56 MeV state is not formed by s-waves. It is suggested that $J=\frac{5}{2}$ (1955BA83). (1956OV1A, 1957PIZZ) find, on the other hand, that the 0.75 and $1.35 \mathrm{MeV} \gamma$-rays are isotropic and conclude
that $J=\frac{1}{2}{ }^{+}:$see ${ }^{14} \mathrm{~N}(\mathrm{p}, \mathrm{p})^{14} \mathrm{~N}$. The transition $(7.56 \rightarrow 5.2)$ appears to involve ${ }^{15} \mathrm{O} *(5.20)$ and not ${ }^{15} \mathrm{O} *(5.25)$ (B. Povh and D. Hebbard, private communication). (It is not clear why the ground state decay (E1) should not occur.) The structure formerly attributed to a broad resonance at $E_{\mathrm{p}}=0.7$ MeV (1951DU08) is probably due to direct capture (see (1957HA03)). At the 1.06 MeV resonance $\left(E_{\mathrm{x}}=8.28 \mathrm{MeV}\right)$, transitions are observed through the 5.2 and $6.8-6.9 \mathrm{MeV}$ states in addition to the direct ground state transition (1953LI1D). A p- γ correlation study indicates $J=\frac{3}{2}$ for the 8.28 MeV state (1957GA1B, 1957GO1E, 1957GO1H, 1958GO46, 1958GO68).
8. ${ }^{14} \mathrm{~N}(\mathrm{p}, \mathrm{n}){ }^{14} \mathrm{O}$
$Q_{\mathrm{m}}=-5.930$
$E_{\mathrm{b}}=7.300$

See (1958TA03) and ${ }^{14} \mathrm{O}$.
9. (a) ${ }^{14} \mathrm{~N}(\mathrm{p}, \mathrm{p})^{14} \mathrm{~N}$

$$
E_{\mathrm{b}}=7.300
$$

(b) ${ }^{14} \mathrm{~N}\left(\mathrm{p}, \mathrm{p}^{\prime}\right)^{14} \mathrm{~N}^{*}$

The yield of elastic protons, of inelastic protons and of $2.3 \mathrm{MeV} \gamma$-rays has been examined to $E_{\mathrm{p}}=5.2 \mathrm{MeV}$: see Table 15.14. The scattering anomalies are superposed on a background which decreases less rapidly than the Rutherford cross section; for $E_{\mathrm{p}}<2.3 \mathrm{MeV}$, the background is largely s-wave, with some p-wave contribution above $E_{\mathrm{p}}=1.5 \mathrm{MeV}$ (see (1956BA1H, 1956TA16, 1957BO58, 1957HA03, 1958FE05, 1959FE71)). (1959FE1E) finds that two s-wave and one pwave phase shifts are required to fit the non-resonant angular distributions above $E_{\mathrm{p}}=1 \mathrm{MeV}$.

Data taken near the 277 keV resonance, ${ }^{15} \mathrm{O}^{*}=7.56 \mathrm{MeV}$, at three angles, are consistent only with s-wave formation. The magnitude of the anomaly indicates $J=\frac{1}{2}^{+}, \Gamma=1.5 \mathrm{keV}$ (1956OV1A, 1957PIZZ). The 1054 keV resonance, ${ }^{15} \mathrm{O}^{*}=8.28 \mathrm{MeV}$, is also formed by s-waves, but the anomaly indicates $J=\frac{3}{2}^{+}$(1957HA03: see, however, (1956TA16)). Calculation of level shifts suggests identification of these two states with ${ }^{15} \mathrm{~N}^{*}(8.32,8.57)$. The mirror of ${ }^{15} \mathrm{O}^{*}(6.79)$ is probably ${ }^{15} \mathrm{~N}^{*}(7.31) ;{ }^{15} \mathrm{O}^{*}(6.86)$ may correspond either to ${ }^{15} \mathrm{~N}^{*}(7.16)$ or ${ }^{15} \mathrm{~N}^{*}(7.57)$. In either case, one ${ }^{15} \mathrm{O}$ level remains to be discovered in this region (1957PIZZ: see also (1957HA03)). The 1544 keV resonance is again s-wave, $J=\frac{1}{2}^{+}$. Assignments for the $E_{\mathrm{p}}=1737$ and 1799 keV resonances are not certain (1957HA03). The broad resonance at $E_{\mathrm{p}}=2.3 \mathrm{MeV},{ }^{15} \mathrm{O}^{*}(9.465)$, is s-wave, $J=\frac{1}{2}^{+}(1958 \mathrm{FE} 05,1959 \mathrm{FE} 1 \mathrm{E})$. It is suggested that the apparent breadth of this level reported in ${ }^{14} \mathrm{~N}(\mathrm{p}, \gamma)$ may reflect some contribution from direct capture (1959FE1E).

Elastic scattering has also been studied at $E_{\mathrm{p}}=9.8 \mathrm{MeV}$ (1957HI56), at 14.5, 20 and 31.5 MeV (1956KI54) and at 20.0 MeV (1957CH32). See also (1957JA1B) and ${ }^{14} \mathrm{~N}$.
10. ${ }^{14} \mathrm{~N}(\mathrm{p}, \mathrm{d}){ }^{13} \mathrm{~N}$
$Q_{\mathrm{m}}=-8.324$
$E_{\mathrm{b}}=7.300$
See ${ }^{13} N$ and ${ }^{14} N$.

Table 15.14: Anomalies in ${ }^{14} \mathrm{~N}(\mathrm{p}, \mathrm{p}){ }^{14} \mathrm{~N}$ and $\left.{ }^{14} \mathrm{~N}(\mathrm{p}, \mathrm{p} \gamma)\right)^{14} \mathrm{~N}$

$\begin{gathered} E_{\mathrm{p}} \\ (\mathrm{keV}) \end{gathered}$	$\begin{gathered} \Gamma \\ (\mathrm{keV}) \end{gathered}$	$\omega \Gamma_{\gamma}{ }^{\mathrm{e}}$ (eV)	$\begin{aligned} & \hline \theta_{\mathrm{p}}^{2} \mathrm{e} \\ & (\%) \\ & \hline \end{aligned}$	J^{π}	$\begin{gathered} E_{\mathrm{x}} \\ (\mathrm{MeV}) \end{gathered}$	References
278.1 ± 0.4	1.5 ± 0.5			$\frac{1}{2}$	7.560	a
1058 ± 3	3 ± 1	0.40	$0.29{ }^{\text {b }}$	$\frac{3}{2}+$	8.288	e, g, h
1550 ± 6	34	0.11	$1.6{ }^{\text {b }}$	$\frac{1}{2}+$	8.747	e, f, g, h
1740 ± 4	4 ± 1	0.076	$0.13{ }^{\text {b }}$	$\left(\leq \frac{5}{2}\right)$	8.924	e, f, g, h
			$1.7{ }^{\text {c }}$			
1801 ± 5	4 ± 1	0.30	$0.28{ }^{\text {d }}$	$\left(\frac{1}{2}^{-}, \frac{3}{2}^{-}\right)$	8.981	e, f, g, h
2320	550			$\frac{1}{2}^{+}$	9.465	
2350 ± 10					9.494	
2480 ± 10					9.614	f, g
2535 ± 3	<8				9.666	j
3200 ± 10					10.29	
3400 ± 10					10.47	
3910 ± 8	82 ± 15			$\geq \frac{3}{2}$	10.949	j, 1, m, n
4000 ± 8	<15				11.033	j, 1, m
4800 ± 20	80				11.780	1
4890 ± 10	70				11.864	1, m

```
\({ }^{a}\) (1956OV1A, 1957PIZZ).
\({ }^{\mathrm{b}}\) Assuming s-waves.
\({ }^{\mathrm{c}}\) Assuming d-waves.
\({ }^{\mathrm{d}}\) Assuming p-waves.
\({ }^{e}\) (1957HA03).
f (1957BO58).
g (1956FE1D, 1959FE71).
h (1956TA16).
\({ }^{\text {i }}\) (1958FE05, 1959FE1E, 1959FE71).
j (1957OL1A).
k (1956BA1H).
\({ }^{1}\) (1956BA34): \({ }^{14} \mathrm{~N}\left(\mathrm{p}, \mathrm{p}^{\prime} \gamma\right)^{14} \mathrm{~N}\).
\({ }^{m}\) (1955TH1A).
\({ }^{n}\) (1958DO60).
```

Table 15.15: ${ }^{15} \mathrm{O}$ levels from ${ }^{14} \mathrm{~N}(\mathrm{~d}, \mathrm{n}){ }^{15} \mathrm{O}$

${ }^{15} \mathrm{O} *(\mathrm{MeV})$	l_{p}	J^{π}
0	$1{ }^{\text {b }}$	$\leq \frac{5}{2}^{-}$
$5.29 \pm 0.17^{\text {a }}$	2	$\left(\leq \frac{7}{2}^{+}\right)$
$6.15 \pm 0.03^{\text {c }}$	1	$\left(\leq 5^{-}\right)$
$\left.\begin{array}{l} 6.792 \pm 0.009^{c} \\ 6.860 \pm 0.009 \end{array}\right\}$	0	$\frac{1}{2}^{+}, \frac{3}{2}^{+}$
$7.48 \pm 0.16^{\text {a }}$	1	$\left(\leq \frac{5}{2}^{-}\right)$
$8.42 \pm 0.16^{\text {a }}$	1	$\left(\leq \frac{5}{2}^{-}\right)$
$9.06 \pm 0.16^{\text {a }}$	1	$\left(\leq \frac{5}{2}^{-}\right)$
${ }^{\text {a }}$ (1953EV03): $E_{\mathrm{d}}=7.7 \mathrm{MeV}$.		
$\begin{aligned} & \mathrm{b} \quad(1953 \mathrm{EV} 03) \text { an } \\ & \left.E_{\mathrm{d}}=1.9 \mathrm{MeV}\right) . \end{aligned}$		1957NO

${ }^{\text {c }}$ From slow neutron thresholds (1955MA85).
11. ${ }^{14} \mathrm{~N}(\mathrm{p}, \alpha){ }^{11} \mathrm{C}$
$Q_{\mathrm{m}}=-2.916$
$E_{\mathrm{b}}=7.300$

Broad resonances in the yield of ${ }^{11} \mathrm{C}$ are observed at $E_{\mathrm{p}}=4.94,5.3,5.6$ and 6.15 MeV , corresponding to ${ }^{15} \mathrm{O}^{*}(11.91,12.3,12.5,13.04)$ (1952BL64: stacked foil method).

$$
12 .{ }^{14} \mathrm{~N}(\mathrm{~d}, \mathrm{n})^{15} \mathrm{O} \quad \begin{array}{ll}
& Q_{\mathrm{m}}=5.073 \\
& Q_{0}=5.15 \pm 0.16(1953 \mathrm{EV} 03) . \\
& Q_{0}=5.13 \pm 0.05(1957 \mathrm{NO} 1 \mathrm{C}) .
\end{array}
$$

Neutron groups are listed in Table 15.15, together with J^{π} assignments obtained from stripping analysis of the angular distributions. Except for the ground state and the level(s) at 6.8 MeV , the fits to the theoretical distributions are not completely satisfactory, and the assignments must be treated with some reserve (1953EV03). See also (1956NO04, 1957NO1C). At $E_{\mathrm{d}}=9 \mathrm{MeV}$, the ratio of the ground state reduced widths of ${ }^{15} \mathrm{~N}$ and ${ }^{15} \mathrm{O}$ (from the maximum cross sections of the (d, p) and (d, n) reactions) is 1.71 (1956CA1D). Neutron thresholds have been observed at $E_{\mathrm{d}}=1.24 \pm 0.02,1.967 \pm 0.004$ and $2.044 \pm 0.004 \mathrm{MeV}$, corresponding to ${ }^{15} \mathrm{O} *(6.15 \pm 0.03$, $6.792 \pm 0.009,6.860 \pm 0.009$) (1955MA85).

At $E_{\mathrm{d}}=4.0 \mathrm{MeV}$, γ-radiation has been observed with $E_{\gamma}=6.81 \pm 0.04,6.12 \pm 0.06$ and $5.26 \pm 0.04 \mathrm{MeV}$ (the latter probably includes $\left.{ }^{14} \mathrm{~N}(\mathrm{~d}, \mathrm{p}){ }^{15} \mathrm{~N}\right)(1955 \mathrm{BE} 81$: corrected for Doppler
shift). Relative cross sections for the ${ }^{14} \mathrm{~N}(\mathrm{~d}, \mathrm{p}){ }^{15} \mathrm{~N}^{*}(7.31)$ and ${ }^{14} \mathrm{~N}(\mathrm{~d}, \mathrm{n})^{15} \mathrm{O}^{*}(6.81) \gamma$-rays are given by (1955BE1G) for three energies. See also (1956FR1A; theor.) and ${ }^{16}$ O.
13. ${ }^{14} \mathrm{~N}\left({ }^{3} \mathrm{He}, \mathrm{d}\right){ }^{15} \mathrm{O} \quad Q_{\mathrm{m}}=1.806$

Not reported.
14. ${ }^{14} \mathrm{~N}(\alpha, \mathrm{t}){ }^{15} \mathrm{O}$
$Q_{\mathrm{m}}=-12.513$

Not reported.
15. ${ }^{15} \mathrm{~N}(\mathrm{p}, \mathrm{n}){ }^{15} \mathrm{O}$

$$
\begin{aligned}
& Q_{\mathrm{m}}=-3.542 \\
& E_{\text {thresh. }}=3.776 \pm 0.008 \\
& Q_{0}=-3.539 \pm 0.008(1955 \mathrm{KI} 28) \\
& E_{\text {thresh. }}=3.7808 \pm 0.0011 \\
& {\left[Q_{0}=-3.5425 \pm 0.0011\right] \text { (1958JO28). }}
\end{aligned}
$$

16. ${ }^{15} \mathrm{~N}\left({ }^{3} \mathrm{He}, \mathrm{t}\right){ }^{15} \mathrm{O} \quad Q_{\mathrm{m}}=-2.777$

Not reported.
17. ${ }^{16} \mathrm{O}(\gamma, \mathrm{n}){ }^{15} \mathrm{O} \quad Q_{\mathrm{m}}=-15.655$

See (1957SV1A).
18. ${ }^{16} \mathrm{O}(\mathrm{n}, 2 \mathrm{n}){ }^{15} \mathrm{O}$
$Q_{\mathrm{m}}=-15.655$

See (1955AJ61).
19. ${ }^{16} \mathrm{O}(\mathrm{p}, \mathrm{d}){ }^{15} \mathrm{O}$
$Q_{\mathrm{m}}=-13.428$

Not reported.
20. ${ }^{16} \mathrm{O}(\mathrm{d}, \mathrm{t}){ }^{15} \mathrm{O} \quad Q_{\mathrm{m}}=-9.396$

Not reported.
21. ${ }^{16} \mathrm{O}\left({ }^{3} \mathrm{He}, \alpha\right){ }^{15} \mathrm{O}$

$$
Q_{\mathrm{m}}=4.923
$$

At $E\left({ }^{3} \mathrm{He}\right)=3 \mathrm{MeV}$, α-groups are observed corresponding to levels at $E_{\mathrm{x}}=5.195 \pm 0.01$ and $5.247 \pm 0.01 \mathrm{MeV}$. The separation is $52 \pm 5 \mathrm{keV}$ (1959PO61). From a similar experiment, excitations of 5.185 and 5.244 MeV are reported (K.W. Allen, R. Middleton and S. Hinds, private communication). See also (1952PO27, 1953KU08).
22. ${ }^{17} \mathrm{O}(\mathrm{p}, \mathrm{t}){ }^{15} \mathrm{O}$
$Q_{\mathrm{m}}=-11.316$

Not reported.
${ }^{15} \mathbf{F}$
(Not illustrated)

Mass of ${ }^{15} \mathrm{~F}$: Calculation of Coulomb and ($\mathrm{n}-{ }^{1} \mathrm{H}$) mass differences from ${ }^{15} \mathrm{C}$ indicates that ${ }^{15} \mathrm{~F}$ should be unstable to proton emission by 2.3 MeV (1957MU99): the mass excess of ${ }^{15} \mathrm{~F}$ is 22.0 ± 1 MeV .

References

(Closed 01 December 1958)

References are arranged and designated by the year of publication followed by the first two letters of the firstmentioned author's name and then by two additional characters. Most of the references appear in the National Nuclear Data Center files (Nuclear Science References Database) and have NNDC key numbers. Otherwise, TUNL key numbers were assigned with the last two characters of the form $1 \mathrm{~A}, 1 \mathrm{~B}$, etc. In response to many requests for more informative citations, we have, when possible, included up to ten authors per paper and added the authors' initials.

1939KI1A L.D.P. King, W.J. Henderson and J.R. Risser, Phys. Rev. 55 (1939) 1118; 41
1941BE1A Bennett et al., Phys. Rev. 59 (1941) 781
1949ME51 E. Melkonian, Phys. Rev. 76 (1949) 1750
1950BA1C Baldinger, Huber, Ricamo and Zunti, Helv. Phys. Acta 23 (1950) 503
1950BR29 H. Brown and V. Perez-Mendez, Phys. Rev. 78 (1950) 649
1950CU13 C.D. Curling and J.O. Newton, Nature 165 (1950) 609
1950 HO80 W.F. Hornyak, T. Lauritsen, P. Morrison and W.A. Fowler, Rev. Mod. Phys. 22 (1950) 291

1950HU72 E.L. Hudspeth, C.P. Swann and N.P. Heydenburg, Phys. Rev. 80 (1950) 643
1950 JO57 C.H. Johnson and H.H. Barschall, Phys. Rev. 80 (1950) 818
1950MA65 R. Malm and W.W. Buechner, Phys. Rev. 80 (1950) 771
1950 RI57 J.E. Richardson, Phys. Rev. 80 (1950) 850
1951BU1D Bullock, McMinn, Rasmussen and Sampson, Phys. Rev. 83 (1951) 212A
1951BU1E M.L. Bullock and M.B. Sampson, Phys. Rev. 84 (1951) 967
1951DU08 D.B. Duncan and J.E. Perry, Phys. Rev. 82 (1951) 809
1951 JO23 C.H. Johnson, B. Petree and R.K. Adair, Phys. Rev. 84 (1951) 775
1951PO1A M.L. Pool, D.N. Kundu, P.E. Weiler and T.W. Donaven, Phys. Rev. 82 (1951) 305, DA12

1951 RO16 W.D. Roseborough, J.J.G. McCue, W.M. Preston and C. Goodman, Phys. Rev. 83 (1951) 1133

1951YA1A Yaffe and Stevens, Can. J. Phys. 29 (1951) 186; Phys. Rev. 79 (1950) 893
1952AJ38 F. Ajzenberg and T. Lauritsen, Rev. Mod. Phys. 24 (1952) 321
1952BL64 J.P. Blaser, P. Marmier and M. Sempert, Helv. Phys. Acta 25 (1952) 442
1952CU1B Cuer and Magnac-Valette, Compt. Rend. 234 (1952) 1049
1952 GI01 W.M. Gibson and E.E. Thomas, Proc. Roy. Soc. A210 (1952) 543
1952HI12 J.J. Hinchey, P.H. Stelson and W.M. Preston, Phys. Rev. 86 (1952) 483

1952JO1C C.H. Johnson, G.P. Robinson and C.D. Moak, Phys. Rev. 85 (1952) 931
1952 LI24 A.B. Lillie, Phys. Rev. 87 (1952) 716
1952PO27 M.L. Pool, Physica 18 (1952) 1304
$1953 E V 03$ W.H. Evans, T.S. Green and R. Middleton, Proc. Phys. Soc. (London) A66 (1953) 108
1953FI28 E.L. Fireman, Phys. Rev. 91 (1953) 922
1953GI1B V. Gierke, Z. Naturforsch. A8 (1953) 567
1953KA1A Kay, Mark and Goodman, Phys. Rev. 112 (1958) 503
1953 KO42 B. Koudijs, F.P.G. Valckx and P.M. Endt, Physica 19 (1953) 1133
1953KU08 D.N. Kundu, T.W. Donaven, M.L. Pool and J.K. Long, Phys. Rev. 89 (1953) 1200
1953LI1D Li, Phys. Rev. 92 (1953) 1084
1953ME1B Meier, Ricamo, Scherrer and Zunti, Helv. Phys. Acta 26 (1953) 451
1954BA1C G.A. Bartholomew, F. Brown, H.E. Gove, A.E. Litherland and E.B. Paul, Phys. Rev. 96 (1954) 1154

1954BE08 W.E. Bennett, P.A. Roys and B.J. Toppel, Phys. Rev. 93 (1954) 924, K4
1954 EB02 F.S. Eby, Phys. Rev. 96 (1954) 1355
1954HU1B Huber and Striebel, Helv. Phys. Acta 27 (1954) 157
1954JO1F Jongerius, Valckx and Endt, Physica 20 (1954) 29
1954 KL36 R.M. Kline and D.J. Zaffarano, Phys. Rev. 96 (1954) 1620
1954MI60 C. Mileikowsky, Ark. Fys. 7 (1954) 89
1954 PA39 R. Pauli, K. Ahnlund and C. Mileikowsky, Ark. Fys. 8 (1954) 213
1954 SP01 A. Sperduto, W.W. Buechner, C.K. Bockelman and C.P. Browne, Phys. Rev. 96 (1954) 1316

1954SP1B K.R. Spearman, E.L. Hudspeth and I.L. Morgan, Phys. Rev. 94 (1954) 806
1954SP1C Speiser and Fierz, Helv. Phys. Acta 27 (1954) 159
1954SP1D Speiser, Helv. Phys. Acta 27 (1954) 427
1954ST1C A.G. Stanley, Phil. Mag. 45 (1954) 807
1954TH1B L.C. Thompson, Phys. Rev. 96 (1954) 369
1954 TR09 R.E. Trumble Jr., Phys. Rev. 94 (1954) 748A
1955AJ61 F. Ajzenberg and T. Lauritsen, Rev. Mod. Phys. 27 (1955) 77
1955BA44 G.A. Bartholomew, F. Brown, H.E. Gove, A.E. Litherland and E.B. Paul, Can. J. Phys. 33 (1955) 441

1955BA83 S. Bashkin, R.R. Carlson and E.B. Nelson, Phys. Rev. 99 (1955) 107
1955BE1G R.D. Bent, T.W. Bonner, J.H. McCrary and W.A. Ranken, Phys. Rev. 100 (1955) 771

1955BE81 R.D. Bent, T.W. Bonner, J.H. McCrary, W.A. Ranken and R.F. Sippel, Phys. Rev. 99 (1955) 710

1955 FO27 J.L. Fowler and C.H. Johnson, Phys. Rev. 98 (1955) 728
1955HU1B Hughes and Harvey, BNL-325 (1955)
1955KI28 J.D. Kington, J.K. Bair, H.O. Cohn and H.B. Willard, Phys. Rev. 99 (1955) 1393
1955MA76 J.B. Marion, T.W. Bonner and C.F. Cook, Phys. Rev. 100 (1955) 847.
1955MA85 J.B. Marion, R.M. Brugger and T.W. Bonner, Phys. Rev. 100 (1955) 46
1955RI1A Riviere and Treacy, Aust. J. Phys. 8 (1955) 408
1955 SH28 R.D. Sharp, A. Sperduto and W.W. Buechner, Phys. Rev. 99 (1955) 632A
1955 SH46 E.S. Shire and R.D. Edge, Phil. Mag. 46 (1955) 640
1955SM1B Smith and Aten, J. Inorg. Nucl. Chem. 1 (1955) 296
1955ST1D W.E. Stephens, A.K. Mann, B.J. Patton and E.J. Winhold, Phys. Rev. 98 (1955) 839
1955TH1A Thirion and Barloutaud, Compt. Rend. 240 (1955) 2136
1955WA1A Wapstra, Physica 21 (1955) 367
1956BA16 G.A. Bartholomew, A.E. Litherland, E.B. Paul and H.E. Gove, Can. J. Phys. 34 (1956) 147

1956BA1E Barjon, Magnac-Valette and Schmouker, Compt. Rend. 242 (1956) 896
1956BA1H Bashkin, Carlson and Jacobs, Bull. Amer. Phys. Soc. 1 (1956) 212; Physica 22 (1956) 1124A

1956BA34 J.K. Bair, H.O. Cohn, J.D. Kington and H.B. Willard, Phys. Rev. 104 (1956) 1595
1956 BE98 R.L. Becker and H.H. Barschall, Phys. Rev. 102 (1956) 1384
1956BO1L Bostrom, Hudspeth and Morgan, Bull. Amer. Phys. Soc. 1 (1956) 94
1956 BO61 T.W. Bonner, A.A. Kraus Jr., J.B. Marion and J.P. Schiffer, Phys. Rev. 102 (1956) 1348
1956CA1D Calvert, Jaffe and Maslin, Phys. Rev. 101 (1956) 501
1956 DO37 R.A. Douglas, B.R. Gasten and A. Mukerji, Can. J. Phys. 34 (1956) 1097
1956DO41 R.A. Douglas, J.W. Broer, R. Chiba, D.F. Herring and E.A. Silverstein, Phys. Rev. 104 (1956) 1059

1956EL1B Elliott, Phil. Mag. 1 (1956) 503
1956FE1C Ferguson and Gove, Bull. Amer. Phys. Soc. 1 (1956) 180
1956FE1D Ferguson, Clarke, Gove and Sample, PD-261 (1956)
1956FL1B Flerov and Talyzin, Sov. J. Nucl. Energy 4 (1956) 617
1956FR18 G.M. Frye Jr. and J.H. Gammel, Phys. Rev. 103 (1956) 328

1956FR1A J.B. French, Phys. Rev. 103 (1956) 1391
1956GR37 T.S. Green and R. Middleton, Proc. Phys. Soc. (London) A69 (1956) 28
1956JA31 N. Jarmie, Phys. Rev. 104 (1956) 1683
1956KA1C Kassecker and Urban, Acta Phys. Aust. 10 (1956) 95
1956 KI54 B.B. Kinsey and T. Stone, Phys. Rev. 103 (1956) 975
1956 KO26 B. Koudijs, Ph.D. Thesis, Univ. of Utrecht (1956)
1956MA09 D. Magnac-Valette, Compt. Rend. 242 (1956) 760
1956MA35 J.B. Marion and G. Weber, Phys. Rev. 102 (1956) 1355; Erratum Phys. Rev. 103 (1956) 1906

1956MA46 J.B. Marion and G. Weber, Phys. Rev. 103 (1956) 167
1956 NO04 I. Nonaka, S. Morita, N. Kawai, T. Ishimatsu, S. Suematsu, K. Takeshita, Y. Nakajima and Y. Wakuta, J. Phys. Soc. Jpn. 11 (1956) 1
19560V1A Overley, Pixley and Whaling, Bull. Amer. Phys. Soc. 1 (1956) 387
1956SA06 R.M. Sanders, Phys. Rev. 104 (1956) 1434
1956 SC01 J.P. Schiffer, T.W. Bonner, R.H. Davis and F.W. Prosser Jr., Phys. Rev. 104 (1956) 1064

1956 TA16 G.W. Tautfest and S. Rubin, Phys. Rev. 103 (1956) 196
1956 VA17 F.P.G. Valckx, Ph.D. Thesis, Univ. of Utrecht (1956)
1957BA18 G.A. Bartholomew and P.J. Campion, Can. J. Phys. 35 (1957) 1347
1957 BE71 A.A. Bergman, A.I. Isakov, I.P. Popov and F.L. Shapiro, Zh. Eksp. Teor. Fiz. 33 (1957) 9; JETP (Sov. Phys.) 6 (1958) 6
1957 BO58 C.R. Bolmgren, G.D. Freier, J.G. Likely and K.F. Famularo, Phys. Rev. 105 (1957) 210

1957BR18 D.A. Bromley, E. Almqvist, H.E. Gove, A.E. Litherland, E.B. Paul and A.J. Ferguson, Phys. Rev. 105 (1957) 957

1957BU52 S.T. Butler, Phys. Rev. 106 (1957) 272
1957 CA07 R.R. Carlson, Phys. Rev. 107 (1957) 1094
1957CH32 R.H. Chow and B.T. Wright, Can. J. Phys. 35 (1957) 184
1957FE1A Feingold, Bull. Amer. Phys. Soc. 2 (1957) 392
1957GA1B Gallmann, Ph.D. Thesis, Univ. of Strasbourg (1957)
1957GO1E S. Gorodetzky, A. Gallmann, M. Croissiaux and R. Armbruster, Nucl. Phys. 4 (1957) 112

1957GO1H Gorodetzky, Gallmann, Croissiaux and Armbruster, Compt. Rend. 244 (1957) 1759

1957HA03 F.B. Hagedorn, F.S. Mozer, T.S. Webb, W.A. Fowler and C.C. Lauritsen, Phys. Rev. 105 (1957) 219
1957HA1E Halbert and French, Phys. Rev. 105 (1957) 1563
1957HE1C Hebbard, Ph.D.Thesis, Univ. of Melbourne (1957)
1957HI56 N.M. Hintz, Phys. Rev. 106 (1957) 1201
1957HO63 H.D. Holmgren, Phys. Rev. 106 (1957) 100
1957HU1D Hughes and Schwartz, BNL-325, Suppl. 1 (1957)
1957HU1E Hunting and Wall, Bull. Amer. Phys. Soc. 2 (1957) 181
1957 IL01 E.G. Illsley, H.D. Holmgren, R.L. Johnston and E.A. Wolicki, Phys. Rev. 107 (1957) 538
1957JA1B Jannelli and Mezzanares, Nuovo Cim. 5 (1957) 1047
1957JA37 N. Jarmie, J.D. Seagrave et al., LA-2014 (1957)
1957JO1B Johnston, Holmgren and Wolicki, Bull. Amer. Phys. Soc. 2 (1957) 181
1957KI22 O.C. Kistner, A. Schwarzschild, B.M. Rustad and D.E. Alburger, Phys. Rev. 105 (1957) 1339

1957 LA13 W.A.S. Lamb and R.E. Hester, Phys. Rev. 108 (1957) 1304
1957MU99 P.G. Murphy, Phys. Rev. 108 (1957) 421
1957 NO14 E. Norbeck Jr., Phys. Rev. 105 (1957) 204
1957 NO17 E. Norbeck Jr. and C.S. Littlejohn, Phys. Rev. 108 (1957) 754
1957NO1C Nonaka, Morita, Kawai, Ishimatsu, Takeshita, Nakajima and Takano, J. Phys. Soc. Jpn. 12 (1957) 841
1957OL1A Olness, Vorona and Lewis, Bull. Amer. Phys. Soc. 2 (1957) 51
1957 PE12 J.R. Penning and F.H. Schmidt, Phys. Rev. 105 (1957) 647
1957PE1D C.A. Pearse, Phys. Rev. 106 (1957) 545
1957PIZZ Pixley, Thesis, CalTech Pasadena (1957)
1957SH1B Sherr and Bennett, Proc. Univ. of Pittsburgh Conf. on Nucl. Struct. (1957)
1957SH1C Sherr and Rickey, Bull. Amer. Phys. Soc. 2 (1957) 29
1957SV1A N.L. Svantesson, Nucl. Phys. 3 (1957) 273
1957TA1C G.E. Tauber and T.-Y. Wu, Phys. Rev. 105 (1957) 1772
1957WA01 E.K. Warburton and J.N. McGruer, Phys. Rev. 105 (1957) 639
1957ZA1A Zabel, WASH 192 (1957)
1958AL1D Alkhazov, Gangpskii and Lemberg, JETP (Sov. Phys.) 6 (1958) 892
1958 AS63 V.J. Ashby, H.C. Catron, L.L. Newkirk and C.J. Taylor, Phys. Rev. 111 (1958) 616

1958BA52 G.A. Bartholomew and L.A. Higgs, AECL-669 (1958)
1958BE1G J.S. Bell and R.J. Blin-Stoyle, Nucl. Phys. 6 (1958) 87
1958 BO18 D.L. Booth, F.V. Price, D. Roaf and G.L. Salmon, Proc. Phys. Soc. (London) A71 (1958) 325

1958CO1G Cochran and Knight, Bull. Amer. Phys. Soc. 3 (1958) 323
1958 DO60 R.A. Douglas, R.R. Carlson, S. Bashkin and C. Broude, Bull. Amer. Phys. Soc. 3 (1958) 198, P2; Oral Report

1958FE05 A.J. Ferguson, Bull. Amer. Phys. Soc. 3 (1958) 26, J6
1958FR1C French, Univ. of Pittsburgh Tech. Rept. 9 (1958)
$1958 G O 46$ S. Gorodetzky, A. Gallman and M. Croissiaux, J. Phys. Rad. 19 (1958) 16
1958 GO68 S. Gorodetzky, A. Gallman, M. Croissiaux and R. Armbruster, Nucl. Phys. 6 (1958) 517

1958HA1B Haddad, Perry and Smith, Private Communication (1958)
1958 HE48 D.F. Hebbard and D.N.F. Dunbar, Bull. Amer. Phys. Soc. 3 (1958) 322, H3
1958HU18 D.J. Hughes and R.B. Schwartz, BNL-325, 2nd Ed. (1958); BNL-325, 2nd Ed., Suppl. I (1960)
1958 JO20 R.L. Johnston, H.D. Holmgren, E.A. Wolicki and E.G. Illsley, Phys. Rev. 109 (1958) 884

1958 JO28 K.W. Jones, L.J. Lidofsky and J.L. Weil, Phys. Rev. 112 (1958) 1252
1958LE23 L.L. Lee Jr. and J.P. Schiffer, Bull. Amer. Phys. Soc. 3 (1958) 188, K9
1958MA1B Th.A.J. Maris, P. Hillman and H. Tyren, Nucl. Phys. 7 (1958) 1
1958MO95 W.E. Moore and J.N. McGruer, Bull. Amer. Phys. Soc. 3 (1958) 198, P1
1958RA13 W.A. Ranken, T.W. Bonner, J.M. McCrary and T.A. Rabson, Phys. Rev. 109 (1958) 917

1958RA18 L.A. Rayburn, Bull. Amer. Phys. Soc. 3 (1958) 365, G13
1958RH1A Rhodes, Ph.D. Thesis, Univ. of Pennsylvania (1958)
1958RH30 J.L. Rhodes and W.E. Stephens, Phys. Rev. 110 (1958) 1415
1958 TA03 Y.-K. Tai, G.P. Millburn, S.N. Kaplan and B.J. Moyer, Phys. Rev. 109 (1958) 2086
1958 TY49 H. Tyren, P. Hillman and T.A.J. Marris, Nucl. Phys. 7 (1958) 10
1958WA1C Way, Nucl. Data Cards, Natl. Res. Council, Washington, D.C. (1958)
1959AL1M Alburger, Wilkinson and Gallmann, Bull. Amer. Phys. Soc. 4 (1959) 56
1959FE71 A.J. Ferguson, R.L. Clarke and H.E. Gove, Phys. Rev. 115 (1959) 1655
1959FE1E A.J. Ferguson, Phys. Rev. 115 (1959) 1660

1959 GI47 J.H. Gibbons and R.L. Macklin, Phys. Rev. 114 (1959) 571
1959HE1D Hebbard and Dunbar, Phys. Rev. 115 (1959) 624
1959LE2 L.L. Lee Jr. and J.P. Schiffer, Phys. Rev. 115 (1959) 160
1959 PO61 B. Povh, Phys. Rev. 114 (1959) 1114

[^0]: ${ }^{\text {a }}$ (1954BE08), and private communication.
 ${ }^{\mathrm{b}}$ (1955SH46).
 c (1955SH46, 1956BO61, 1958HA1B, 1958LE23, 1959LE28).
 ${ }^{\mathrm{d}}$ (1956BO61, 1958HA1B, 1958LE23, 1959LE28).
 ${ }^{\mathrm{e}}$ (1959LE28).
 ${ }^{f}$ (1956BO61, 1958HA1B).
 ${ }^{\mathrm{g}}$ (1958HA1B).

