Energy Levels of Light Nuclei $A=10$

F. Ajzenberg-Selove
University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396

Abstract

An evaluation of $A=5-10$ was published in Nuclear Physics A413 (1984), p. 1. This version of $A=10$ differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and Introductory tables have been omitted from this manuscript. Also, Reference key numbers have been changed to the NNDC/TUNL format.

(References closed June 1, 1983)

The original work of Fay Ajzenberg-Selove was supported by the US Department of Energy [DE-FG02-86ER40279]. Later modification by the TUNL Data Evaluation group was supported by the US Department of Energy, Office of High Energy and Nuclear Physics, under: Contract No. DEFG05-88-ER40441 (North Carolina State University); Contract No. DEFG05-91-ER40619 (Duke University).

Table of Contents for $A=10$

Below is a list of links for items found within the PDF document. Figures from this evaluation have been scanned in and are available on this website or via the link below.
A. Nuclides: ${ }^{10} \mathrm{n},{ }^{10} \mathrm{He},{ }^{10} \mathrm{Li},{ }^{10} \mathrm{Be},{ }^{10} \mathrm{~B},{ }^{10} \mathrm{C},{ }^{10} \mathrm{~N},{ }^{10} \mathrm{O},{ }^{10} \mathrm{~F},{ }^{10} \mathrm{Ne}$

B. Tables of Recommended Level Energies:

Table 10.1: Energy levels of ${ }^{10} \mathrm{Be}$
Table 10.5: Energy levels of ${ }^{10} \mathrm{~B}$
Table 10.19: Energy levels of ${ }^{10} \mathrm{C}$

C. References

D. Figures: ${ }^{10} \mathrm{Be},{ }^{10} \mathrm{~B},{ }^{10} \mathrm{C}$, Isobar diagram
E. Erratum to this Publication: PS or PDF
${ }^{10} \mathbf{n}$
(Not illustrated)
${ }^{10} \mathrm{n}$ has not been observed in the interaction of 0.7 and 400 GeV protons with uranium: the cross section is $<0.7 \times 10^{-5} \mu \mathrm{~b}$ (1977TU02) at 0.7 GeV and $<0.5 \mu \mathrm{~b}$ (1977TU03) at 400 GeV .

${ }^{10} \mathrm{He}$

(Not illustrated)
${ }^{10} \mathrm{He}$ has not been observed in the bombardment of ${ }^{232} \mathrm{Th}$ by $4.8 \mathrm{GeV} / c$ deuterons [the production cross section is $\lesssim 2 \mu \mathrm{~b}$] (1979BE60) nor in the interaction of ${ }^{10} \mathrm{~B},{ }^{11} \mathrm{~B}$ and ${ }^{22} \mathrm{Ne}$ [8 to $10 \mathrm{MeV} / A$] with Ti and ${ }^{232} \mathrm{Th}$ targets [the cross section is $<5 \times 10^{-4} \mu \mathrm{~b} / \mathrm{sr}$] (1982OG02). See also (1974AJ01). The calculated value of the atomic mass excess of ${ }^{10} \mathrm{He}$ is $49.40 \mathrm{MeV}:{ }^{10} \mathrm{He}$ is then unstable with respect to breakup into ${ }^{9} \mathrm{He}+\mathrm{n}$ and ${ }^{8} \mathrm{He}+2 \mathrm{n}$ by 0.52 and 1.66 MeV , respectively (1980SEZX). See also (1979AJ01), (1980BO31, 1982BI1C) and (1979BO22, 1981AV02, 1981KI04, 1982AV1A, 1982NG01, 1982VE05; theor.).
${ }^{10} \mathrm{Li}$
(Fig. 22)

At $E\left({ }^{9} \mathrm{Be}\right)=121 \mathrm{MeV},{ }^{10} \mathrm{Li}$ has been observed in the ${ }^{9} \mathrm{Be}\left({ }^{9} \mathrm{Be},{ }^{8} \mathrm{~B}\right){ }^{10} \mathrm{Li}$ reaction with a differential cross section (c.m.) of $\approx 30 \mathrm{nb} / \mathrm{sr}$ at $\theta=14^{\circ}$ (lab): $Q_{0}=-34.06 \pm 0.25 \mathrm{MeV}$, and the atomic mass excess of ${ }^{10} \mathrm{Li}$ is $33.83 \pm 0.25 \mathrm{MeV}$ if the group observed ($\Gamma \approx 1.2 \pm 0.3 \mathrm{MeV}$) corresponds to the ground state. ${ }^{10} \mathrm{Li}_{\text {g.s. }}$ would the be unbound with respect to breakup into ${ }^{9} \mathrm{Li}+\mathrm{n}$ by $0.80 \pm 0.25 \mathrm{MeV}$ (1975WI26). However (1979AB11, 1980AB16), on the basis of the possible location of the first $T=2$ state in ${ }^{10} \mathrm{Be}$ (see reaction 2) with $J^{\pi}=2^{-}$, suggest that (1975WI26) have observed an excited state of ${ }^{10} \mathrm{Li}$, with $J^{\pi}=1^{+}$. See also (1979AJ01) and (1979BO22, 1980MA1Z, 1981AV02, 1981WA1J, 1982NG01; theor.).

${ }^{10} \mathrm{Be}$

(Figs. 19 and 22)
GENERAL: (See also (1979AJ01).)
Model calculations: (1980FU1G, 1981DE2G).
Special states: (1981DE2G, 1981SE06).
Electromagnetic transiitons: (1982LA26, 1982RI04).
Astrophysical questions: (1978BU1B, 1979MO04, 1979SI1D, 1980WI1M, 1981GA1B, 1981GA1C, 1981KR1C, 1981PR1B, 1981SA1G, 1982BR1N, 1982KU1J, 1982PA1F).

Applied work: (1978MU1B, 1978RA1C, 1979GO1L, 1979IN1C, 1979LI1C, 1979RA1E, 1980EL1B, 1980EL1C, 1980GO1B, 1980KI1B, 1980LA1B, 1981FA1E, 1981LI1K, 1981RA1F, 1981SA1G, 1981SC1D, 1981TH1C, 1982BO35, 1982BR1N, 1982KL1A, 1982KU1G, 1982KU1J, 1982PA1F, 1983KR1B, 1983SO1B, 1983SU1C).

Complex reactions involving ${ }^{10} \mathrm{Be}$: (1978DU1B, 1978HE1C, 1978TU06, 1979AL22, 1979BO22, 1979JA1C, 1979SC1D, 1979VI05, 1980GR10, 1980WI1L, 1981CI03, 1981MO20, 1982BI1C, 1982BO1J, 1982GU1H, 1982LU01, 1982LY1A, 1983SA06).

Muon and neutrino capture and reactions: (1979GO1M, 1980MU1B, 1981GI08).
Reactions involving pions and kaons (See also reactions 10, 16 and 18): (1978DA1A, 1978WA1B, 1979PE1C, 1980BO1B, 1981AU1C, 1981FE2A, 1981SI09, 1981WH01, 1981YA1A, 1982AU02, 1982RO04, 1982WA1G).

Hypernuclei: (1978DA1A, 1978PO1A, 1978SO1A, 1980RO1F, 1980ZH1C, 1981WA1J, 1982IK1A, 1982KO1L, 1982KO11, 1982RA1L).

Other topics: (1981SE06, 1982DE1N, 1982NG01).
Ground-state properties of ${ }^{10} \mathrm{Be}$: (1978SM02, 1981AV02, 1982NG01).

$$
\text { 1. }{ }^{10} \mathrm{Be}\left(\beta^{-}\right)^{10} \mathrm{~B} \quad Q_{\mathrm{m}}=0.5568
$$

The half-life of ${ }^{10} \mathrm{Be}$ is $(1.6 \pm 0.2) \times 10^{6} \mathrm{y}$; $\log f t=13.42$: see (1974AJ01). See also (1979FE1E; theor.) and (1979AJ01).
2. (a) ${ }^{7} \mathrm{Li}(\mathrm{t}, \gamma)^{10} \mathrm{Be}$
$Q_{\mathrm{m}}=17.2498$
(b) ${ }^{7} \mathrm{Li}(\mathrm{t}, \mathrm{n})^{9} \mathrm{Be}$
$Q_{\mathrm{m}}=10.4377$

$$
E_{\mathrm{b}}=17.2498
$$

(c) ${ }^{7} \mathrm{Li}(\mathrm{t}, \mathrm{p})^{9} \mathrm{Li}$
$Q_{\mathrm{m}}=-2.386$
(d) ${ }^{7} \mathrm{Li}(\mathrm{t}, \mathrm{d})^{8} \mathrm{Li}$
$Q_{\mathrm{m}}=-4.225$
(e) ${ }^{7} \mathrm{Li}(\mathrm{t}, \mathrm{t})^{7} \mathrm{Li}$
(f) ${ }^{7} \mathrm{Li}(\mathrm{t}, \alpha)^{6} \mathrm{He}$

$$
Q_{\mathrm{m}}=9.839
$$

Table 10.1: Energy levels of ${ }^{10} \mathrm{Be}^{\text {a }}$

$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})$	$J^{\pi} ; T$	τ or $\Gamma_{\text {c.m. }}(\mathrm{keV})$	Decay	Reactions
g.s.	$0^{+} ; 1$	$\tau_{1 / 2}=(1.6 \pm 0.2) \times 10^{6} \mathrm{y}$	β^{-}	$\begin{aligned} & 1,2,3,4,5,10,11, \\ & 12,13,14,15,16, \\ & 17,18,20,21,22, \\ & 23,24,25,26,27, \\ & 28,29 \end{aligned}$
3.3680 ± 0.2	$2^{+} ; 1$	$\tau_{\mathrm{m}}=180 \pm 17 \mathrm{fsec}$	γ	$\begin{aligned} & 2,3,4,5,10,11, \\ & 12,13,14,15,16, \\ & 17,18,20,21,22, \\ & 24,25,26,29 \end{aligned}$
5.9583 ± 0.3	$2^{+} ; 1$	$\tau_{\mathrm{m}}<80 \mathrm{fsec}$	γ	$\begin{aligned} & 5,10,11,13,16, \\ & 17,18,20,21,25, \\ & 29 \end{aligned}$
5.9599 ± 0.6	$1^{-} ; 1$		γ	$\begin{aligned} & 5,10,11,13,21, \\ & 25,29 \end{aligned}$
6.1793 ± 0.7	$0^{+} ; 1$	$\tau_{\mathrm{m}}=1.1_{-0.3}^{+0.4} \mathrm{psec}$	π, γ	5, 10, 11, 21
6.2633 ± 5	$2^{-} ; 1$		γ	5, 11, 13
7.371 ± 1	$3^{-} ; 1$	$\Gamma=15.7 \pm 0.5 \mathrm{keV}$	n	4, 6, 10, 11, 13
7.542 ± 1	$2^{+} ; 1$	6.3 ± 0.8	n	3, 4, 6, 11, 13, 29
9.27	(4-); 1	150 ± 20	n	4, 6, 10, 11, 13
9.4	$(2)^{+} ; 1$	291 ± 20	n	$\begin{aligned} & 4,6,10,11,13,20, \\ & 25,29 \end{aligned}$
10.57 ± 30	$\geq 1 ; 1$		n	3, 4, 6, 11
11.76 ± 20		121 ± 10		3, 4, 10, 11, 13, 29
17.79		110 ± 35	$\gamma, \mathrm{n}, \mathrm{t}$	2, 3, 4
18.55		≈ 350	n, t	2, 3, 4
(21.22)	$\left(2^{-} ; 2\right)$	sharp	n, p, t	2
(24)				24

[^0]The yield of γ_{0} and γ_{1} has been studied for $E_{\mathrm{t}}=0.4$ to 1.1 MeV (1978SU02) $\left[{ }^{10} \mathrm{Be}^{*}(17.79)\right.$ is said to be involved]. See also (1974AJ01). The neutron yield exhibits a weak structure at $E_{\mathrm{t}}=0.24 \mathrm{MeV}$ and broad resonances at $E_{\mathrm{t}} \approx 0.77 \mathrm{MeV}[\Gamma=160 \pm 50 \mathrm{keV}]$ and 1.74 MeV : see (1966LA04) [${ }^{10} \mathrm{Be}^{*}$ (17.79, 18.47)]. The total cross section for reaction (c), the yield of neutrons (reaction (b) to ${ }^{9} \mathrm{Be}^{*}(14.39)$), and the yield of γ-rays from ${ }^{7} \mathrm{Li}^{*}(0.48)$ (reaction (e)) all show a sharp anomaly at $E_{\mathrm{t}}=5.685 \mathrm{MeV}: J^{\pi}=2^{-}$; $T=2$ is suggested for a state at $E_{\mathrm{x}}=21.22 \mathrm{MeV}$. The total cross section for α_{0} (reaction (e)) and the allneutrons yield do not show this structure (1979AB11, 1980AB16, 1982AB1D, 1983ABZW). Differential cross sections and S-factors are reported by (1983CE01) for $E_{\mathrm{t}}=70$ to 110 keV for ${ }^{6} \mathrm{He}{ }^{*}(0,1.80)$. The zero-energy S-factor for ${ }^{6} \mathrm{He} *(1.80)$ is $14 \pm 2.5 \mathrm{MeV} \cdot$ b. The relevance to an Li-seeded tritium plasma is discussed by (1983CE01). See also (1974AJ01, 1979AJ01).
3. ${ }^{7} \mathrm{Li}(\alpha, \mathrm{p})^{10} \mathrm{Be}$

$$
Q_{\mathrm{m}}=-2.5642
$$

Angular distributions have been measured at $E_{\alpha}=30$ and 50 MeV : see (1979AJ01).
4. ${ }^{7} \mathrm{Li}\left({ }^{7} \mathrm{Li}, \alpha\right){ }^{10} \mathrm{Be}$
$Q_{\mathrm{m}}=14.782$

Angular distributions have been reported for $E\left({ }^{7} \mathrm{Li}\right)=2.1$ to 5.75 MeV and at 30.3 MeV : see (1974AJ01).

$$
\begin{array}{ll}
\text { 5. }{ }^{9} \mathrm{Be}(\mathrm{n}, \gamma){ }^{10} \mathrm{Be} & Q_{\mathrm{m}}=6.8121 \\
& Q_{0}=6812.1 \pm 0.2 \mathrm{keV}: \text { see (1980IS02). } \\
& Q_{0}=6912.08 \pm 0.10 \mathrm{keV} \text { : see (1981KE02). }
\end{array}
$$

The thermal capture cross section is $7.6 \pm 0.8 \mathrm{mb}$ (1981MUZQ). Reported γ-ray transitions are displayed in Table 10.2.
6. ${ }^{9} \mathrm{Be}(\mathrm{n}, \mathrm{n}){ }^{9} \mathrm{Be} \quad E_{\mathrm{b}}=6.8121$

The scattering amplitude (bound) $a=7.778 \pm 0.003 \mathrm{fm}, \sigma_{\text {free }}=6.151 \pm 0.005 \mathrm{~b}$ (1981MUZQ). Earlier cross-section measurements are listed in (1979AJ01, 1981MUZQ). Recent σ_{t} measurements have been reported for $E_{\mathrm{n}}=0.002$ to 0.005 eV (1979ADZW), 23.5 keV (1975BL07; $5.903 \pm 0.011 \mathrm{~b}$), 1.0 to 13.5 MeV (1979AU07), 6.97 to 14.94 MeV (1978HO23; total elastic) and 200 to 590 MeV (1980FR1K). See also (1980AD1A).

Observed resonances are displayed in Table 10.3. Analysis of polarization and differential cross-section data leads to the $3^{-}, 2^{+}$assignments for ${ }^{10} \mathrm{Be}^{*}(7.37,7.55)$. Below $E_{\mathrm{n}}=0.5 \mathrm{MeV}$ the scattering cross section reflects the effect of bound 1^{-}and 2^{-}states, presumably ${ }^{10} \mathrm{Be} *(5.960,6.26)$. There is also indication of interference with s-wave background and with a broad $l=1, J^{\pi}=3^{+}$state. The structure at $E_{\mathrm{n}}=2.73$

Table 10.2: Neutron-capture γ-rays in ${ }^{10} \mathrm{Be}^{\text {a }}$

$E_{\gamma}(\mathrm{keV})^{\mathrm{b}}$	Transition	Intensities $^{\mathrm{c}}$	$E_{\mathrm{x}}(\mathrm{keV})^{\mathrm{b}}$
6809.4 ± 0.4	capt. \rightarrow g.s.	64.6	
5955.9 ± 0.5	$5.96^{\mathrm{d}} \rightarrow$ g.s.	1.5	5958.3 ± 0.3
3443.3 ± 0.3	capt. $\rightarrow 3.37$	11.3	
3367.4 ± 0.2	$3.37 \rightarrow$ g.s.	33.0	3368.0 ± 0.2
2896.4^{e}	$6.26 \rightarrow 3.37$	0.15	
2811.8^{e}	$6.18 \rightarrow 3.37$	0.13	
2589.9 ± 0.25	$5.96^{\mathrm{d}} \rightarrow 3.37$	22.4	
853.5 ± 0.3	${\text { capt. } \rightarrow 5.96^{\mathrm{d}}}^{2} \pm 26.4$		
631.8^{e}	capt. $\rightarrow 6.18$	0.24	
547.4^{e}	capt. $\rightarrow 6.26$	0.16	
219.3^{e}	$6.18 \rightarrow 5.96^{\mathrm{f}}$	0.05	

${ }^{\text {a }}$ See also Tables 10.2 in (1974AJ01, 1979AJ01).
${ }^{\text {b }}$ (1966GR18).
${ }^{\text {c }}$ Gamma rays per 100 captures (1979JUZU).
${ }^{\mathrm{d}}$ This is the 2^{+}member of the doublet at $E_{\mathrm{x}}=5.96 \mathrm{MeV}$.
${ }^{\mathrm{e}}$ (1979JUZU).
${ }^{\mathrm{f}}$ This is the 1^{-}member of the doublet.

MeV is ascribed to two levels: a broad state at about 2.85 MeV with $J^{\pi}=2^{+}$, and a narrow one, $\Gamma \approx 100$ keV , at $E_{\mathrm{n}}=2.73 \mathrm{MeV}$ with a probable assignment of $J^{\pi}=4^{-}$. The 4^{-}assignment results from a study of the polarization of the n_{0} group at $E_{\mathrm{n}}=2.60$ to 2.77 MeV . A rapid variation of the polarization over this interval is observed, and the data are consistent with $4^{-}(l=2)$ for ${ }^{10} \mathrm{Be}^{*}(9.27)$. A weak dip at $E_{\mathrm{n}} \approx 4.3$ MeV is ascribed to a level with $J \geq 1$. See (1974AJ01) for references. The analyzing power has been measured for $E_{\mathrm{n}}=1.6$ to $4.8 \mathrm{MeV}(1975 \mathrm{HO} 01)$ and $E_{\overrightarrow{\mathrm{n}}}=9$ to $15 \mathrm{MeV}\left(1981 \mathrm{FL} 1 \mathrm{~A}, 1981 \mathrm{FL} 04 ; \mathrm{n}_{0}, \mathrm{n}_{2}\right)$. See also (1981WA1G, 1983ANZY) and (1979BY01, 1983BY01; theor.).
7. (a) ${ }^{9} \mathrm{Be}\left(\mathrm{n}, \mathrm{n}^{\prime}\right)^{9} \mathrm{Be}^{*}$

$$
E_{\mathrm{b}}=6.8121
$$

(b) ${ }^{9} \mathrm{Be}(\mathrm{n}, 2 \mathrm{n}){ }^{8} \mathrm{Be}$

$$
Q_{\mathrm{m}}=-1.6655
$$

The non-elastic and the $(\mathrm{n}, 2 \mathrm{n})$ cross sections rise rapidly to $\approx 0.6 \mathrm{~b}\left(\approx 0.5 \mathrm{~b}\right.$ for $(\mathrm{n}, 2 \mathrm{n})$) at $E_{\mathrm{n}} \approx 3.5$ MeV and then stay approximately constant to $E_{\mathrm{n}}=15 \mathrm{MeV}$: see (1979AJ01). Recent measurmeents include those of ($1978 \mathrm{HO} 23 ; E_{\mathrm{n}}=6.97$ to 14.94 MeV ; inelastic cross sections to unresolved states at $E_{\mathrm{x}}=1.7-3.1$ $\mathrm{MeV}) . A_{\mathrm{y}}$ measurements are reported for the n_{2} group [to $\left.{ }^{9} \mathrm{Be}^{*}(2.4)\right]$ at $E_{\mathrm{n}}=9$ to 15 MeV (1981FL1A). For reaction (b) see also (1980BA2L; applied work) and (1978HE1F; theor.).

Table 10.3: Resonances in ${ }^{9} \mathrm{Be}(\mathrm{n}, \mathrm{n}){ }^{9} \mathrm{Be}^{\mathrm{a}}$

$E_{\text {res }}(\mathrm{MeV} \pm \mathrm{keV})$	${ }^{10} \mathrm{Be}^{*}(\mathrm{MeV})$	$\Gamma_{\text {c.m. }}(\mathrm{keV})$	J^{π}	l	$\theta^{2}(\%)^{\mathrm{b}}$
0.6220 ± 0.8	7.371	15.7 ± 0.5	3^{-}	2	7.5
0.8118 ± 0.7	7.542	6.3 ± 0.8	2^{+}	1	0.28
2.73	9.27	≈ 100	$\left(4^{-}\right)$	(2)	
(2.85)	9.4	≈ 400	$\left(2^{+}\right)$	(1)	
4.3	10.7		≥ 1		

${ }^{\text {a }}$ For references see Table 10.3 in (1979AJ01).
${ }^{\mathrm{b}} R=5.6 \mathrm{fm}$.
8. (a) ${ }^{9} \mathrm{Be}(\mathrm{n}, \mathrm{p}){ }^{9} \mathrm{Li}$
$Q_{\mathrm{m}}=-12.824$
$E_{\mathrm{b}}=6.8121$
(b) ${ }^{9} \mathrm{Be}(\mathrm{n}, \mathrm{d}){ }^{8} \mathrm{Li}$
$Q_{\mathrm{m}}=-14.662$
(c) ${ }^{9} \mathrm{Be}(\mathrm{n}, \mathrm{t})^{7} \mathrm{Li}$
$Q_{\mathrm{m}}=-10.438$

Cross sections have been meaasured at $E_{\mathrm{n}}=14.1-14.9 \mathrm{MeV}$ for reaction (a), 16.3 to 18.7 MeV for (b) and 13.3 to $15.0\left(\mathrm{t}_{1}\right)$ and 22.5 MeV (reaction (c)): see (1979AJ01). See also (1981HAZJ, 1982HA1A).
9. ${ }^{9} \mathrm{Be}(\mathrm{n}, \alpha){ }^{6} \mathrm{He} \quad Q_{\mathrm{m}}=-0.598$

The cross section for production of ${ }^{6} \mathrm{He}$ shows a smooth rise to a broad maximum of $104 \pm 7 \mathrm{mb}$ at 3.0 MeV , followed by a gradual decrease to 70 mb at 4.4 MeV . From $E_{\mathrm{n}}=3.9$ to 8.6 MeV , the cross section decreases smoothly from 100 mb to 32 mb . Excitation functions have been measured for α_{0} and α_{1} for $E_{\mathrm{n}}=12.2$ to 18.0 MeV : see (1979AJ01) for references. See also (1981HAZJ, 1982HA1A).

$$
\text { 10. }{ }^{9} \mathrm{Be}\left(\mathrm{p}, \pi^{+}\right)^{10} \mathrm{Be} \quad Q_{\mathrm{m}}=-133.538
$$

Angular distributions have been studied at $E_{\mathrm{p}}=185 \mathrm{MeV}$ (1973DA09: to ${ }^{10} \mathrm{Be}^{*}(0,3.37,6.07 \pm 0.13$, $7.39 \pm 0.13,9.31 \pm 0.24,11.76)$), 200 MeV (1978AU07: to ${ }^{10} \mathrm{Be}^{*}(0,3.37)$), 410 and 605 MeV (1980DI02: to $\left.{ }^{10} \mathrm{Be}^{*}(0,3.37,6.1)\right)$ and 800 MeV (1979HO13: to ${ }^{10} \mathrm{Be}^{*}(0,3.37,11.8)$); the latter may be unresolved). (1982AU02) have studied $A_{y}(\theta)$ for the π^{+}to ${ }^{10} \mathrm{Be}^{*}(0,3.37)$ for $E_{\overrightarrow{\mathrm{p}}}=200$ and 250 MeV : little variation with E is observed. The cross section for π^{+}production near threshold has been studied by (1979MA38). See also the "General" section here, and (1981NI1B, 1982HO1C, 1982NA1K).

$$
\text { 11. }{ }^{9} \mathrm{Be}(\mathrm{~d}, \mathrm{p})^{10} \mathrm{Be} \quad Q_{\mathrm{m}}=4.5875
$$

Angular distributions of proton groups have been studied at many energies in the range $E_{\mathrm{d}}=0.15$ to 17.13 MeV [see (1979AJ01)], at $E_{\mathrm{d}}=2.0$ to 2.8 MeV (1983DE1P; $\mathrm{p}_{0}, \mathrm{p}_{1}$) and at 698 MeV (1981BO03; p to ${ }^{10} \mathrm{Be}^{*}(0,3.37,6.1,7.37+7.54,9.27+9.4,11.8)$. At $E_{\mathrm{d}}=15 \mathrm{MeV}(1976 \mathrm{DA} 15)$ find $S=2.1$, $0.23\left(j_{\mathrm{n}}=\frac{3}{2}\right)$ and $0.12\left(j_{\mathrm{n}}=\frac{1}{2}\right), \leq 1.0,0.065\left(j_{\mathrm{n}}=\frac{5}{2}\right)$ and $0.132\left(j_{\mathrm{n}}=\frac{1}{2}\right)$, for ${ }^{10} \mathrm{Be}^{*}(0,3.37,5.96$, $6.62)$ (1976DA15). The angular distributions show $l_{\mathrm{n}}=1$ transfer for ${ }^{10} \mathrm{Be}^{*}(0,3.37,5.958,7.54), l_{\mathrm{n}}=0$ transfer for ${ }^{10} \mathrm{Be} *(5.960,6.26), l_{\mathrm{n}}=2$ transfer for ${ }^{10} \mathrm{Be}^{*}(7.37) .{ }^{10} \mathrm{Be}^{*}(6.18,9.27,9.4)$ are also populated, as are two states at $E_{\mathrm{x}}=10.57 \pm 0.03$ and $11.76 \pm 0.02 \mathrm{MeV}(1974 \mathrm{AN} 27) .{ }^{10} \mathrm{Be}^{*}(9.27,9.4,11.76)$ have $\Gamma_{\text {c.m. }}=150 \pm 20,291 \pm 20$ and $121 \pm 10 \mathrm{keV}(1974 \mathrm{AN} 27)$.

Attempts to understand the γ-decay of ${ }^{10} \mathrm{Be} *(5.96)$ and its population in ${ }^{9} \mathrm{Be}(\mathrm{n}, \gamma)^{10} \mathrm{Be}$ led to the discovery that it consisted of two states separated by $1.6 \pm 0.5 \mathrm{keV}$. The lower of the two has $J^{\pi}=2^{+}$and decays primarily by a cascade transition via ${ }^{10} \mathrm{Be}^{*}(3.37)$ [it is the state fed directly in the ${ }^{9} \mathrm{Be}(\mathrm{n}, \gamma)$ decay]; the higher state has $J^{\pi}=1^{-}$and goes mainly by a crossover to ${ }^{10} \mathrm{Be}_{\mathrm{g} . \mathrm{s} .}$. Angular correlations measured with ther γ-ray detector located normal to the reaction plane (\equiv angular distributions) lead to l_{n} values consistent with the assignments of 2^{+}and 1^{-}for ${ }^{10} \mathrm{Be}^{*}(5.9658,5.9660)$ obtained from the character of the γ-decay (1969RO12). ${ }^{10} \mathrm{Be}^{*}(6.18)$ decays primarily to ${ }^{10} \mathrm{Be}^{*}(3.37): E_{\gamma}=219.4 \pm 0.3 \mathrm{keV}$ for the $6.18 \rightarrow 5.96$ transition (1969AL17). See Table 10.4 for a listing of the information on radiative transitions obtained in this reaction and lifetime measurements. For (p, γ) correlations through ${ }^{10} \mathrm{Be}^{*}(3.37)$ see (1974AJ01). For polarization measurements see ${ }^{11} \mathrm{~B}$ in (1980AJ01). See also (1981CE04), (1974FI1D) and (1982GO05; theor.).
12. ${ }^{9} \mathrm{Be}\left({ }^{3} \mathrm{He}, 2 \mathrm{p}\right){ }^{10} \mathrm{Be}$

$$
Q_{\mathrm{m}}=-0.9061
$$

See $\left(1980 \mathrm{CO} 12 ; E\left({ }^{3} \mathrm{He}\right)=13 \mathrm{MeV}\right)$ and ${ }^{12} \mathrm{C}$ in (1985AJ01).

$$
\text { 13. }{ }^{9} \mathrm{Be}\left(\alpha,{ }^{3} \mathrm{He}\right){ }^{10} \mathrm{Be} \quad Q_{\mathrm{m}}=-13.7657
$$

Angular distributions have been studied at $E_{\alpha}=65 \mathrm{MeV}$ to ${ }^{10} \mathrm{Be} *(0,3.37,5.96,6.26,7.37,7.54$, $9.33,11.88$). DWBA analyses of these lead to spectroscopic factors which are in poor agreement with those reported in other reactions $(1980 \mathrm{HA} 33)$.

$$
\text { 14. }{ }^{9} \mathrm{Be}\left({ }^{7} \mathrm{Li},{ }^{6} \mathrm{Li}\right){ }^{9} \mathrm{Be} \quad Q_{\mathrm{m}}=-0.438
$$

Angular distributions have been measured at $E\left({ }^{7} \mathrm{Li}\right)=34 \mathrm{MeV}$ to ${ }^{10} \mathrm{Be}^{*}(0,3.4): S=2.07$ and $0.42\left(\mathrm{p}_{1 / 2}\right), 0.38\left(\mathrm{p}_{3 / 2}\right)(1977 \mathrm{KE} 09)$.
15. (a) ${ }^{10} \mathrm{Be}(\mathrm{p}, \mathrm{p}){ }^{10} \mathrm{Be}$
(b) ${ }^{10} \mathrm{Be}(\mathrm{d}, \mathrm{d}){ }^{10} \mathrm{Be}$

Table 10.4: Radiative transitions in ${ }^{9} \mathrm{Be}(\mathrm{d}, \mathrm{p})^{10} \mathrm{Be}^{\mathrm{a}}$

$E_{\mathrm{x}}(\mathrm{keV})$	Transition	ΔJ^{π}	Mult.	Branch $(\%)$	$\tau_{\mathrm{m}}(\mathrm{psec})$	$\Gamma_{\gamma}(\mathrm{meV})$
3368.0 ± 0.2	$3.37 \rightarrow$ g.s.	$2^{+} \rightarrow 0^{+}$	E2	100	0.189 ± 0.020	3.48 ± 0.37
				0.160 ± 0.030	4.11 ± 0.78	
5958.3 ± 0.3	$5.96 \rightarrow 3.37$	$2^{+} \rightarrow 2^{+}$	M1	>90	<0.08	
5959.9 ± 0.6	$5.96 \rightarrow$ g.s.	$2^{+} \rightarrow 0^{+}$	E2	<10		
	$5.96 \rightarrow$ g.s.	$1^{-} \rightarrow 0^{+}$	E1	83_{-6}^{+10}		
6179.3 ± 0.7	$6.96 \rightarrow 3.37$	$1^{-} \rightarrow 2^{+}$	E1	17_{-10}^{+6}		
	$6.18 \rightarrow 5.96$	$0^{+} \rightarrow 1^{-}$	E1	24 ± 2	$1.1_{-0.3}^{+0.4}$	0.14 ± 0.05
	$6.18 \rightarrow$ g.s.	$0^{+} \rightarrow 0^{+}$	E0	b		0.46 ± 0.28
6263.3 ± 5	$6.26 \rightarrow 5.96$	$2^{-} \rightarrow 1^{-}$	M1	2^{+}	E1	≤ 1
		$0^{+} \rightarrow 2^{+}$	E2	76 ± 2		
	$6.26 \rightarrow 3.37$	$2^{-} \rightarrow 2^{+}$	E1	99_{-2}^{+1}		
	$6.26 \rightarrow$ g.s.	$2^{-} \rightarrow 0^{+}$	M2	1 ± 1		

${ }^{\text {a }}$ See Table 10.4 in (1979AJ01) for references. However, note that there are several typographical errors in the ${ }^{10} \mathrm{Be}^{*}(6.18)$ decay.
b (1975WA06).

Angular distrinbutions of the p_{0} and p_{1} groups have been measured at $E_{\mathrm{p}}=12.0$ to 16.0 MeV . The elastically scattered deuterons have been studied at $E_{\mathrm{d}}=12.0$ and 15.0 MeV : see (1974AJ01).
16. (a) ${ }^{10} \operatorname{Be}\left(\gamma, \pi^{+}\right)^{10} \mathrm{Be}$
$Q_{\mathrm{m}}=-140.124$
(b) ${ }^{10} \mathrm{~B}\left(\mathrm{e}, \mathrm{e}^{\prime} \pi^{+}\right)^{10} \mathrm{Be}$
$Q_{\mathrm{m}}=-140.124$

Differential cross sections have been measured for reaction (a) to ${ }^{10} \mathrm{Be}^{*}(0,3.37)$ for $E_{\gamma} \approx 230$ to 340 MeV (1980BO24). Measurements are also reported at $E_{\pi^{+}}=17,29$ and 48 MeV to ${ }^{10} \mathrm{Be}_{\text {g.s. }}$ and at the two higher energies for the transitions to ${ }^{10} \mathrm{Be}^{*}(3.37)$ (1982RO04). See also (1981YA1A; $E_{\gamma} \approx 183 \mathrm{MeV}$; g.s.). At $E_{\mathrm{e}}=158.5$ to 165.0 MeV the angular distributions of $12.3 \pm 0.7 \mathrm{MeV}$ pions are reported by (1982ZU03). The $\left(\mathrm{e}, \pi^{+}\right)$angular distributions to ${ }^{10} \mathrm{Be}^{*}(0,3.37)$ are in good agreement with the M3 form factors. It is suggested that ${ }^{10} \mathrm{Be}^{*}(5.96)$ is also populated through an M1 transition. (1982ZU03) also present a review of the data for the 90° photopion cross section leading to ${ }^{10} \mathrm{Be}_{\text {g.s. }}$ as a function of $E_{\pi^{+}}$. See also (1982DE14; theor.).
17. ${ }^{10} \mathrm{~B}\left(\mu^{-}, \nu\right){ }^{10} \mathrm{Be} \quad Q_{\mathrm{m}}=105.1026$

Partial capture rates leading to the 2^{+}states ${ }^{10} \mathrm{Be}^{*}(3.37,5.96)$ are reported by (1981GI08).
18. ${ }^{10} \mathrm{~B}\left(\pi^{-}, \gamma\right){ }^{10} \mathrm{Be} \quad Q_{\mathrm{m}}=139.011$

The total radiative capture branching ratio for stopped pions is $(2.27 \pm 0.22) \%$. The γ-spectrum is dominated by the transition to ${ }^{10} \mathrm{Be}^{*}(6.0)\left[J^{\pi}=2^{+}\right]$(1975BA52). See also (1979AL1M) and (1979TR1B).
19. ${ }^{10} \mathrm{~B}\left(\mathrm{p}, \mathrm{p} \pi^{+}\right){ }^{10} \mathrm{Be} \quad Q_{\mathrm{m}}=-140.124$

See (1979AJ01).
20. ${ }^{10} \mathrm{~B}(\mathrm{~d}, 2 \mathrm{p}){ }^{10} \mathrm{Be}$

$$
Q_{\mathrm{m}}=-3.5637
$$

Angular distributions are reported at $E_{\mathrm{d}}=55 \mathrm{MeV}$ to ${ }^{10} \mathrm{Be}^{*}(0,3.37,5.96,9.4)$ (1979ST15).
21. ${ }^{11} \mathrm{Li}\left(\beta^{-}\right){ }^{11} \mathrm{Be} \rightarrow{ }^{10} \mathrm{Be}+\mathrm{n}$
${ }^{11} \mathrm{Li}$ populates several states of ${ }^{10} \mathrm{Be}$, via delayed neutron emission. Gamma rays have been observed for the transitions $6.18 \rightarrow 5.96,6.18 \rightarrow 3.37,5.96$ (unres.) $\rightarrow 3.37$ and $3.37 \rightarrow$ g.s. with $I_{\gamma}=(0.95 \pm 0.35)$, $(1.65 \pm 0.70),(3.5 \pm 1.0)$ and $(21 \pm 6) \%$, respectively (1980DE39). See also ${ }^{11} \mathrm{Be}$ in (1985AJ01).
22. ${ }^{11} \mathrm{~B}(\gamma, \mathrm{p}){ }^{10} \mathrm{Be} \quad Q_{\mathrm{m}}=11.2287$

Transitions to ${ }^{10} \mathrm{Be} *(3.4)$ from the upper region of the giant resonance in ${ }^{11} \mathrm{~B}$ are reported to be about twice as intense as those from the lower region: see ${ }^{11} \mathrm{~B}$ in (1975AJ02). Angular distributions of the p_{0} and p_{1} groups have been measured with $E_{\mathrm{bs}}=18.5 \mathrm{MeV}$ and the yield of the $3.37 \mathrm{MeV} \gamma$-ray has been reported for $E_{\mathrm{bs}}=100$ to 800 MeV : see (1979AJ01). See also (1982GO03; theor.).
23. ${ }^{11} \mathrm{~B}(\mathrm{n}, \mathrm{d}){ }^{10} \mathrm{Be}$
$Q_{\mathrm{m}}=-9.0042$

The angular distribution of the d_{0} group has been measured at $E_{\mathrm{n}}=14.4 \mathrm{MeV}$: see (1974AJ01).
24. ${ }^{11} \mathrm{~B}(\mathrm{p}, 2 \mathrm{p}){ }^{10} \mathrm{Be}$
$Q_{\mathrm{m}}=-11.2287$

Structure is observed in the summed proton spectrum corresponding to $Q=-10.9 \pm 0.35,-14.7 \pm 0.4$, $-21.1 \pm 0.4,-35 \pm 1 \mathrm{MeV}$: see (1974AJ01).
25. ${ }^{11} \mathrm{~B}\left(\mathrm{~d},{ }^{3} \mathrm{He}\right){ }^{10} \mathrm{Be} \quad Q_{\mathrm{m}}=-5.7352$

Angular distributions have been measured at $E_{\mathrm{d}}=11.8$ and 22 MeV to ${ }^{10} \mathrm{Be}_{\text {g.s. }}$. see (1974AJ01)] and at 52 MeV to ${ }^{10} \mathrm{Be}^{*}(0,3.37,5.96,9.60): S=0.65,2.03,0.13,1.19$ (normalized to the theoretical value for the ground state); $\pi=+$ for ${ }^{10} \mathrm{Be}^{*}(9.6)$ (1975SC41).
26. ${ }^{11} \mathrm{~B}(\mathrm{t}, \alpha){ }^{10} \mathrm{Be}$

$$
Q_{\mathrm{m}}=8.5853
$$

See (1979AJ01).
27. ${ }^{11} \mathrm{~B}\left({ }^{14} \mathrm{~N},{ }^{15} \mathrm{O}\right){ }^{10} \mathrm{Be} \quad Q_{\mathrm{m}}=-3.932$

See (1974AJ01). See also (1978MA1F).
28. ${ }^{12} \mathrm{C}(\mathrm{p}, 3 \mathrm{p}){ }^{10} \mathrm{Be}$ $Q_{\mathrm{m}}=-27.1849$

See (1979KO36).
29. ${ }^{12} \mathrm{C}\left({ }^{6} \mathrm{Li},{ }^{8} \mathrm{~B}\right){ }^{10} \mathrm{Be}$

$$
Q_{\mathrm{m}}=-21.442
$$

At $E\left({ }^{6} \mathrm{Li}\right)=80 \mathrm{MeV},{ }^{10} \mathrm{Be}^{*}(0,3.37,5.96,7.54,(9.4), 11.8)$ are populated and the angular distribution to ${ }^{10} \mathrm{Be}_{\text {g.s. }}$ has been measured: see (1979AJ01). See also (1982AL08).

${ }^{10}$ B

(Figs. 20 and 22)

GENERAL: (See also (1979AJ01).)
Shell and deformed models: (1978FU13, 1979FL06, 1979KU05, 1980NI1F, 1981BO1Y, 1981DE2G, 1982BA52).

Cluster and α-particle models: (1979AD1A, 1980FU1G, 1980NI1F, 1980OKZZ, 1981KR1J, 1983RO1G).
Special states: (1979FL06, 1980BR21, 1980FU1G, 1980NI1F, 1980OKZZ, 1980RI06, 1981BA64, 1981BO1Y, 1981DE2G, 1981KU04, 1981SE06, 1982BA52, 1983GO1R).

Electromagnetic tranisitions and giant resonances: (1978FU13, 1979FL06, 1979KU05, 1980KO1L, 1980NI1F, 1980RI06, 1981BA64, 1981BO1Y, 1981KN06, 1982BA52, 1982RI04, 1982VE11).

Astrophysical questions: (1978BU1B, 1979MO04, 1979RA1C, 1980RE1B, 1981AU1D, 1981AU1G, 1981GU1D).

Applied work: (1979AT01, 1979FL1A, 1979FO1F, 1979JUZU, 1980MU1D, 1983ST1H).
Complex reactions involving ${ }^{10}$ B: (1978BH03, 1978HE1C, 1979AL22, 1979BO22, 1979JA1C, 1979LO11, 1979SA27, 1979ST1D, 1979VI05, 1980GR10, 1980GU1E, 1980MI01, 1980OL1C, 1980RI06, 1980WI1L, 1981BL1G, 1981ME13, 1981MO20, 1981TA22, 1981VA1D, 1982CH1M, 1982FU04, 1982GO1E, 1982LU01, 1982LY1A, 1982MO1K, 1982VE11, 1983BE02, 1983SA06).

Muon and neutrino capture and reactions: (1979BE1N, 1979DE01, 1979GO1M, 1980MU1B, 1981GI08, 1981MU1E, 1981OL01, 1982NA01).

Pion and kaon capture and reactions (See also reactions 23, 24 and 47.): (1978AN20, 1978DA1A, 1978TS1A, 1979AL1J, 1979AL21, 1979BA16, 1979BE1N, 1979BO1P, 1979BO1N, 1979PI06, 1979TI1A, 1979TR1B, 1980CR03, 1980DE11, 1980LE02, 1980MA1F, 1980NA1B, 1980ST25, 1981BE63, 1981FR17, 1981GE1B, 1981GI15, 1981SI1D, 1981ST05, 1981YA1A, 1982RO04).

Hypernuclei: (1978DA1A, 1978PO1A, 1978SO1A, 1980IW1A, 1981WA1J, 1982ER1E, 1982KO11, 1982RA1L).

Other topics: (1980BR21, 1981AV02, 1981KU04, 1981SE06, 1982BA2G, 1982CH1M, 1982DE1N, 1982NG01, 1982VE02, 1983GO1R).

Ground-state properties of ${ }^{10}$ B: (1978HE1D, 1979BE1N, 1979SA27, 1980FU1G, 1981AV02, 1981BO1Y, 1981OL01, 1981SE06, 1982BA2G, 1982LO13, 1982NG01).

$$
\begin{gathered}
\mu=+1.80065 \pm 0.00001 \mathrm{~nm}: \text { see (1978LEZA) } \\
Q=+84.72 \pm 0.56 \mathrm{mb}: \text { see (1978LEZA). }
\end{gathered}
$$

Mass of ${ }^{10}$ B: (A.H. Wapstra (private communication) adopts $12050.0 \pm 0.39 \mathrm{keV}$, and we shall too. See also (1983CH08).
${ }^{10} B *(0.72): \mu=+0.63 \pm 0.12 \mathrm{~nm}:$ see (1978LEZA). See also (1982VE11).

Table 10.5: Energy levels of ${ }^{10} \mathrm{~B}{ }^{\text {a }}$

$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})$	$J^{\pi} ; T$	τ_{m} or $\Gamma_{\text {c.m. }}(\mathrm{keV})$	Decay	Reactions
g.s.	$3^{+} ; 0$	stable		$\begin{aligned} & 1,4,5,6,11,12,17,18, \\ & 19,20,21,22,23,24, \\ & 25,26,27,28,29,30, \\ & 31,32,33,34,35,36, \\ & 37,38,39,40,43,44, \\ & 45,48,49,50,51,52, \\ & 53,55,56,57 \end{aligned}$
0.71835 ± 0.04	$1^{+} ; 0$	$\begin{aligned} & \tau_{\mathrm{m}}=1.020 \pm 0.005 \mathrm{nsec} \\ & \mathrm{~g}=+0.63 \pm 0.12 \end{aligned}$	γ	$\begin{aligned} & 1,4,5,6,11,12,17,18, \\ & 19,20,25,26,27,29, \\ & 30,35,41,43,44,45, \\ & 47,48,49,50,52,55, \\ & 56,57 \end{aligned}$
1.74015 ± 0.17	$0^{+} ; 1$	7 ± 3 fsec	γ	$\begin{aligned} & 1,4,12,17,18,19,20, \\ & 23,25,26,29,41,42, \\ & 43,44,45,48,49,53,56 \end{aligned}$
2.1543 ± 0.5	$1^{+} ; 0$	$2.13 \pm 0.20 \mathrm{psec}$	γ	$\begin{aligned} & 1,4,12,17,18,19,20, \\ & 25,26,27,29,30,35, \\ & 43,44,45,47,48,49, \\ & 50,52,55,56 \end{aligned}$
3.5871 ± 0.5	$2^{+} ; 0$	153 ± 12 fsec	γ	$\begin{aligned} & 1,4,6,12,17,18,19, \\ & 25,26,27,29,30,42, \\ & 43,45,48,49,50,52, \\ & 55,56 \end{aligned}$
4.7740 ± 0.5	$3^{+} ; 0$	$\Gamma=8.7 \pm 2.2 \mathrm{eV}$	γ, α	$\begin{aligned} & 1,4,6,17,18,19,26, \\ & 27,30,45,48,49,50,55 \end{aligned}$
5.1103 ± 0.6	$2^{-} ; 0$	$0.98 \pm 0.07 \mathrm{keV}$	γ, α	$\begin{aligned} & 1,12,17,18,26,30,45, \\ & 49 \end{aligned}$
5.1639 ± 0.6	$2^{+} ; 1$	$\tau_{\mathrm{m}}<6 \mathrm{fsec}$	γ, α	$\begin{aligned} & 1,12,17,18,23,26,27, \\ & 42,45,48 \end{aligned}$
5.180 ± 10	$1^{+} ; 0$	$\Gamma=100 \pm 10$	γ, α	$\begin{aligned} & 1,3,12,17,18,27,30 \\ & 45 \end{aligned}$
5.9195 ± 0.6	$2^{+} ; 0$	6 ± 1	γ, α	$\begin{aligned} & 1,3,12,17,18,19,26, \\ & 27,29,30,45,48,49,50 \end{aligned}$
6.0250 ± 0.6	4^{+}	0.05 ± 0.03	γ, α	$\begin{aligned} & 1,3,17,18,19,23,25, \\ & 26,27,29,30,43,45, \\ & 49,50,53,55,56 \end{aligned}$
6.1272 ± 0.7	3^{-}	2.36 ± 0.03	α	$\begin{aligned} & 3,17,18,19,26,27,29, \\ & 43,45,49,56 \end{aligned}$

Table 10.5: Energy levels of ${ }^{10} \mathrm{~B}^{\mathrm{a}}$ (continued)

$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})$	$J^{\pi} ; T$	τ_{m} or $\Gamma_{\text {c.m. }}(\mathrm{keV})$	Decay	Reactions
6.561 ± 1.9	$(4)^{-}$	25.1 ± 1.1	α	$\begin{aligned} & 3,17,18,19,26,27,29 \\ & 30,43,45,48,49 \end{aligned}$
6.873 ± 5	$1^{-} ; 0+1$	120 ± 5	$\gamma, \mathrm{p}, \mathrm{d}, \alpha$	1, 12, 14, 16, 17
7.002 ± 6	$(1,2)^{+} ;(0)$	100 ± 10	$\mathrm{p}, \mathrm{d}, \alpha$	$\begin{aligned} & 3,16,17,19,26,27,29 \\ & 45,49,55 \end{aligned}$
7.430 ± 10	$2^{(-)} ; 0+1$	100 ± 10	$\gamma, \mathrm{p}, \mathrm{d}, \alpha$	1, 12, 16, 23
7.467 ± 10	1^{+}	65 ± 10	p	14, 45
7.479 ± 2	$2^{+} ; 1$	74 ± 4	γ, p	12, 14, 23, 45
7.5607 ± 0.9	$0^{+} ; 1$	2.65 ± 0.18	γ, p	12, 14, 17, 45
(7.67 ± 30)	$\left(1^{+} ; 0\right)$	250 ± 20	p, d	14, 16
7.819 ± 20	1^{-}	260 ± 30	p	$14,17,19,45$
8.07	2^{+}	800 ± 200	$\gamma, \mathrm{p}, \mathrm{d}$	16, 17, 23
(8.7)	$\left(1^{+}, 2^{+}\right)$	(≈ 200)	p	14, 16, 55
8.889 ± 6	3^{-}; 1	84 ± 7	$\gamma, \mathrm{n}, \mathrm{p}, \alpha$	13, 14, 16, 19, 23, 48
8.895 ± 2	$2^{+} ; 1$	40 ± 1	$\gamma, \mathrm{p}, \alpha$	12, 14, 16, 19, 23, 48
(9.7)	($T=1$)	(≈ 700)	$\mathrm{n}, \mathrm{p}, \alpha$	13, 16
10.84 ± 10	$\left(2^{+}, 3^{+}, 4^{+}\right)$	300 ± 100	$\gamma, \mathrm{n}, \mathrm{p}$	12, 13, 14, 23, 45
11.52 ± 35		500 ± 100	(γ)	23, 43, 45
12.56 ± 30	$\left(0^{+}, 1^{+}, 2^{+}\right)$	100 ± 30	γ, p	12, 14, 23, 45
13.49 ± 5	$\left(0^{+}, 1^{+}, 2^{+}\right)$	300 ± 50	γ, p	12, 23, 45
14.4 ± 100		800 ± 200	$\gamma, \mathrm{p}, \alpha$	3, 12, 43, 45
(18.2 ± 200)		(1500 ± 300)		45
18.43	$2^{-} ; 1$	340	$\gamma,{ }^{3} \mathrm{He}$	6, 8
18.80	$2^{+}, 1^{+}$	< 600	$\gamma,{ }^{3} \mathrm{He}, \alpha$	6,10
19.29	$2^{-} ; 1$	190 ± 20	$\gamma, \mathrm{n},{ }^{3} \mathrm{He}, \alpha$	6, 7, 8, 10
20.2	$1^{-} ; 1$	broad	$\gamma, \mathrm{n}, \mathrm{t},{ }^{3} \mathrm{He}, \alpha$	6, 7, 8, 9, 10, 22
(21.1)			$\gamma,{ }^{3} \mathrm{He}$	6
23.1		broad	γ, n	22

[^1]Table 10.6: Electromagnetic transitions in ${ }^{10} \mathrm{~B}{ }^{\text {a }}$

${ }^{a}$ For references see Table 10.6 in (1979AJ01).
${ }^{\mathrm{b}}$ From Table 10.7.
${ }^{c}$ See also Table 10.8 here. Branching ratios and Γ_{γ} / Γ from (1979KE08). The mixing ratios $\delta=0.12 \pm 0.05,0.03 \pm 0.03,0.02 \pm 0.03$ and 0.00 ± 0.02 for the transitions to ${ }^{10} \mathrm{~B}^{*}(0,0.72,2.15,3.59)$, respectively (1979KE08).
${ }^{\mathrm{d}}$ Other branches $<3 \%$.
${ }^{\mathrm{e}}$ For γ-decay of higher ${ }^{10} \mathrm{~B}$ states see Tables 10.8, 10.10, 10.11 and 10.12. See also Table 10.16.

Table 10.7: Lifetimes of ${ }^{10} \mathrm{~B}$ states

${ }^{10} \mathrm{~B}^{*}(\mathrm{MeV})$	τ_{m}	Reactions	Refs.
0.72	$1.020 \pm 0.005 \mathrm{nsec}$	mean	${ }^{\mathrm{a}}$
1.74	$7 \pm 3 \mathrm{fsec}$	${ }^{6} \mathrm{Li}(\alpha, \gamma)$	$(1979 \mathrm{KE} 08)$
2.15	$2.30 \pm 0.26 \mathrm{psec}$	mean	$(1979 \mathrm{AJ} 01)^{\mathrm{b}}$
	$1.9 \pm 0.3 \mathrm{psec}$	${ }^{6} \mathrm{Li}(\alpha, \gamma)$	$(1979 \mathrm{KE} 08)$
	$2.13 \pm 0.20 \mathrm{psec}$	mean	all values
3.59	$153 \pm 13 \mathrm{fsec}$	mean	$(1979 \mathrm{AJ01)}$
	$150 \pm 30 \mathrm{fsec}$	${ }^{6} \mathrm{Li}(\alpha, \gamma)$	$(1979 \mathrm{KE} 08)$
	$153 \pm 12 \mathrm{fsec}$	mean	all values
	$<6 \mathrm{fsec}$	${ }^{6} \mathrm{Li}(\alpha, \gamma)$	$(1979 \mathrm{KE} 08)$

${ }^{\text {a }}$ Weighted mean of last 7 values in Table 10.20 of (1966LA04) and of a new measurement by Vermeer, Bhalla and Polletti, $\tau_{\mathrm{m}}=1.020 \pm 0.005 \mathrm{nsec}$. I am indebted to Prof. F.C. Barker for informing me of this new value.
${ }^{\text {b }}$ Table 10.9 in (1979AJ01).

1. ${ }^{6} \mathrm{Li}(\alpha, \gamma)^{10} \mathrm{~B}$

$$
Q_{\mathrm{m}}=4.4603
$$

Observed resonances are displayed in Table 10.8. See also (1981GA1A, 1981MU1F).
2. (a) ${ }^{6} \mathrm{Li}(\alpha, \mathrm{n})^{9} \mathrm{~B}$
$Q_{\mathrm{m}}=-3.977$
$E_{\mathrm{b}}=4.4603$
(b) ${ }^{6} \mathrm{Li}(\alpha, \mathrm{p}){ }^{9} \mathrm{Be}$
$Q_{\mathrm{m}}=-2.1262$
(c) ${ }^{6} \mathrm{Li}(\alpha, \mathrm{d}){ }^{8} \mathrm{Be}$
$Q_{\mathrm{m}}=-1.5671$

The excitation functions for neutrons [from threshold to $E_{\alpha}=15.5 \mathrm{MeV}$] and for deuterons [$E_{\alpha}=9.5$ to 25 MeV ; $\mathrm{d}_{0}, \mathrm{~d}_{1}$ over most of range] do not show resonance structure. See also ${ }^{9} \mathrm{~B},{ }^{9} \mathrm{Be}$ and ${ }^{8} \mathrm{Be}$. For reaction (a) see also (1979BA48). See (1979AJ01) for references.
3. (a) ${ }^{6} \mathrm{Li}(\alpha, \alpha){ }^{6} \mathrm{Li}$
$E_{\mathrm{b}}=4.4603$
(b) ${ }^{6} \operatorname{Li}(\alpha, 2 \alpha)^{2} \mathrm{H}$
$Q_{\mathrm{m}}=-1.4753$

Table 10.8: Levels of ${ }^{10} \mathrm{~B}$ from ${ }^{6} \mathrm{Li}(\alpha, \gamma)^{10} \mathrm{~B}{ }^{\text {a }}$

	$E_{\text {res }}(\mathrm{keV})$	$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})$	$J^{\pi} ; T$	$\Gamma_{\text {lab }}(\mathrm{keV})$	Decay to $E_{\text {f }}$	Branch (\%)	$\omega \gamma(\mathrm{eV})$	$\Gamma_{\gamma}(\mathrm{eV})$
\checkmark	500 ± 25	4.761	$3^{+} ; 0$		$\begin{gathered} \hline 0 \\ 0.72 \end{gathered}$	$\begin{gathered} 0.5 \pm 0.1 \\ >99 \end{gathered}$		$0.020 \pm 0.004^{\text {c }}$
	1085	5.112	$2^{-} ; 0$	$1.63 \pm 0.11^{\text {b }}$	0	64 ± 7	$0.059 \pm 0.012^{\text {d }}$	
					0.72	31 ± 7	0.028 ± 0.008	
					1.74	5 ± 5	0.005 ± 0.005	
	$1175{ }^{\text {e }}$	5.166	$2^{+} ; 1$	<0.5	0	4.4 ± 0.4	0.018 ± 0.002	0.068 ± 0.007
					0.72	22.4 ± 0.6	0.090 ± 0.008	0.33 ± 0.03
					1.74	0.7 ± 0.2	$(2.8 \pm 0.8) \times 10^{-3}$	0.010 ± 0.003
					2.15	64.8 ± 0.9	0.259 ± 0.024	0.942 ± 0.090
					3.59	7.7 ± 0.3	0.031 ± 0.004	0.114 ± 0.015
	1210 ± 35	5.187	$1^{+} ; 0$	340 ± 50	1.74	≈ 100		0.06 ± 0.03
	$2435{ }^{\text {f }}$	5.922	2^{+}	10 ± 1	0	82 ± 5	0.19 ± 0.04	0.13 ± 0.03
					0.72	18 ± 5	0.04 ± 0.01	0.02 ± 0.01
					1.74		< 0.02	
	$2605{ }^{\text {f }}$	6.024	4^{+}	0.08 ± 0.05	0	≈ 100	0.34 ± 0.05	0.11 ± 0.02
					0.72		<0.02	
	$4019{ }^{\text {g }}$	6.873 ± 5	$1^{-} ; 0+1$	200 ± 10	0	6 ± 2		
					0.72	21 ± 4		
					1.74	59 ± 3		
					2.15	14 ± 4		
	$4963{ }^{\text {h }}$	7.440 ± 20	$2^{(-)} ; 0+1$	150 ± 15	h			

${ }^{a}$ For earlier references see Table 10.7 in (1979AJ01).
${ }^{\mathrm{b}}$ (1983NAZZ) and J. Napolitano, private communication.
${ }^{\mathrm{c}} \Gamma_{\gamma} / \Gamma=(2.3 \pm 0.3) \times 10^{-3} ; \Gamma_{\alpha}=8.4 \pm 1.8 \mathrm{eV}$ (E.K. Warburton and D.E. Alburger, private communication).
${ }^{\mathrm{d}}$ Absolute error only.
${ }^{\mathrm{e}}$ Branching ratios from (1979KE08); $\omega \gamma_{\text {c.m. }}=0.40 \pm 0.04 \mathrm{eV}$ (1979SP01), $0.43 \pm 0.07 \mathrm{eV}$ (prelim., J. Napolitano, private communication); $\Gamma_{\alpha} / \Gamma=0.16 \pm 0.04$ (1979SP01).
${ }^{\mathrm{f}}$ Values of $\omega \gamma$ (1966FO05) have been multiplied by 0.6 to convert them to the c.m. system. I am indebted to Prof. F.C. Barker for pointing out this problem.
${ }^{\mathrm{g}}$ Branching ratios calculated from 0° relative intensities; $\Gamma_{\alpha} / \Gamma_{\mathrm{p}}=1.25 \pm 0.12$.
${ }^{\mathrm{h}}$ At 0° the branches to ${ }^{10} \mathrm{~B}^{*}(0,0.72)$ are equally strong $((50 \pm 12) \%)$.

Table 10.9: ${ }^{10} \mathrm{~B}$ levels from ${ }^{6} \mathrm{Li}(\alpha, \alpha){ }^{6} \mathrm{Li}^{\text {a }}$

$E_{\alpha}(\mathrm{keV})$	$E_{\mathrm{x}}(\mathrm{MeV})$	$\Gamma_{\text {lab }}(\mathrm{keV})$	$J^{\pi} ; T$
1210 ± 30	5.19	175	$1^{+} ; 0$
2440^{b}	5.93	≈ 30	$2^{+} ; 0$
2606.0 ± 1.5	6.025	0.09 ± 0.04	4^{+}
$2785.5 \pm 1.5^{\mathrm{c}}$	6.133	3.93 ± 0.05	3^{-}
$3498.5 \pm 1.6^{\mathrm{d}}$	6.561	41.8 ± 1.9	$4^{-}, 2^{-}$
$4250 \pm 15^{\mathrm{d}}$	7.012	183 ± 25	$(2)^{+} ;(0)$
16000	14.1	broad	

${ }^{\text {a }}$ For references see Table 10.8 in (1979AJ01).
${ }^{\mathrm{b}} \Gamma_{\alpha}=9.7 \pm 0.1 \mathrm{keV}$ (1981HE05).
${ }^{\mathrm{c}} \Gamma_{\alpha}=2.45 \pm 0.12 \mathrm{keV}$ and $\Gamma_{\mathrm{d}}=0.08 \pm 0.05 \mathrm{keV}$ (1981HE05).
${ }^{\mathrm{d}}$ There is evidence of broad structure near these states.

Excitation functions of α_{0} and α_{1} have been reported for $E_{\alpha} \leq 18.0 \mathrm{MeV}$ and 9.5 to 12.5 MeV , respectively: see (1974AJ01). Reported anomalies are displayed in Table 10.9. Elastic scattering and VAP measurements are reported for $E_{\overline{\mathrm{d}}}=15.1$ to 22.7 MeV (1979EG01). Small anomalies are observed in the excitation function of the magnitude parameter (reaction (b)) corresponding to ${ }^{10} \mathrm{~B} *(8.67,9.65,10.32$, 11.65) (1983GO07). See, however, Table 10.5. See also ${ }^{6}$ Li, (1980SK1A) and (1979NO1C, 1979SU09, 1979SU1F, 1980FU1G, 1982LE10, 1983SH04; theor.).
4. ${ }^{6} \mathrm{Li}\left({ }^{6} \mathrm{Li}, \mathrm{d}\right){ }^{10} \mathrm{~B} \quad Q_{\mathrm{m}}=2.985$

Angular distributions of deuteron groups have been determined at $E\left({ }^{6} \mathrm{Li}\right)=2.4$ to $9.0 \mathrm{MeV}\left(\mathrm{d}_{0}, \mathrm{~d}_{1}, \mathrm{~d}_{3}\right)$ and 7.35 and $9.0 \mathrm{MeV}\left(\mathrm{d}_{4}, \mathrm{~d}_{5}\right)$. The d_{2} group is also observed but its intensity is weak: see (1974AJ01) and ${ }^{12} \mathrm{C}$ in (1980AJ01). See also (1979WA13).
5. ${ }^{6} \mathrm{Li}\left({ }^{7} \mathrm{Li}, \mathrm{t}\right){ }^{10} \mathrm{~B} \quad Q_{\mathrm{m}}=1.992$

Angular distributions of the t_{0} and t_{1} groups have been measured at $E\left({ }^{6} \mathrm{Li}\right)=3.3 \mathrm{MeV}$ and $E\left({ }^{7} \mathrm{Li}\right)=$ 3.78 to 5.95 MeV : see (1974AJ01).
6. ${ }^{7} \mathrm{Li}\left({ }^{3} \mathrm{He}, \gamma\right){ }^{10} \mathrm{~B} \quad Q_{\mathrm{m}}=17.7880$

Table 10.10: Resonances in ${ }^{7} \mathrm{Li}+{ }^{3} \mathrm{He}^{\text {a }}$

$E_{\text {res }}(\mathrm{MeV})$	$\Gamma_{\text {c.m. }}(\mathrm{keV})$	$E_{\mathrm{x}}(\mathrm{MeV})$	$J^{\pi} ; T$	$\Gamma_{\gamma}(\mathrm{eV})$ for transition to				$\Gamma_{\alpha}(\mathrm{keV})$	Γ_{n}	Γ_{p}	Γ_{t}
				g.s.	0.72	3.59	4.77				
0.92	340	18.43	$2^{-} ; 1$	≥ 3			≥ 17				
$1.45{ }^{\text {b }}$	< 600	18.80	$2^{+} ; 1^{+}$		≥ 20	$\geq 20^{\text {d }}$		res <80			
$2.15{ }^{\text {b }}$	$280{ }^{\text {c }}$	19.29	$2^{-} ; 1$	≥ 12			≥ 49	res <20	res n_{0}	(p)	
3.4	$910{ }^{\text {c }}$	20.2	$1^{-} ; 1$			≥ 350		res α_{2}	res n_{0}	(p)	res t_{0}
(4.7)		(21.1)			res						

${ }^{\text {a }}$ See references listed in Table 10.10 in (1974AJ01, 1979AJ01).
${ }^{\mathrm{b}}$ See (1979LIZT, 1980LI1F; abstracts).
${ }^{\mathrm{c}} \Gamma_{\text {c.m. }}=190 \pm 20$ and $350 \pm 70 \mathrm{keV}$, respectively, from the n_{0} yield.
${ }^{\mathrm{d}}$ Assumes isotropy of angular distribution.

Capture γ-rays have been observed for $E\left({ }^{3} \mathrm{He}\right)=0.8$ to 6.0 MeV . The γ_{0} and γ_{5} yields [to ${ }^{10} \mathrm{~B}^{*}(0$, 4.77)] show resonances at $E\left({ }^{3} \mathrm{He}\right)=1.1$ and $2.2 \mathrm{MeV}\left[E_{\text {res }}=0.92\right.$ and 2.1 MeV$]$, the γ_{1} and γ_{4} yields [to $\left.{ }^{10} \mathrm{~B} *(0.72,3.59)\right]$ at 1.4 MeV and the γ_{4} yield at 3.4 MeV : see Table 10.10 . Both the 1.1 and 2.2 MeV resonances $\left[{ }^{10} \mathrm{~B} *(18.4,19.3)\right]$ appear to result from s-wave capture; the subsequent decay is to two 3^{+}states $\left[{ }^{10} \mathrm{~B}^{*}(0,4.77)\right]$. Therefore the most likely assignment is $2^{-}, T=1$ for both [there appears to nbe no decay of these states via α_{2} to ${ }^{6} \mathrm{Li}^{*}(3.56)$ which has $J^{\pi}=0^{+}, T=1$: see reaction 10]. The assignment for ${ }^{10} \mathrm{~B} *(18.8)\left[1.4 \mathrm{MeV}\right.$ resonance] is 1^{+}or 2^{+}but there apprears to be α_{2} decay and therefore $J^{\pi}=2^{+}$. ${ }^{10} \mathbf{B} *(20.2)$ [3.4 MeV resonance] has an isotropic angular distribution of γ_{4} and therefore $J^{\pi}=0^{+}, 1^{-}, 2^{-}$. The γ_{2} group resonates at this energy which eliminates 2^{-}, and 0^{+}is eliminated on the basis of the strength of the transition which is too large for E2. See (1974AJ01) for references.
7. ${ }^{7} \mathrm{Li}\left({ }^{3} \mathrm{He}, \mathrm{n}\right){ }^{9} \mathrm{~B}$

$$
Q_{\mathrm{m}}=9.351
$$

$$
E_{\mathrm{b}}=17.7880
$$

The excitation curve is smooth up to $E\left({ }^{3} \mathrm{He}\right)=1.8 \mathrm{MeV}$ and the n_{0} yield shows resonance behavior at $E\left({ }^{3} \mathrm{He}\right)=2.2$ and $3.25 \mathrm{MeV}, \Gamma_{\text {lab }}=270 \pm 30$ and $500 \pm 100 \mathrm{keV}$. No other resonances are observed up to $E\left({ }^{3} \mathrm{He}\right)=5.5 \mathrm{MeV}$. See Table 10.10 and (1974AJ01) for references.
8. ${ }^{7} \mathrm{Li}\left({ }^{3} \mathrm{He}, \mathrm{p}\right){ }^{9} \mathrm{Be}$

$$
Q_{\mathrm{m}}=11.2015
$$

$$
E_{\mathrm{b}}=17.7880
$$

The yield of protons has been measured for $E\left({ }^{3} \mathrm{He}=0.60\right.$ to 4.8 MeV : there is some indication of weak maxima at $1.1,2.3$ and 3.3 MeV . Polarization measurements are reported at $E\left({ }^{3} \mathrm{He}\right)=14 \mathrm{MeV}$, and more recently at $E\left({ }^{3} \mathrm{He}\right)=13.6-13.7 \mathrm{MeV}$ (1981SL03) and 14.01 MeV (1983RI01). See also (1981VI1B). For the earlier references see (1974AJ01, 1979AJ01).
9. (a) ${ }^{7} \mathrm{Li}\left({ }^{3} \mathrm{He}, \mathrm{d}\right)^{8} \mathrm{Be}$
$Q_{\mathrm{m}}=11.7606$
$E_{\mathrm{b}}=17.7880$
(b) ${ }^{7} \mathrm{Li}\left({ }^{3} \mathrm{He}, \mathrm{t}\right)^{7} \mathrm{Be}$
$Q_{\mathrm{m}}=-0.881$
(c) ${ }^{7} \mathrm{Li}\left({ }^{3} \mathrm{He},{ }^{3} \mathrm{He}\right)^{7} \mathrm{Li}$

Yields of deuterons have been measured for $E\left({ }^{3} \mathrm{He}\right)=1.0$ to $2.5 \mathrm{MeV}\left(\mathrm{d}_{0}\right)$ and yields of tritons are reported for 2.0 to $4.2 \mathrm{MeV}\left(\mathrm{t}_{0}\right)$: a broad peak is reported at $E\left({ }^{3} \mathrm{He}\right) \approx 3.5 \mathrm{MeV}$ in the t_{0} yield. See (1979AJ01) for references. Polarization measurements are reported at $E\left({ }^{3} \overrightarrow{\mathrm{H}}\right)=33.3 \mathrm{MeV}$ for the deuteron groups to ${ }^{8} \mathrm{Be}^{*}(16.63,17.64,18.15)$ (1981BA38) and for the triton and ${ }^{3} \mathrm{He}$ groups to ${ }^{7} \mathrm{Be}^{*}(0,0.43)$ and ${ }^{7} \mathrm{Li} *(0,0.48,4.63)$ (1981BA37). See also (1979KA1G).
10. ${ }^{7} \mathrm{Li}\left({ }^{3} \mathrm{He}, \alpha\right){ }^{6} \mathrm{Li}$
$Q_{\mathrm{m}}=13.328$
$E_{\mathrm{b}}=17.7880$

Excitation functions have been measured for $E\left({ }^{3} \mathrm{He}\right)=1.3$ to 18.0 MeV : see (1974AJ01). The α_{0} group (at 8°) shows a broad maximum at $\approx 2 \mathrm{MeV}$, a minimum at 3 MeV , followed by a steep rise which flattens off between $E\left({ }^{3} \mathrm{He}\right)=4.5$ and 5.5 MeV . Integrated α_{0} and α_{1} yields rise monotonically to 4 MeV and then tend to decrease. Angular distributions give evidence of the resonances at $E\left({ }^{3} \mathrm{He}\right)=1.4$ and 2.1 MeV seen in ${ }^{7} \mathrm{Li}\left({ }^{3} \mathrm{He}, \gamma\right){ }^{10} \mathrm{~B}: J^{\pi}=2^{+}$or $1^{-}, T=(1)$ for both [see, however, reaction 6]: Γ_{α} is small. The α_{2} yield [to ${ }^{6} \mathrm{Li}^{*}(3.56), J^{\pi}=0^{+}, T=1$] shows some structure at $E\left({ }^{3} \mathrm{He}\right)=1.4 \mathrm{MeV}$ and a broad maximum at $\approx 3.3 \mathrm{MeV}$: see Table 10.10. Recent (unpublished) excitation studies have been reported at $E\left({ }^{3} \mathrm{He}\right)=0.6$ to 2.5 MeV for the $\alpha_{0}, \alpha_{1}, \alpha_{2}$ and α_{4} groups: the α_{4} group shows possible resonances at $E\left({ }^{3} \mathrm{He}\right)=1.45$ and $2.15 \mathrm{MeV} . J^{\pi}=2^{+} ; T=1$ is suggested for the lower structure (1979LIZT, 1980LI1F). Polarization measurements are reported at $E\left({ }^{3} \mathrm{He}\right)=33.3 \mathrm{MeV}$ to ${ }^{6} \mathrm{Li}^{*}(0,2.19,3.56)$ (1981BA38).
11. ${ }^{7} \operatorname{Li}(\alpha, \mathrm{n})^{10} \mathrm{~B}$
$Q_{\mathrm{m}}=-2.7898$

Angular distributions have been measured for $E_{\alpha}=4.78$ to 13.9 MeV [see (1974AJ01)] and more recently for $E_{\alpha}=4.4$ to 5.1 MeV (1981SE04). See also (1979AJ01).
12. ${ }^{9} \mathrm{Be}(\mathrm{p}, \gamma)^{10} \mathrm{~B}$

$$
Q_{\mathrm{m}}=6.5865
$$

Parameters of observed resonances are listed in Tables 10.11 and 10.12. Table 10.6 summarizes the γ transitions from this and other reactions. For references to the discussion below, see (1974AJ01, 1979AJ01).

The $E_{\mathrm{p}}=0.32 \mathrm{MeV}$ resonance $\left({ }^{10} \mathrm{~B}^{*}=6.87 \mathrm{MeV}\right)$ is ascribed to s-wave protons because of its comparitively large proton width [see ${ }^{9} \mathrm{Be}(\mathrm{p}, \mathrm{p})$] and because of the isotropy of the γ-radiation. The strong transition to ${ }^{10} \mathrm{~B}^{*}(1.74)$ requires E1 and hence $J^{\pi}=1^{-}, T=0 . T=0$ is also indicated by the large deuteron width. On the other hand, the strength of E 1 transitions to ${ }^{10} \mathrm{~B} *(0.7,2.1)$ indicates $T=1$. The amplitudes for the $T=0$ and $T=1$ parts of the wave function for ${ }^{10} \mathrm{~B}^{*}(6.87)$ are 0.92 and 0.39 , respectively. See (1982RI04) for the $5.16 \rightarrow 1.74$ decay (Table 10.6).

Table 10.11: Resonances in ${ }^{9} \mathrm{Be}(\mathrm{p}, \gamma)^{10} \mathrm{~B}{ }^{\text {a }}$

$E_{\mathrm{p}}(\mathrm{MeV} \pm \mathrm{keV})$	$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})$	$\Gamma_{\text {c.m. }}(\mathrm{keV})$	$J^{\pi} ; T$	$\Gamma_{\mathrm{p}} / \Gamma$	$\Gamma_{\gamma}(\mathrm{eV})$
0.319	6.873 ± 5	120 ± 5	$1^{-} ; 0+1$	0.30	4.8
0.938 ± 10	7.430	140 ± 30	$2^{(-)} ; 0+1$	0.7	2.4
(0.98)	(7.47)		$\left(2^{+}\right)$		
0.992 ± 2	7.479	72 ± 4	$2^{-} ; 1^{\mathrm{c}}$	≈ 0.65	25.8
1.0832 ± 0.4	7.5607	2.65 ± 0.18	$0^{+} ; 1$	1.0	8.5
1.29	7.75	210 ± 60	$2^{-} ;(1)$	≈ 0.65	8.5
2.567 ± 2	8.895	36 ± 2	$2^{+} ; 1$		
4.72^{b}	10.83	≈ 500	$2^{+}, 3^{+}, 4^{+}$		
6.7^{b}	12.6	<200	$0^{+}, 1^{+}, 2^{+}$		
$(7.0)^{\mathrm{b}}$	(12.9)	(≈ 100)	$\left(\pi==^{+}\right)$		
7.5^{b}	13.3	≈ 300	$0^{+}, 1^{+}, 2^{+}$		
8.4^{b}	14.1	≈ 250	$0^{+}, 1^{+}, 2^{+}$		
8.9^{b}	14.6	≈ 150	$2^{+}, 3^{+}, 4^{+}$		
10.0^{b}	15.6	≈ 400	$2^{+}, 3^{+}, 4^{+}$		
14.6^{b}	19.7	≈ 500	$2^{-}, 3^{-}, 4^{-}$		

${ }^{\text {a }}$ For references and for additional comments see table 10.11 in (1979AJ01). See Table 10.12 for decay schemes.
${ }^{\mathrm{b}}$ Unpublished Ph.D. thesis.
${ }^{\text {c }}$ See (1974AJ01). This state is assigned $J^{\pi}=2^{+}$on the basis of the (e, e^{\prime}) work (see Table 10.16). I am indebted to Dr. D. Kurath for his comments.

Table 10.12: Radiative transitions in ${ }^{9} \mathrm{Be}(\mathrm{p}, \gamma)^{10} \mathrm{~B}^{\text {a }}$

${ }^{a}$ For references and other values see Table 10.12 in (1979AJ01).
${ }^{\mathrm{b}}$ See, however, Table 10.8, footnote ${ }^{\mathrm{f}}$.
${ }^{\text {c }}$ See, however, Table 10.14.

The proton-capture data near $E_{\mathrm{p}}=1 \mathrm{MeV}$ appears to require at least five resonant states, at $E_{\mathrm{p}}=938$, (980), 992,1083 and 1290 keV . The narrow $E_{\mathrm{p}}=1083 \mathrm{keV}$ level $\left({ }^{10} \mathrm{~B}^{*}=7.56 \mathrm{MeV}\right)$ is formed by p-wave protons, $J^{\pi}=0^{+}\left[\right.$see $\left.{ }^{9} \mathrm{Be}(\mathrm{p}, \mathrm{p}),{ }^{9} \mathrm{Be}(\mathrm{p}, \alpha)\right]$. The isotropy of the γ-rays supports this assignment. The strong M1 transitions to $J^{\pi}=1^{+} ; T=0$ levels at $0.72,2.15$ and 5.18 MeV (Table 10.12) indicate $T=1$. The width of ${ }^{10} \mathrm{~B} *(5.18)$ observed in the decay is $100 \pm 10 \mathrm{keV}$.

The excitation function for the ground-state radiation shows resonance at $E_{\mathrm{p}}=992(\Gamma=80 \mathrm{keV})$ and $1290 \mathrm{keV}(\Gamma=230 \mathrm{keV})$. Elastic scattering studies indicate s-wave formation and $J^{\pi}=2^{-}$for both. For the lower level ($E_{\mathrm{x}}=7.48 \mathrm{MeV}$) the intensity of the g.s. capture radiation, $\Gamma_{\gamma}=25 \mathrm{eV}$ indicates E1 and $T=1$. The angular distribution of γ-rays, $1+0.1 \sin ^{2} \theta$, is consistent with s -wave formation with some d-wave admixture or with some contribution from a nearby p-wave resonance; possibly a $J^{\pi}=2^{+}$level at $E_{\mathrm{p}}=980 \mathrm{keV}$.

The angular distribution of ground-state radiation at $E_{\mathrm{p}}=1330 \mathrm{keV}$ is isotropic and $\Gamma_{\gamma}=8.5 \mathrm{eV}$, supporting E1, $T=1$ for this level ($E_{\mathrm{x}}=7.75 \mathrm{MeV}$).

Transitions to ${ }^{10} \mathrm{~B} *(0.7)\left[\gamma_{1}\right]$ show resonances at $E_{\mathrm{p}}=992,1290 \mathrm{adn} 938 \mathrm{keV}, \Gamma=155 \mathrm{keV}$. The latter is presumably also a resonance for (p, d) and (p, α). An assignment of $J^{\pi}=2^{-}, T=0$ is consistent with the data, although the E1 radiation then seems somewhat too strong for a $\Delta T=0$ transition.

A resonance for capture radiation at $E_{\mathrm{p}}=2.567 \pm 0.003\left(E_{\mathrm{x}}=8.895 \mathrm{MeV}\right)$ has a width of $40 \pm 2 \mathrm{keV}$ and decays mainly via ${ }^{10} \mathrm{~B} *(0.7)$ (unpublished Ph.D. thesis). It appears from the width that this resonance corresponds to that observed in ${ }^{9} \operatorname{Be}(\mathrm{p}, \alpha), J^{\pi}=2^{+}, T=1$ and not to the ${ }^{9} \mathrm{Be}(\mathrm{p}, \mathrm{n})$ resonance at the same energy. A further resonance is reported at $E_{\mathrm{p}}=4.72 \pm 0.01 \mathrm{MeV}, \Gamma \approx 0.5 \mathrm{MeV}$.

In the range $E_{\mathrm{p}}=4$ to 18 MeV , the γ_{0} yield at 90° shows the resonance at $E_{\mathrm{p}}=4.7 \mathrm{MeV}\left(E_{\mathrm{x}}=10.7\right.$ MeV) and shows fluctuations suggesting states at $E_{\mathrm{x}} \approx 14.6,15.6$ and 19.7 MeV . It is suggested that ${ }^{10} \mathrm{~B} *(19.7)$ decays via E 1 and therefore $J^{\pi}=2^{-}, 3^{-}, 4^{-}$. The other three states presumably decay by M1 and therefore $J^{\pi}=2^{+}, 3^{+}, 4^{+}$. These fluctuations appear on a nearly constant γ_{0} yield with a 90° differential cross section $\approx 1.5 \mu \mathrm{~b} / \mathrm{sr}$. The average yield of γ_{1} is $\approx \frac{2}{3}$ of the γ_{0} yield. The broad giant resonance peak is centered at $E_{\mathrm{x}} \approx 14.5 \mathrm{MeV}$. Fluctuations in the γ_{1} yield are reported at $E_{\mathrm{x}} \approx 12.6$, 13.3 and 14.1 MeV . These states presumably decay by M1 to ${ }^{10} \mathrm{~B} *(0.7)\left[J^{\pi}=1^{+}\right]$and therefor $J_{\mathrm{i}}^{\pi}=0^{+}$, $1^{+}, 2^{+}$. The weak γ_{2} yield (to ${ }^{10} \mathbf{B}^{*}(1.74)\left[J^{\pi} ; T=0^{+} ; 1\right]$) seems to exhibit a broad peak centered near $E_{\mathrm{x}}=15 \mathrm{MeV}$ (maximum 90° differential cross section $\approx 0.5 \mu \mathrm{~b} / \mathrm{sr}$) and possibly some structure near $E_{\mathrm{x}}=20 \mathrm{MeV}$. The γ_{3} yield (to ${ }^{10} \mathrm{~B}^{*}(2.15)\left[J^{\pi}=1^{+}\right]$) increases to $\approx 0.4 \mu \mathrm{~b} / \mathrm{sr}$ at $E_{\mathrm{x}} \approx 16 \mathrm{MeV}$ and seems to remain constant beyond that energy, with some suggestion of a fluctuation corresponding to $E_{\mathrm{x}} \approx 12.9 \mathrm{MeV} .{ }^{10} \mathbf{B}^{*}(12.9)$ appears to have positive parity. Angular distributions of $\gamma_{0}, \gamma_{1}, \gamma_{2}$ and γ_{3} are also reported (unpublished Ph.D. thesis).

The magnetic moment of ${ }^{10} \mathbf{B}^{*}(0.72)$ has been studied via $\gamma-\gamma$ correlations from ${ }^{10} \mathbf{B}^{*}(7.56): \mathrm{g}=$ $+0.63 \pm 0.12$.
13. ${ }^{9} \mathrm{Be}(\mathrm{p}, \mathrm{n}){ }^{9} \mathrm{~B}$

$$
Q_{\mathrm{m}}=-1.851
$$

$$
E_{\mathrm{b}}=6.5865
$$

Resonances in the neutron yield occur at $E_{\mathrm{p}}=2562 \pm 6,4720 \pm 10 \mathrm{and}$, possibly, at 3500 keV with $\Gamma_{\text {c.m. }}=84 \pm 7, \approx 500$ and $\approx 700 \mathrm{keV}$. These three resonances correspond to ${ }^{10} \mathrm{~B} *(8.891,10.83,9.7)$: see Table 10.13 in (1974AJ01). Cross-section measurements for the (p, n) and ($\mathrm{p}, \mathrm{n}_{0}$) reactions have been obtained by (1983BY01; $E_{\mathrm{p}}=8.15$ to 15.68 MeV) [see also for a review of earlier work]. They indicate possible structure in ${ }^{10}$ B near $13-14 \mathrm{MeV}$ (1983BY01).

The $E_{\mathrm{p}}=2.56 \mathrm{MeV}$ resonances is considerably broader than that observed at the same energy in ${ }^{9} \mathrm{Be}(\mathrm{p}$, $\alpha)$ and ${ }^{9} \operatorname{Be}(\mathrm{p}, \gamma)$ and the two resonances are believed to be distinct. The shape of the resonance and the magnitude of the cross section an be accounted for with $J^{\pi}=3^{-}$or 3^{+}; the former assignment is in better accord with ${ }^{10} \mathrm{Be}^{*}(7.37)$. For $J^{\pi}=3^{-}, \theta_{\mathrm{n}}^{2}=0.135, \theta_{\mathrm{p}}^{2}=0.115(R=4.47 \mathrm{fm})$: see (1974AJ01).

The analyzing power for n_{0} has been measured for $E_{\overrightarrow{\mathrm{p}}}=2.7$ to 17 MeV (1980MA33, 1981BY1B, 1981BY1C, 1981MU1D), as has P^{y} near 8.1 MeV . See also (1983BY01). The polarization transfer coefficient has been studied for $E_{\overrightarrow{\mathrm{p}}}=3.9$ to 15.1 MeV by (1976LI08): negative values of $K_{\mathrm{y}}^{\mathrm{y}^{\prime}}(0)$ are reported near $E_{\mathrm{p}}=7 \mathrm{MeV}$ in a region where several states are known to exist in ${ }^{10} \mathrm{~B}$; a spin-flip mechanism may also be involved. Polarization measurements are also reported at $E_{\overrightarrow{\mathrm{p}}}=135 \mathrm{MeV}$ (1981MA1J) and 800 MeV (1981RI06). See also ${ }^{9}$ B, (1979AJ01), (1979BA68), (1980WA1K, 1981WA1G, 1982BY1A) and (1978BA1F, 1981UL1B; applications).
14. (a) ${ }^{9} \mathrm{Be}(\mathrm{p}, \mathrm{p})^{9} \mathrm{Be}$

$$
E_{\mathrm{b}}=6.5865
$$

(b) ${ }^{9} \mathrm{Be}(\mathrm{p}, \mathrm{pn}){ }^{8} \mathrm{Be}$

$$
Q_{\mathrm{m}}=-1.6655
$$

The elastic scattering has been studied for $E_{\mathrm{p}}=0.2$ to 9.5 MeV [see (1974AJ01, 1979AJ01)] and (1980BO1L; $E_{\mathrm{p}}=2.31 \rightarrow 2.73 \mathrm{MeV} ; \mathrm{p}_{0}$). Below $E_{\mathrm{p}}=0.7 \mathrm{MeV}$ only s-waves are present exhibiting resonance at $E_{\mathrm{p}}=330 \mathrm{keV}\left[{ }^{10} \mathrm{~B}^{*}(6.88)\right], J^{\pi}=1^{-}$. Between $E_{\mathrm{p}}=0.8$ to 1.6 MeV polarization and cross-section measurements are well fitted by a phase-shift analysis, using only the ${ }^{3} \mathrm{~S}_{1},{ }^{5} \mathrm{~S}_{2},{ }^{5} \mathrm{P}_{1}$ and ${ }^{5} \mathrm{P}_{2}$ phases. Four levels satisfy the data, 1^{+}and 2^{-}states at $E_{\mathrm{x}}=7.48 \mathrm{MeV}$, a sharp 0^{+}state at $E_{\mathrm{x}}=7.56$ MeV , and a 1^{-}state at 7.82 MeV : see Table 10.13. Pronounced minima at $E_{\mathrm{p}}=2.48$ and 2.55 are observed in the polarization $\left(p_{0}\right)$: these are ascribed to $T=1$ analogs of the 3^{-}and 2^{+}states ${ }^{10} \mathrm{Be}^{*}(7.37,7.52)$. A strong anomaly is observed at $E_{\mathrm{p}}=6.7 \mathrm{MeV}$: see Table 10.13.

Polarization measurements have been reported at $E_{\mathrm{p}}=0.9$ to 49.8 MeV , at 138.2 and 145 MeV , and at 990 MeV [see (1974AJ01, 1979AJ01)] and at $E_{\overrightarrow{\mathrm{p}}}=780 \mathrm{MeV}$ (1982RA20) as well as at 1 GeV (1983BE16). See also ${ }^{9} \mathrm{Be} . A_{\mathrm{y}}$ and $K_{\mathrm{y}}^{\mathrm{y}}$ have been measured at $E_{\overrightarrow{\mathrm{p}}}=225 \mathrm{MeV}$ (1981RO1M; por $)$. Total reaction cross sections have been measured at eight energies in the range $E_{\mathrm{p}}=225$ to 557 MeV (1979SC07). Inclusive cross sections have been measured by (1979FR12, 1979KO21, 1980NI09). Polarization transfer parameters have been measured at $E_{\mathrm{p}}=800 \mathrm{MeV}$ (1981RI06). Hadron multiple production has been studied by (1978AR1J). For pion and kaon production at 400 GeV see (1980NI09). For reaction (b) see ${ }^{9} \mathrm{Be}$ and (1982PE1F). See also (1981BA1R, 1981CO1D, 1981NA05, 1981WA1G, 1982BA2T, 1983SEZW), (1983LE28; astrophysics) and (1978BH1B, 1979BY01, 1979WE1C, 1981BO1C, 1981KR17, 1983BY01; theor.).
$\begin{array}{rll}\text { 15. (a) }{ }^{9} \mathrm{Be}(\mathrm{p}, \mathrm{t})^{7} \mathrm{Be} & Q_{\mathrm{m}}=-12.082 & E_{\mathrm{b}}=6.5865 \\ (\mathrm{~b}){ }^{9} \mathrm{Be}\left(\mathrm{p},{ }^{3} \mathrm{He}\right){ }^{7} \mathrm{Li} & Q_{\mathrm{m}}=-11.201 & \end{array}$

Polarization measurements (reaction (b)) are reported at $E_{\overrightarrow{\mathrm{p}}}=23.06 \mathrm{MeV}$ (1983RI01). See also (1979AR04, 1981BA1R, 1981SL03, 1983SEZW).

Table 10.13: Resonances in ${ }^{9} \mathrm{Be}(\mathrm{p}, \mathrm{p})^{9} \mathrm{Be}^{\mathrm{a}}$

$E_{\text {res }}(\mathrm{keV})$	$E_{\mathrm{x}}(\mathrm{MeV})$	$\Gamma_{\text {c.m. }}(\mathrm{keV})$	J^{π}	$\Gamma_{\mathrm{p}} / \Gamma$
330	6.88	145	1^{-}	0.30
980 ± 10	7.468	65 ± 10	1^{+}	1.0
980 ± 10	7.468	80 ± 8	$2^{-\mathrm{d}}$	0.90 ± 0.05
1084 ± 2	7.561	2.7	0^{+}	1.0
(1200 ± 30)	(7.66)	250 ± 20	$\left(1^{+}\right)$	0.30 ± 0.10
1370 ± 20	7.819	265 ± 30	1^{-}	0.90 ± 0.05
(2070 ± 10)	(8.4)	70 ± 10	$\left(1^{-}, 2^{-}\right)$	0.43
(2300)	(8.65)	≈ 300	$\left(1^{+}, 2^{+}\right)$	
(2480)	(8.82)		$\left(3^{-} ; 1\right)$	
2560	8.89		$\geq 2 ;(1)^{\mathrm{c}}$	large
(4600)	(10.7)			
(5100)	(11.2)			
$6700{ }^{\mathrm{b}}$	12.6	broad		

${ }^{a}$ For references and for a listing of other reported resonances see Table 10.13 in (1979AJ01).
${ }^{\mathrm{b}}$ Weak resonance near $E_{\mathrm{p}}=6.5 \mathrm{MeV}$ in p_{0}.
${ }^{\mathrm{c}}$ Resonance shape shows $l_{\mathrm{p}}=2$ formation with a large $\Gamma_{\mathrm{p}} / \Gamma$: the contribution from the 2^{+}state appears small (1977KI04).
${ }^{\mathrm{d}}$ See, however, Table 10.16 and footnote ${ }^{\mathrm{a}}$ in Table 10.13 of (1979AJ01).
16. (a) ${ }^{9} \mathrm{Be}(\mathrm{p}, \mathrm{d}){ }^{8} \mathrm{Be}$

$$
Q_{\mathrm{m}}=0.5591
$$

$$
E_{\mathrm{b}}=6.5865
$$

(b) ${ }^{9} \mathrm{Be}(\mathrm{p}, \alpha){ }^{6} \mathrm{Li}$
$Q_{\mathrm{m}}=2.126$

Knowledge of the cross sections of these two reactions at low energies is of importance for power generation and astrophysical considerations. Absolute cross sections for the d_{0} and α_{0} groups have been measured for $E_{\mathrm{p}}=28$ to 697 keV with $\pm 5-6 \%$ uncertainty. The value of $S_{\mathrm{c} . \mathrm{m} .}(E=0)$ for the combined cross sections is estimated to be $35_{-15}^{+45} \mathrm{MeV} \cdot \mathrm{b}$. At the 0.33 MeV resonance $\left(J^{\pi}=1^{-}\right), \sigma_{\alpha_{0}}=360 \pm 20$ mb and $\sigma_{\mathrm{d}_{0}}=470 \pm 30 \mathrm{mb}$. The data (including angular distributions), analyzed by an R-matrix compound nucleus model, were fitted by assuming three states at E_{p} (c.m. $)=-20 \mathrm{keV}\left(J^{\pi}=2^{+} ; 3^{+}\right.$possible) $\left[E_{\mathrm{x}}=\right.$ 6.57 MeV] [see, however, Table 10.9], $310 \mathrm{keV}\left(1^{-}\right)$and $410 \mathrm{keV}\left(1^{+} ; 2^{+}\right.$or 3^{+}possible) (1973SI27).

Measurements of excitation functions for deuterons and α-particles have been reported at a number of energies to $E_{\mathrm{p}}=15 \mathrm{MeV}$: see (1974AJ01, 1979AJ01), Observed resonances are displayed in Table 10.14.

Polarization measurements have been made in the range $E_{\mathrm{p}}=0.30$ to 15 MeV and at 185 MeV : see (1974AJ01, 1979AJ01). See also ${ }^{6} \mathrm{Li},{ }^{8} \mathrm{Be}$ and (1979AR04, 1983SEZW).

Table 10.14: Resonances in ${ }^{9} \mathrm{Be}(\mathrm{p}, \mathrm{d})^{8} \mathrm{Be}$ and ${ }^{9} \mathrm{Be}(\mathrm{p}, \alpha)^{6} \mathrm{Li}^{\mathrm{a}}$

$E_{\mathrm{p}}(\mathrm{MeV})$	$E_{\mathrm{x}}(\mathrm{MeV})$	$\Gamma_{\text {c.m. }}(\mathrm{keV})$	$J^{\pi} ; T$	$\Gamma_{\mathrm{p}} / \Gamma$	θ_{p}^{2}	θ_{d}^{2}	θ_{α}^{2}
0.34	6.89		$1^{-} ; 0$	0.30	0.34	0.15	0.055
0.46	7.00		$1^{+}\left(2^{+}, 3^{+}\right)^{\mathrm{d}}$		0.3	0.3	0.1
(0.68)	(7.20)						
0.94	7.43	140	$\left(2^{-} ; 0\right)$	0.7	0.04	0.02	
1.15	7.62	225 ± 50	$\left(1^{+} ; 0\right)$	≈ 0.4	≈ 0.1		
1.65	8.07	800 ± 200	$\left(2^{-} ; 0\right)$	≈ 0.07	0.18	0.21	
(2.3)	(8.7)	(≈ 220)					
2.56^{b}	8.89	36 ± 2	$2^{+} ; 1$				
3.5^{c}	9.7		$T=1$				
$4.49^{\text {c }}$	10.62		$T=1$				

${ }^{a}$ For references and for a listing of other reported references see Table 10.14 in (1979AJ01).
${ }^{\mathrm{b}}$ (1977KI04) have analyzed the $\left(\alpha_{2} \gamma\right)$ and p_{0} yields with an R-matrix formalism and find the following parameters:

$$
\left.\begin{array}{cc}
2.566 \pm 0.001 & 2^{+} \\
2.561_{-2}^{+10} & 3^{-}
\end{array}\right\} \quad \Gamma_{\text {c.m. }}=\left\{\begin{array}{c}
40 \pm 1 \mathrm{keV} \\
100 \pm 20 \mathrm{keV}
\end{array}\right.
$$

${ }^{\mathrm{c}}$ Resonance for α_{2} to ${ }^{6} \mathrm{Li}^{*}(3.56), J^{\pi}=0^{+}, T=1$.
${ }^{\mathrm{d}}$ See, however, Table 10.9.
17. ${ }^{9} \mathrm{Be}(\mathrm{d}, \mathrm{n}){ }^{10} \mathrm{~B}$

$$
Q_{\mathrm{m}}=4.3620
$$

Neutron groups are observed corresponding to the ${ }^{10} \mathrm{~B}$ states listed in Table 10.15. Angular distributions have been measured for $E_{\mathrm{d}}=0.5$ to 16 MeV : see (1974AJ01, 1979AJ01). Observed γ-transitions are listed in Table 10.16 of (1979AJ01). See Tables 10.6 and 10.7 here for the parameters of radiative transitions and for τ_{m}.

From all the various experiments the follwoing picture emerges: the first five states of ${ }^{10} \mathrm{~B}$ have even parity [from l_{p}]. The ground state is known to have $J=3$, by direct measurement, and ${ }^{10} \mathrm{~B} *(1.74)$ has $J^{\pi}=0^{+}$and is the $T=1$ analog of the ${ }^{10} \mathrm{C}_{\text {g.s. }}$. [from the β^{+}decay of $\left.{ }^{10} \mathrm{C}\right]$. Then looking at the branching ratios and lifetimes of the other states, the sequence for ${ }^{10} \mathrm{~B}^{*}(0,0.72,1.74,2.15,3.59)$ is $J^{\pi}=3^{+}, 1^{+}, 0^{+}$, $1^{+}, 2^{+}$[see discussion in (1966LA04, 1966WA10)].

For polarization measurements see (1981BR1E) and ${ }^{11}$ B in (1980AJ01, 1985AJ01). See also (1977BA1L, 1978PL1B) and (1978BA1F, 1979WA1F, 1982OV1A, 1982SM1F; applications).
18. ${ }^{9} \mathrm{Be}\left({ }^{3} \mathrm{He}, \mathrm{d}\right){ }^{10} \mathrm{~B}$

$$
Q_{\mathrm{m}}=1.0930
$$

Table 10.15: Levels of ${ }^{10} \mathrm{~B}$ from ${ }^{9} \mathrm{Be}(\mathrm{d}, \mathrm{n})$ and ${ }^{9} \mathrm{Be}\left({ }^{3} \mathrm{He}, \mathrm{d}\right){ }^{\text {a }}$

$E_{\mathrm{x}}(\mathrm{MeV})^{\mathrm{a}}$	${ }^{9} \mathrm{Be}(\mathrm{d}, \mathrm{n}){ }^{\text {b }}$		${ }^{9} \mathrm{Be}\left({ }^{3} \mathrm{He}, \mathrm{d}\right){ }^{\text {c }}$		$J^{\pi} ; T$
	l_{p}	$S_{\text {rel }}$	l_{p}	$(2 J+1) C^{2} S$	
0	1	1.0	1	3.30	$3^{+} ; 0$
0.72	1	1.97	1	2.76	$1^{+} ; 0$
1.74	1	1.42	1	1.20	$0^{+} ; 1$
2.15	1	0.41	1	0.82	$1^{+} ; 0$
3.59	1	0.10	1	0.29	$2^{+} ; 0$
4.77	(≥ 2)		1^{+}	0.10	$3^{+} ; 0$
			(3) ${ }^{\text {e }}$	≤ 0.82	
5.11	0	0.14	$0+2$	0.34, 0.14	$2^{-} ; 0$
5.16					$2^{+} ; 1$
	1	0.43	1	0.86	
5.18)					$1^{+} ; 0$
5.92	1	0.49	1	2.05	$2^{+} ; 0$
6.03			(3) ${ }^{\text {e }}$	≤ 0.20	4^{+}
6.13	(2)		(2) ${ }^{\mathrm{f}}$	3.04	3^{-}
6.56	(3)		(2) ${ }^{\mathrm{f}}$	2.01	(4) ${ }^{-}$
6.89 ± 15	(1)				$1^{-} ; 0+1$
7.00 ± 15	(1)				$(1,2)^{+} ;(0)$
7.48 ± 15	d				g
7.56 ± 25	d				$0^{+} ; 1$
(7.85 $\pm 50)$	d				1^{-}
(8.07 ± 50)	d				$\left(2^{-} ; 0\right)$
(8.12 ± 50)	d				

${ }^{\text {a }}$ Values without uncertainties are from Table 10.5; others are from Table 10.15 in (1979AJ01). See that table for additional information and for references.
${ }^{\mathrm{b}} S_{\text {rel }}$ from experiment at $E_{\mathrm{d}}=12.0-16.0 \mathrm{MeV}$. (1974KE06) have reanalyzed the results for ${ }^{10} \mathrm{~B}^{*}(0,1.74)$ and find $S_{\text {rel }}$ (ave.) $=1.0$ and 1.36. For values at other energies see Table 10.15 in (1979AJ01).
${ }^{c}\left(\right.$ 1980BL02; $\left.E\left({ }^{3} \mathrm{He}\right)=18 \mathrm{MeV}\right)$; DWBA analysis; values shown are those obtained with one of the two optical model potentials used in the analysis. For earlier (${ }^{3} \mathrm{He}$, d) results see Table 10.17 in (1979AJ01).
${ }^{\mathrm{d}}$ State observed in (d, n) reaction; l_{p} not determined.
${ }^{e}$ Angular distribution poorly fitted by DWBA (1980BL02).
${ }^{\mathrm{f}}$ See (1980BL02) for a discussion of these two states, including a comparison with the (d, n) data: $l_{\mathrm{p}}=2$ is slightly preferred to $l_{\mathrm{p}}=1$ on the basis of observed strengths. Neither $l_{\mathrm{p}}=2$ or 1 gives a good DWBA fit.
${ }^{\mathrm{g}}$ Group shown corresponds to unresolved states in ${ }^{10} \mathrm{~B}$.

Deuteron groups have been observed to a number of states of ${ }^{10} \mathrm{~B}$: see Table 10.15 . Angular distributions have been reported at $E\left({ }^{3} \mathrm{He}\right)=10$ to 25 MeV , at $E\left({ }^{3} \mathrm{He}\right)=33.3 \mathrm{MeV}$ [see (1974AJ01, 1979AJ01)] and at $E\left({ }^{3} \mathrm{He}\right)=18 \mathrm{MeV}$ (1980BL02). Spectroscopic factors obtained in the (d, n) and $\left({ }^{3} \mathrm{He}, \mathrm{d}\right)$ reactions are not in good agreement: see the discussions in (1974KE06, 1980BL02).

$$
\text { 19. }{ }^{9} \mathrm{Be}(\alpha, \mathrm{t})^{10} \mathrm{~B} \quad Q_{\mathrm{m}}=-13.2275
$$

Angular distributions have been studied at $E_{\alpha}=27,28.3$ and 43 MeV [see (1979AJ01)], at $E_{\alpha}=30.1$ MeV (1983VA1H; $\alpha_{0}, \alpha_{1}, \alpha_{3}, \alpha_{4}$) and at 65 MeV (1980HA33). In the latter experiment DWBA analyses have been made of the distributions to ${ }^{10} \mathrm{~B} *(0,0.72,1.74,2.15,3.59,5.2,5.92,6.13,6.56,7.00,7.5,7.82$, 8.9) and spectroscopic factors were derived. The distributions to ${ }^{10} \mathrm{~B} *(4.77,6.03)$ could not be fitted by either DWBA or coupled-channel analyses. In general, coupled-channels calculations give a better fit to the 65 MeV data than does DWBA (1980HA33; see also for a comparison with the (d, n) and ($\left.{ }^{3} \mathrm{He}, \mathrm{d}\right)$ results). See also (1978ZE03; theor.).
20. ${ }^{9} \mathrm{Be}\left({ }^{7} \mathrm{Li},{ }^{6} \mathrm{He}\right){ }^{10} \mathrm{~B}$

$$
Q_{\mathrm{m}}=-3.388
$$

At $E\left({ }^{7} \mathrm{Li}\right)=34 \mathrm{MeV}$ angular distributions have been obtained for the ${ }^{6} \mathrm{He}$ ions to the first four states of ${ }^{10} \mathrm{~B}$. Absolute values of the spectroscopic factors are $S=0.88,1.38\left(\mathrm{p}_{1 / 2}\right.$ or $\left.\mathrm{p}_{3 / 2}\right), 1.40$ and $0.46\left(\mathrm{p}_{1 / 2}\right)$, $0.54\left(\mathrm{p}_{3 / 2}\right)$ for ${ }^{10} \mathrm{~B} *(0,0.74,1.74,2.15)$ (FRDWBA analysis) (1977KE09).
$21 .{ }^{10} \operatorname{Be}\left(\beta^{-}\right){ }^{10} \mathbf{B}$

$$
Q_{\mathrm{m}}=0.5568
$$

See ${ }^{10} B e$.
22.
(a) ${ }^{10} \mathrm{~B}(\gamma, \mathrm{n}){ }^{9} \mathrm{~B}$
$Q_{\mathrm{m}}=-8.437$
(b) ${ }^{10} \mathrm{~B}(\gamma, \mathrm{p})^{9} \mathrm{Be}$
$Q_{\mathrm{m}}=-6.5865$
(c) ${ }^{10} \mathrm{~B}(\gamma, \mathrm{~d})^{8} \mathrm{Be}$
$Q_{\mathrm{m}}=-6.0274$
(d) ${ }^{10} \mathrm{~B}(\gamma, \alpha){ }^{6} \mathrm{Li}$
$Q_{\mathrm{m}}=-4.4603$

Absolute measurements have been made of the ${ }^{10} \mathrm{~B}(\gamma, \mathrm{Tn})$ cross section from threshold to 35 MeV with quasimonoenergetic photons; the integrated cross section is 0.54 in units of the classical dipole sum $(60 N Z / A \mathrm{MeV} \cdot \mathrm{mb})$. The $(\gamma, 2 \mathrm{n})+(\gamma, 2 \mathrm{np})$ cross section is zero, within statistics, for $E_{\gamma}=16$ to 35 MeV (1976KN04). The giant resonance is broad with the major structure contained in two peaks at $E_{\mathrm{x}}=20.1 \pm 0.1$ and $23.1 \pm 0.1 \mathrm{MeV}\left(\sigma_{\max } \approx 5.5 \mathrm{mb}\right.$ for each of the two maxima). For reaction (b) see (1974AJ01); for reactions (c) and (d) see (1959AJ76, 1966LA04). See also (1978DI1A, 1979TA1C) and (1981KE16, 1983GO1T; theor.).

Table 10.16: Radiative widths for ${ }^{10} \mathrm{~B}\left(\mathrm{e}, \mathrm{e}^{\prime}\right)^{\mathrm{a}}$

E_{x} in ${ }^{10} \mathrm{~B}(\mathrm{MeV})$	$J^{\pi} ; T$	Mult.	$\Gamma_{\gamma_{0}}(\mathrm{eV})$
1.74	$0^{+} ; 1$	M3	$(1.05 \pm 0.25) \times 10^{-7}$
$5.16 \pm 0.04{ }^{\text {b }}$	$2^{+} ; 1$	\{ M1	0.05 ± 0.05
5.16 ± 0.04	2,1	M3	$(1.1 \pm 0.1) \times 10^{-6}$
6.03	4^{+}	\{ C 2	0.106 ± 0.005
6.03	4	(C 4	$(3.3 \pm 0.8) \times 10^{-7}$
7.48	$2^{+} ; 1^{\text {c }}$	M1	11.75 ± 0.75
8.07	$2^{+\mathrm{d}}$	C2	0.19 ± 0.02
8.9	$2^{+} ; 1$	$\left\{\begin{array}{l}\text { M1 } \\ \text { M3 }\end{array}\right.$	$\begin{gathered} 0.3 \pm 0.1 \\ (1.0 \pm 0.1) \times 10^{-5} \end{gathered}$
	$3^{-} ; 1$	M2	$(1.2 \pm 0.1) \times 10^{-3}$
$10.79{ }^{\text {c }}$		M1 or C2	
$11.56{ }^{\text {c }}$		(M1)	$11.4 \pm 2.3^{\text {c }}$
12.6			
13.3			

[^2]23. (a) ${ }^{10} \mathrm{~B}(\mathrm{e}, \mathrm{e})^{10} \mathrm{~B}$
(b) ${ }^{10} \mathrm{~B}(\mathrm{e}, \text { en) })^{9} \mathrm{~B}$
\[

$$
\begin{aligned}
Q_{\mathrm{m}} & =-8.437 \\
Q_{\mathrm{m}} & =-6.5865 \\
Q_{\mathrm{m}} & =-140.124
\end{aligned}
$$
\]

(c) ${ }^{10} \mathrm{~B}(\mathrm{e}, \mathrm{ep}){ }^{9} \mathrm{Be}$
(d) ${ }^{10} \mathrm{~B}\left(\mathrm{e}, \mathrm{e} \pi^{+}\right)^{10} \mathrm{Be}$

Inelastic electron groups are displayed in Table 10.16 (1979AN08). For reactions (b) and (c) see (1978SH14); for reaction (c) see (1978NA05); for reaction (d) see ${ }^{10} \mathrm{Be}$ (1982ZU03). See also (1979AJ01, 1979TI1A, 1979TR1B) and (1978BO09, 1978FU13, 1981KE15; theor.).
24. ${ }^{10} \mathrm{~B}\left(\pi^{ \pm}, \pi^{ \pm}\right)^{10} \mathrm{~B}$

See (1981GE1B).
25. ${ }^{10} \mathrm{~B}\left(\mathrm{n}, \mathrm{n}^{\prime}\right)^{10} \mathrm{~B}$

Angular distributions have been studied for $E_{\mathrm{n}}=1.5$ to 14.1 MeV : see (1974AJ01, 1979AJ01). See also ${ }^{11}$ B in (1985AJ01), (1979GLZY, 1981DAZZ) and (1979GLZV; theor.).
26. (a) ${ }^{10} \mathrm{~B}\left(\mathrm{p}, \mathrm{p}^{\prime}\right)^{10} \mathrm{~B}$
(b) ${ }^{10} \mathrm{~B}(\mathrm{p}, 2 \mathrm{p}){ }^{9} \mathrm{Be}$

$$
Q_{\mathrm{m}}=-6.5865
$$

Angular distributions have been measured for $E_{\mathrm{p}}=3.0$ to 49.5 MeV [see (1974AJ01, 1979AJ01)] and at 6.0 (1977SA1B) and $800 \mathrm{MeV}(1979 \mathrm{MO} 1 \mathrm{E})$. Table 10.17 displays the states observed in this reaction. The earlier γ-decay results are presented in (1979AJ01) and in Table 10.6 here. See also ${ }^{11}$ C in (1985AJ01), (1980FA07, 1981HO13) and (1979GLZV, 1980KO1V; theor.). For reaction (b) see ${ }^{9}$ Be and (1974AJ01).
27. ${ }^{10} \mathrm{~B}\left(\mathrm{~d}, \mathrm{~d}^{\prime}\right)^{10} \mathrm{~B}$

Angular distributions have been reported at $E_{\mathrm{d}}=4$ to 28 MeV : see (1974AJ01, 1979AJ01). Observed deuteron groups are displayed in Table 10.17. The very low intensity of the group to ${ }^{10} \mathrm{~B}^{*}(1.74)$ and the absence of the group to ${ }^{10} \mathrm{~B}^{*}(5.16)$ is good evidence of their $T=1$ character: see (1974AJ01).
28. ${ }^{10} \mathrm{~B}(\mathrm{t}, \mathrm{t}){ }^{10} \mathrm{~B}$

Angular distributions of elastically scattered tritons have been measured at $E_{\mathrm{t}}=1.5$ to 3.3 MeV : see (1974AJ01).
29. ${ }^{10} \mathrm{~B}\left({ }^{3} \mathrm{He},{ }^{3} \mathrm{He}^{\prime}\right){ }^{10} \mathrm{~B}$

Angular distributions have been measured at $E\left({ }^{3} \mathrm{He}\right)=4$ to 32.5 MeV [see (1974AJ01, 1979AJ01)] and at 41 MeV (1980TR02; elastic) and 46.1 MeV (1979GO07). $L=2$ gives a good fot to the distributions of ${ }^{3} \mathrm{He}$ ions to ${ }^{10} \mathrm{~B}^{*}(0.72,2.15,3.59,6.03)$: derived β_{L} are shown in Table 10.19 of (1979AJ01). See also Table 10.17 here.
30. (a) ${ }^{10} \mathrm{~B}\left(\alpha, \alpha^{\prime}\right)^{10} \mathrm{~B}$
(b) ${ }^{10} \mathrm{~B}(\alpha, 2 \alpha){ }^{6} \mathrm{Li}$
$Q_{\mathrm{m}}=-4.4603$

Table 10.17: ${ }^{10} \mathrm{~B}$ levels from ${ }^{10} \mathrm{~B}\left(\mathrm{p}, \mathrm{p}^{\prime}\right),{ }^{10} \mathrm{~B}\left(\mathrm{~d}, \mathrm{~d}^{\prime}\right)$ and ${ }^{10} \mathrm{~B}\left({ }^{3} \mathrm{He},{ }^{3} \mathrm{He}^{\prime}\right){ }^{\mathrm{a}}$

$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})^{\mathrm{b}}$	$\Gamma_{\text {c.m. }}(\mathrm{keV})$	L	$\beta_{L}{ }^{\mathrm{b}, \mathrm{c}}$
0^{d}			
$0.7183 \pm 0.4^{\mathrm{d}, \mathrm{e}, \mathrm{f}}$		2	0.67 ± 0.05
$\equiv 1.7402^{\mathrm{f}, \mathrm{g}}$		(3)	
$2.1541 \pm 0.5^{\mathrm{d}}$		2	0.49 ± 0.04
$3.5870 \pm 0.5^{\mathrm{d}}$		2	0.45 ± 0.04
$4.7740 \pm 0.5^{\mathrm{h}}$			
5.1103 ± 0.6		3	0.45 ± 0.04
5.1639 ± 0.6			
$5.18 \pm 10^{\mathrm{h}, \mathrm{i}}$	110 ± 10		
$5.9195 \pm 0.6^{\mathrm{d}}$	<5		0.28 ± 0.03
$6.0250 \pm 0.6^{\mathrm{d}}$	<5	2	0.95 ± 0.04
$6.1272 \pm 0.7^{\mathrm{d}}$	<5	3	0.58 ± 0.03
$6.55 \pm 10^{\mathrm{d}}$	25 ± 5	3	$0.46 \pm 0.04^{\mathrm{j}}$
$7.00 \pm 10^{\mathrm{d}}$	95 ± 10		
7.48 ± 10	90 ± 15		

${ }^{a}$ For references and a more complete presentation see Table 10.19 in (1979AJ01).
${ }^{\mathrm{b}}$ From (p, p').
c See results obtained from $\left({ }^{3} \mathrm{He},{ }^{3} \mathrm{He}^{\prime}\right)$ in Table 10.19 of (1979AJ01).
${ }^{\mathrm{d}}$ Also observed in $\left(\mathrm{d}, \mathrm{d}^{\prime}\right)$ and $\left({ }^{3} \mathrm{He},{ }^{3} \mathrm{He}^{\prime}\right)$.
${ }^{\mathrm{e}} E_{\mathrm{x}}=718.35 \pm 0.04$ (1979RI12; from E_{γ}).
${ }^{\mathrm{f}} E_{\mathrm{x}}=718.5 \pm 0.2$ and $1740.0 \pm 0.6 \mathrm{keV}\left(1966 \mathrm{FR} 09\right.$; from $\left.E_{\gamma}\right)$.
${ }^{\mathrm{g}}$ Also observed in $\left({ }^{3} \mathrm{He},{ }^{3} \mathrm{He}^{\prime}\right)$.
${ }^{\mathrm{h}}$ Also observed in (d, d').
${ }^{\mathrm{i}}$ Not reported in $\left(\mathrm{p}, \mathrm{p}^{\prime}\right)$ at $E_{\mathrm{p}}=10 \mathrm{MeV}$.
${ }^{\mathrm{j}}$ If $J^{\pi}=4^{-} ; \beta_{\mathrm{L}}=0.59 \pm 0.03$ if $J^{\pi}=2^{-}$.

Angular distributions have been measured for $E_{\alpha}=5$ to 56 MeV [see (1974AJ01, 1979AJ01)] and at $E_{\alpha}=31.2 \mathrm{MeV}\left(1981 \mathrm{KO} 1 \mathrm{U} ; \alpha_{0}\right) .{ }^{10} \mathrm{~B}^{*}(1.74)$ is not observed. S_{α} for ${ }^{10} \mathrm{~B}_{\mathrm{g} . \mathrm{s} .}=0.16$ (1976WO11).

Reaction (b) has been studied at $E_{\alpha}=24 \mathrm{MeV}$ [see (1979AJ01)] and at 700 MeV (1979DO04). Using a width parameter of $141 \mathrm{MeV} / c$, (1979DO04) find that the effective number of $\alpha+\mathrm{d}$ clusters for ${ }^{10} \mathrm{~B}_{\text {g.s. }}$, $n_{\text {eff }}=1.19 \pm 0.23$; the results are very model dependent. See also (1978ZE03, 1981LA13; theor.).
31. (a) ${ }^{10} \mathrm{~B}\left({ }^{6} \mathrm{Li},{ }^{6} \mathrm{Li}\right){ }^{10} \mathrm{~B}$
(b) ${ }^{10} \mathrm{~B}\left({ }^{7} \mathrm{Li},{ }^{7} \mathrm{Li}\right){ }^{10} \mathrm{~B}$

Elastic scattering angular distributions have been studied at $E\left({ }^{6} \mathrm{Li}\right)=5.8$ and 30 MeV and at $E\left({ }^{7} \mathrm{Li}\right)=$ 24 MeV : see (1979AJ01).
32. ${ }^{10} \mathrm{~B}\left({ }^{9} \mathrm{Be},{ }^{9} \mathrm{Be}\right){ }^{10} \mathrm{~B}$

Elastic scattering angular distributions have been reported at $E\left({ }^{10} \mathrm{~B}\right)=20.1$ and $30.0 \mathrm{MeV}(1980 \mathrm{BO} 14)$.
33. (a) ${ }^{10} \mathrm{~B}\left({ }^{10} \mathrm{~B},{ }^{10} \mathrm{~B}\right){ }^{10} \mathrm{~B}$
(b) ${ }^{10} \mathrm{~B}\left({ }^{11} \mathrm{~B},{ }^{11} \mathrm{~B}\right){ }^{10} \mathrm{~B}$

Elastic angular distributions (reaction (a)) have been studied at $E\left({ }^{10} \mathrm{~B}\right)=8,13$ and 21 MeV . For yields and reaction (b) see (1979AJ01). See also (1979SH22) and (1978TA1B; theor.).
34. (a) ${ }^{10} \mathrm{~B}\left({ }^{12} \mathrm{C},{ }^{12} \mathrm{C}\right){ }^{10} \mathrm{~B}$
(b) ${ }^{10} \mathrm{~B}\left({ }^{13} \mathrm{C},{ }^{13} \mathrm{C}\right){ }^{10} \mathrm{~B}$

Elastic angular distributions have been measured at $E\left({ }^{10} \mathrm{~B}\right)=18$ and 100 MeV [see (1979AJ01)] for reaction (a) and at $18,25,32,39$ and 46 MeV for reaction (b) (1982MA20). For fusion measurements see (1979AJ01) and (1981MA18, 1982MA20). See also (1978VA1A, 1981DE13, 1982HA42; theor.).
35. ${ }^{10} \mathrm{~B}\left({ }^{14} \mathrm{~N},{ }^{14} \mathrm{~N}\right){ }^{10} \mathrm{~B}$

Angular distributions are reported at $E\left({ }^{10} \mathrm{~B}\right)=100 \mathrm{MeV}[$ see $(1979 \mathrm{AJ} 01)]$ and at $E\left({ }^{14} \mathrm{~N}\right)=73.9$ and 93.6 MeV (1979MO14; to ${ }^{10} \mathrm{~B} *(0,0.72,2.15)$). For fusion cross-section measurements see (1979AJ01) and (1980PA19, 1982BE54, HO82F, 1982HO1F, 1982OR02). See also (1978TA1B) and (1981AB1A; theor.).
36. (a) ${ }^{10} \mathrm{~B}\left({ }^{16} \mathrm{O},{ }^{16} \mathrm{O}\right){ }^{10} \mathrm{~B}$
(b) ${ }^{10} \mathrm{~B}\left({ }^{17} \mathrm{O},{ }^{17} \mathrm{O}\right){ }^{10} \mathrm{~B}$
(c) ${ }^{10} \mathrm{~B}\left({ }^{18} \mathrm{O},{ }^{18} \mathrm{O}\right){ }^{10} \mathrm{~B}$

Elastic angular distribution (reaction (a)) have been studied at $E\left({ }^{16} \mathrm{O}\right)=15.0$ to 32.5 MeV and at $E\left({ }^{10} \mathrm{~B}\right)=100 \mathrm{MeV}$ [see (1979AJ01)] as well as at $E\left({ }^{10} \mathrm{~B}\right)=33.7,41.6,49.5 \mathrm{MeV}$ (1980PA01) and 65.8 MeV ($1977 \mathrm{MO} 1 \mathrm{~A}, 1979 \mathrm{MO} 14$). The ground-state quadrupole moment of ${ }^{10} \mathrm{~B}$ is observed to influence the scattering (1980PA01). The elastic scattering for reaction (c) has been studied at $E\left({ }^{18} \mathrm{O}\right)=20$, 24 and 30.5 MeV : see (1974AJ01). For fusion cross-section measurements and excitation functions see (1979GO09, 1981THZY) for reaction (a) and (1980WI09, 1982CH07) for reaction (b). See also (1981ST1P) and (1979HU1B, 1980VA03, 1981VA1E, 1983CI08; theor.).
37. (a) ${ }^{10} \mathrm{~B}\left({ }^{19} \mathrm{~F},{ }^{19} \mathrm{~F}\right){ }^{10} \mathrm{~B}$
(b) ${ }^{10} \mathrm{~B}\left({ }^{20} \mathrm{Ne},{ }^{20} \mathrm{Ne}\right){ }^{10} \mathrm{~B}$

The elastic scattering has been investigated for $E\left({ }^{19} \mathrm{~F}\right)=20$ and 24 MeV [see (1974AJ01)] (reaction (a)) and for $E\left({ }^{10} \mathrm{~B}\right)=65.9 \mathrm{MeV}$ (1979MO14) (reaction (b)).
38. (a) ${ }^{10} \mathrm{~B}\left({ }^{24} \mathrm{Mg},{ }^{24} \mathrm{Mg}\right){ }^{10} \mathrm{~B}$
(b) ${ }^{10} \mathrm{~B}\left({ }^{25} \mathrm{Mg},{ }^{25} \mathrm{Mg}\right){ }^{10} \mathrm{~B}$

The elastic scattering for both reactions has been studied at $E\left({ }^{10} \mathrm{~B}\right)=87.4 \mathrm{MeV}$ (1982FU09).
39. (a) ${ }^{10} \mathrm{~B}\left({ }^{27} \mathrm{Al},{ }^{27} \mathrm{Al}\right){ }^{10} \mathrm{~B}$
(b) ${ }^{10} \mathrm{~B}\left({ }^{28} \mathrm{Si},{ }^{28} \mathrm{Si}\right){ }^{10} \mathrm{~B}$
(c) ${ }^{10} \mathrm{~B}\left({ }^{30} \mathrm{Si},{ }^{30} \mathrm{Si}\right){ }^{10} \mathrm{~B}$

The elastic scattering for all three reactions has been studied at $E\left({ }^{10} \mathbf{B}\right)=41.6$ and $\approx 50 \mathrm{MeV}$ (1979PA09; also 33.7 MeV for reaction (b)). See also (1980GL03).
40. ${ }^{10} \mathrm{~B}\left({ }^{40} \mathrm{Ca},{ }^{40} \mathrm{Ca}\right){ }^{10} \mathrm{~B}$

The elastic scattering angular distribution has been measured for $E\left({ }^{10} \mathrm{~B}\right)=46.6 \mathrm{MeV}$ (1980GL03).
41. ${ }^{10} \mathrm{C}\left(\beta^{+}\right){ }^{10} \mathrm{~B} \quad Q_{\mathrm{m}}=3.6488$

The half-life of ${ }^{10} \mathrm{C}$ is $19.255 \pm 0.53 \mathrm{sec}$ (1975HA45) [and see (1974AJ01, 1979AJ01)]: the decay is to ${ }^{10} \mathrm{~B}^{*}(0.72,1.74)$ with branching ratios of $(98.53 \pm 0.02) \%$ and $(1.465 \pm 0.014) \%$ and $\log f t=3.047$ for the transition to ${ }^{10} \mathrm{~B} *(0.72)$ and 3.492 ± 0.005 for that to the analog state, ${ }^{10} \mathrm{~B} *(1.74)$: see Table 10.20 in (1979AJ01). The excitation energies of the two states are 718.32 ± 0.09 and $1740.16 \pm 0.17 \mathrm{keV}\left[E_{\gamma}=\right.$ 718.29 ± 0.09 and $1021.78 \pm 0.14 \mathrm{keV}$] (1969FR02). See (1979AJ01) for a further discussion of the decay. See also (1979DE15, 1979FE02, 1979KU05; theor.).
42. ${ }^{11} \mathrm{~B}(\gamma, \mathrm{n}){ }^{10} \mathrm{~B}$

$$
Q_{\mathrm{m}}=-11.454
$$

The intensities of the transitions to ${ }^{10} \mathrm{~B} *(3.59,5.16)[T=0$ and 1 , respectively] depend on the region of the giant dipole resonances in ${ }^{11} \mathrm{~B}$ from which the decay takes place: it is suggested that the lowerenergy region consists mainly of $T=\frac{1}{2}$ states and the higher-energy region of $T=\frac{3}{2}$ states: see ${ }^{11} \mathrm{~B}$ in (1980AJ01). (1979BR1D) report observation of the 1.02 MeV line from the decay of ${ }^{10} \mathrm{~B}^{*}(1.74)$. See also ${ }^{11} \mathrm{~B}$ in (1985AJ01) and (1982GO03, 1983GO1T; theor.).

$$
\text { 43. }{ }^{11} \mathrm{~B}(\mathrm{p}, \mathrm{~d}){ }^{10} \mathrm{~B} \quad Q_{\mathrm{m}}=-9.230
$$

Angular distributions of deuteron groups have been measured at several energies in the range $E_{\mathrm{p}}=17.7$ to 154.8 MeV : see (1979AJ01). The population of the first five states of ${ }^{10} \mathrm{~B}$ and ${ }^{10} \mathrm{~B} *(5.18(\mathrm{u}), 6.04(\mathrm{u}), 6.56$, $7.5,11.4 \pm 0.2,14.1 \pm 0.2)$ is reported. For VAP measurements see (1982BU03) in ${ }^{12} \mathrm{C}$ (1985AJ01).
44. ${ }^{11} \mathrm{~B}(\mathrm{~d}, \mathrm{t}){ }^{10} \mathrm{~B}$
$Q_{\mathrm{m}}=-5.197$

Angular distributions have been measured at $E_{\mathrm{d}}=11.8 \mathrm{MeV}\left(\mathrm{t}_{0} \rightarrow \mathrm{t}_{3} ; l=1 ; S=1.88,0.94,1.35\right.$, 1.35, respectively): see (1974AJ01).
45. (a) ${ }^{11} \mathrm{~B}\left({ }^{3} \mathrm{He}, \alpha\right){ }^{10} \mathrm{~B}$

$$
\begin{aligned}
& Q_{\mathrm{m}}=9.124 \\
& Q_{\mathrm{m}}=4.663
\end{aligned}
$$

(b) ${ }^{11} \mathrm{~B}\left({ }^{3} \mathrm{He}, 2 \alpha\right){ }^{6} \mathrm{Li}$

Reported levels are displayed in Table 10.18. Angular distributions have been measured at a number of energies between $E\left({ }^{3} \mathrm{He}\right)=1.0$ and 33 MeV : see (1974AJ01). For the decay of observed states see Table 10.6.

The $\alpha \alpha$ angular correlations (reaction (b)) have been measured for the transitions via ${ }^{10} \mathrm{~B} *(5.92,6.03$, $6.13,6.56,7.00$). The results are consistent with $J^{\pi}=2^{+}$and 4^{+}for ${ }^{10} \mathrm{~B}^{*}(5.92,6.03)$ and require $J^{\pi}=3^{-}$ for ${ }^{10} \mathrm{~B} *(6.13)$. There is substantial interference between levels of opposite parity for the α-particles due to ${ }^{10} \mathrm{~B}^{*}(6.56,7.00)$: the data are fitted by $J^{\pi}=3^{+}$for ${ }^{10} \mathrm{~B} *(7.00)$ and $(3,4){ }^{-}$for ${ }^{10} \mathrm{~B} *(6.56)$ [the ${ }^{6} \mathrm{Li}(\alpha, \alpha)$ results then require $J^{\pi}=4^{-}$]. See however reaction 16, and see (1974AJ01) for the references.

Table 10.18: ${ }^{10} \mathrm{~B}$ levels from ${ }^{11} \mathrm{~B}\left({ }^{3} \mathrm{He}, \alpha\right){ }^{10} \mathrm{~B}{ }^{\text {a }}$

$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})$	$\Gamma_{\text {c.m. }}(\mathrm{keV})$	l	$S_{\text {rel }}$
0		1	1.0
0.718 ± 7		1	0.22
1.744 ± 7		1	0.73
2.157 ± 6		1	0.44
3.587 ± 6		1	0.09
4.777 ± 5		1	0.09
5.114 ± 5		1	1.81
5.166 ± 5			
5.923 ± 5			
6.028 ± 5			
6.131 ± 5			
6.570 ± 7	30 ± 10		
7.002 ± 10			
7.475 ± 10			
7.567 ± 10			
7.87 ± 40	240 ± 50		
10.85 ± 100	300 ± 100		
11.52 ± 35	500 ± 100		
12.56 ± 30	100 ± 30		
13.49 ± 50	300 ± 50		
14.4 ± 100	800 ± 200		
(18.2 ± 200)	(1500 ± 300)		

[^3]46. ${ }^{12} \mathrm{C}(\gamma, \mathrm{pn})^{10} \mathrm{~B}$
$Q_{\mathrm{m}}=-27.4104$

See (1982DO08), ${ }^{12} \mathrm{C}$ in (1985AJ01) and (1981KH08; theor.).
47. ${ }^{12} \mathrm{C}\left(\pi^{ \pm}, \pi^{ \pm} \mathrm{d}\right){ }^{10} \mathrm{~B} \quad Q_{\mathrm{m}}=-25.1858$

At $E_{\pi^{+}}=180 \mathrm{MeV}$ and $E_{\pi^{-}}=220 \mathrm{MeV},{ }^{10} \mathrm{~B}^{*}(0.72,2.15)$ are populated (1981ST05). See also (1979EL12, 1982EL07).
48. (a) ${ }^{12} \mathrm{C}\left(\mathrm{p},{ }^{3} \mathrm{He}\right){ }^{10} \mathrm{~B}$
$Q_{\mathrm{m}}=-19.6923$
(b) ${ }^{12} \mathrm{C}(\mathrm{p}, \mathrm{pd}){ }^{10} \mathrm{~B}$
$Q_{\mathrm{m}}=-25.1858$

Angular distributions of ${ }^{3} \mathrm{He}$ ions have been measured for $E_{\mathrm{p}}=39.8$, 51.9 and 185 MeV : see (1979AJ01). ${ }^{10} \mathrm{~B}^{*}(0,0.72,1.74,2.15,3.59,4.77,5.16,5.92,6.56,7.50,8.90)$ are populated. For reaction (b) see (1981ER10; 670 MeV) and (1979AJ01). See also (1978GO14; theor.).
49. ${ }^{12} \mathrm{C}(\mathrm{d}, \alpha){ }^{10} \mathrm{~B}$
$Q_{\mathrm{m}}=-1.3391$

Alpha groups have been observed to most of the known states of ${ }^{10} \mathrm{~B}$ below $E_{\mathrm{x}}=7.1 \mathrm{MeV}$: see Table 10.23 in (1974AJ01). Angular distributions have been measured for $E_{\mathrm{d}}=5.0$ to 40 MeV : see (1979AJ01). Single-particle S-values are $1.5,0.5,0.1,0.1$ and 0.3 for ${ }^{10} \mathrm{~B} *(0,0.72,2.15,3.59,4.77)$ (1976VA07; ZRDWBA). A study of the $m_{\mathrm{s}}=0$ yield at $E_{\overline{\mathrm{d}}}=14.5 \mathrm{MeV}\left(\theta=0^{\circ}\right)$ leads to assignments of $3^{+}, 2^{-}$and $\left(3^{+}, 4^{-}\right)$for ${ }^{10} \mathrm{~B}^{*}(4.77,5.11,6.56)$ (1975KU15). VAP measurements are reported at $E_{\overline{\mathrm{d}}}=52 \mathrm{MeV}$ (1982MA25): see ${ }^{14} \mathrm{~N}$ in (1986AJ01).

The population of the isospin forbidden group to ${ }^{10} \mathrm{~B} *(1.74)\left[\alpha_{2}\right]$ has been studied with E_{d} up to 30 MeV : see ${ }^{14} \mathrm{~N}$ in (1976AJ04). See also (1981JO02, 1982BA24; theor.).
50. ${ }^{12} \mathrm{C}\left(\alpha,{ }^{6} \mathrm{Li}\right){ }^{10} \mathrm{~B} \quad Q_{\mathrm{m}}=-23.7105$

Angular distributions have been reported at $E_{\alpha}=42$ and 46 MeV : see (1979AJ01). At $E_{\alpha}=65 \mathrm{MeV}$, an investigation of the ${ }^{6} \mathrm{Li}$ breakup shows that ${ }^{10} \mathrm{~B} *(0,0.72,2.16,3.57,4.77,5.2,5.9,6.0)$ are involved (1978SA26).
51. ${ }^{12} \mathrm{C}\left({ }^{10} \mathrm{~B}, 3 \alpha\right){ }^{10} \mathrm{~B} \quad Q_{\mathrm{m}}=-7.2747$

See (1978BE1G).
52. (a) ${ }^{12} \mathrm{C}\left({ }^{12} \mathrm{C},{ }^{14} \mathrm{~N}\right){ }^{10} \mathrm{~B} \quad Q_{\mathrm{m}}=-14.9134$
(b) ${ }^{12} \mathrm{C}\left({ }^{14} \mathrm{~N},{ }^{16} \mathrm{O}\right){ }^{10} \mathrm{~B} \quad Q_{\mathrm{m}}=-4.4495$

Angular distributions (reaction (a)) involving ${ }^{10} \mathrm{~B} *(0,0.7)$ have been studied at $E\left({ }^{12} \mathrm{C}\right)=49.0$ to 75.5 MeV (1979CL06, 1980CO10) and 93.8 MeV (1979FU04). Angular distributions (reaction (b)) involving ${ }^{10} \mathrm{~B}^{*}(0,0.72,2.15,3.59)$ have been measured at $E\left({ }^{14} \mathrm{~N}\right)=53 \mathrm{MeV}$ [see (1979AJ01)] and 78.8 MeV (1979MO14; not to ${ }^{10} \mathrm{~B} *(3.59)$).
53. ${ }^{13} \mathrm{C}(\mathrm{p}, \alpha){ }^{10} \mathrm{~B}$

$$
Q_{\mathrm{m}}=-4.0609
$$

Angular distributions have been measured for $E_{\mathrm{p}}=5.8$ to 18 MeV and 43.7 and 50.5 MeV : see (1979AJ01). Polarization measurements are reported at $E_{\overrightarrow{\mathrm{p}}}=65 \mathrm{MeV}\left(1980 \mathrm{KA} 03 ; \mathrm{p}_{0}\right):$ see ${ }^{14} \mathrm{~N}$ in (1986AJ01).
54. ${ }^{14} \mathrm{~N}(\mathrm{p}, \mathrm{p} \alpha){ }^{10} \mathrm{~B} \quad Q_{\mathrm{m}}=-11.6115$

See (1978GO14; theor.).
55. ${ }^{14} \mathrm{~N}\left(\mathrm{~d},{ }^{6} \mathrm{Li}\right){ }^{10} \mathrm{~B} \quad Q_{\mathrm{m}}=-10.136$

At $E_{\mathrm{d}}=80 \mathrm{MeV}$ angular distributions are reported to ${ }^{10} \mathrm{~B} *(0,0.72,2.15,3.59,4.8,6.04,7.05,8.68)$ (19790E01; see for S_{α}).
56. ${ }^{14} \mathrm{~N}\left({ }^{3} \mathrm{He},{ }^{7} \mathrm{Be}\right){ }^{10} \mathrm{~B} \quad Q_{\mathrm{m}}=-10.024$

At $E\left({ }^{3} \mathrm{He}\right)=41 \mathrm{MeV}$ groups to ${ }^{10} \mathrm{~B}^{*}(0,0.72,2.15,3.59,6.1)$ have been observed. The transition to ${ }^{10} \mathrm{~B} *(1.74)$ is very weak: see (1979AJ01).
57. ${ }^{16} \mathrm{O}\left({ }^{14} \mathrm{~N},{ }^{20} \mathrm{Ne}\right){ }^{10} \mathrm{~B} \quad Q_{\mathrm{m}}=-6.877$

At $E\left({ }^{14} \mathrm{~N}\right)=76.2 \mathrm{MeV}$ angular distributions involving ${ }^{10} \mathrm{~B}^{*}(0,0.7)$ are presented by (1979MO14).

${ }^{10} \mathrm{C}$

(Figs. 21 and 22)

GENERAL: (See also (1979AJ01).)
Model calculations: (1981DE2G, 1982SA1U).
Electromagnetic transitions: (1982RI04).
Astrophysical questions: (1979MO04, 1979RA1C).
Complex reactions involving ${ }^{10} \mathrm{C}$: (1979BO22, 1981MO20).
Reactions involving pions (See also reactions 2 and 6.): (1979AL1J, 1979LI1D, 1980LE02, 1981AU1C, 1982COZV, 1982RO04).

Other topics: (1979NOZZ, 1980NO1A, 1982DE1N, 1982NG01).
Mass of ${ }^{10} \mathrm{C}$: Based on Q_{0} for ${ }^{10} \mathrm{~B}(\mathrm{p}, \mathrm{n})^{10} \mathrm{C}$ and ${ }^{12} \mathrm{C}(\mathrm{p}, \mathrm{t}){ }^{10} \mathrm{C}$ and the Wapstra masses for n, t and ${ }^{10} \mathrm{~B}$, the atomic mass excess of ${ }^{10} \mathrm{C}$ is $15698.8 \pm 0.5 \mathrm{keV}$.

1. ${ }^{10} \mathrm{C}\left(\beta^{+}\right)^{10} \mathrm{~B}$
$Q_{\mathrm{m}}=3.6488$
${ }^{10} \mathrm{C}$ decays with a half-life of $19.255 \pm 0.053 \mathrm{sec}$ to ${ }^{10} \mathrm{~B} *(0.7,1.7)$: the branching ratios are $(98.53 \pm$ $0.02) \%$ and (1.465 ± 0.014) \%, respectively (1972RO03): see reaction 41 in ${ }^{10} \mathrm{~B}$.
2. ${ }^{9} \mathrm{Be}\left(\mathrm{p}, \pi^{-}\right){ }^{10} \mathrm{C} \quad Q_{\mathrm{m}}=-136.6296$

Angular distributions of π^{-}groups have been measured at $E_{\mathrm{p}}=185 \mathrm{MeV}$ (1973DA09; to ${ }^{10} \mathrm{C}^{*}(0,3.36$, $5.28,6.63)$), at $E_{\mathrm{p}}=200 \mathrm{MeV}$ (1980SJ02; ${ }^{10} \mathrm{C}_{\mathrm{g} . \mathrm{s} .}$) and at $E_{\mathrm{p}}=800 \mathrm{MeV}\left(1979 \mathrm{HO} 13\right.$; to ${ }^{10} \mathrm{C}^{*}(0,3.35$, 5.3, 6.6)). A_{y} measurements have been reported at $E_{\mathrm{p}}=200 \mathrm{MeV}$ (1980SJ02; ${ }^{10} \mathrm{C}_{\mathrm{g} . \mathrm{s}}$) and 200, 225 and 250 MeV (1982LO02; ${ }^{10} \mathrm{C}^{*}(0,3.35,5.28,6.6)$). See also (1979AJ01, 1979JO1C, 1979ME2A, 1981AU1C, 1981BO1D, 1982HO1C, 1982NA1K).
3. ${ }^{10} \mathrm{~B}\left(\gamma, \pi^{-}\right){ }^{10} \mathrm{C} \quad Q_{\mathrm{m}}=-143.2161$

See (1982RO04).
4. ${ }^{10} \mathrm{~B}(\mathrm{p}, \mathrm{n})^{10} \mathrm{C}$

$$
\begin{aligned}
& Q_{\mathrm{m}}=-4.411 \\
& Q_{0}=-4430.17 \pm 0.34 \mathrm{keV}: \text { P.H. Barker (private communication). }
\end{aligned}
$$

Table 10.19: Energy levels of ${ }^{10} \mathrm{C}$

$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})$	$J^{\pi} ; T$	τ or $\Gamma_{\text {c.m. }}(\mathrm{keV})$	Decay	Reactions
g.s.	$0^{+} ; 1$	$\tau_{1 / 2}=19.255 \pm 0.053 \mathrm{sec}$	β^{+}	$1,2,3,4,5,6$,
				7,8
3.3536 ± 0.9	2^{+}	$\tau_{\mathrm{m}}=155 \pm 25 \mathrm{fsec}$	γ	$2,4,5,6,7,8$
5.22 ± 40	a	$\Gamma=225 \pm 45 \mathrm{keV}$		$2,4,5,7$
5.38 ± 70	a	300 ± 60		$2,4,5,7$
6.580 ± 20	$\left(2^{+}\right)$	200 ± 40		$2,5,7$

${ }^{\text {a }}$ One of these two states is presumably a 2^{+}state.

The E_{x} of ${ }^{10} \mathrm{C}^{*}(3.35)=3352.7 \pm 1.5 \mathrm{keV}, \tau_{\mathrm{m}}=155 \pm 25 \mathrm{fsec}, \Gamma_{\gamma}=4.25 \pm 0.69 \mathrm{meV}$. Angular distributions have been measured for n_{0} and n_{1} groups and for the neutrons to ${ }^{10} \mathrm{C}^{*}(5.2 \pm 0.3)$ at $E_{\mathrm{p}}=30$ and 50 MeV : see (1974AJ01, 1979AJ01).
5. ${ }^{10} \mathrm{~B}\left({ }^{3} \mathrm{He}, \mathrm{t}\right){ }^{10} \mathrm{C} \quad Q_{\mathrm{m}}=-3.6674$

Angular distributions have been measured at $E\left({ }^{3} \mathrm{He}\right)=14 \mathrm{MeV}$ and 217 MeV : see (1979AJ01). The latter [to $\left.{ }^{10} \mathrm{C}^{*}(0,3.35,5.6)\right]$ have been compared with microscopic calculations using a central + tensor interaction $\left[J^{\pi}=0^{+}, 2^{+}, 2^{+}\right]$(1976WI05). Structures have been reported at $E_{\mathrm{x}}=5.22 \pm 0.04[\Gamma=$ $225 \pm 45 \mathrm{keV}], 5.38 \pm 0.07$ [$300 \pm 60 \mathrm{keV}$] and $6.580 \pm 0.020 \mathrm{MeV}$ [$190 \pm 35 \mathrm{keV}$] (1975SC27). [It is not clear which of the $5.2-5.4 \mathrm{MeV}$ states is the 2^{+}state studied by (1976WI05).]
6. ${ }^{12} \mathrm{C}\left(\pi^{+}, \mathrm{d}\right){ }^{10} \mathrm{C}$

$$
Q_{\mathrm{m}}=110.7327
$$

See (1982DO01).

$$
\text { 7. }{ }^{12} \mathrm{C}(\mathrm{p}, \mathrm{t})^{10} \mathrm{C} \quad \begin{array}{ll}
& Q_{\mathrm{m}}=-23.3597 \\
& Q_{0}=-23360.74 \pm 0.5 \mathrm{keV}: ~ J . A . ~ N o l e n ~(p r i v a t e ~ c o m m u n i c a t i o n) . ~
\end{array}
$$

Angular distributions have been reported at $E_{\mathrm{p}}=30.0$ to 54.1 MeV [see (1974AJ01, 1979AJ01)] and at $E_{\mathrm{p}}=80 \mathrm{MeV}\left(1979 \mathrm{SH} 09\right.$; t to ${ }^{10} \mathrm{C}^{*}(0,3.35,5.28) . L=0,2$ and 2 thus leading to $0^{+}, 2^{+}$and 2^{+}for these states [but note that the " 5.28 MeV " states is certainly unresolved]: see reaction 5 and Table 10.19. ${ }^{10} \mathrm{C}^{*}(6.6)$ is also populated. The excitation energy of ${ }^{10} \mathrm{C}^{*}(3.4)$ is $3353.3 \pm 1.0 \mathrm{keV}$ (1974BE66), $3354.1 \pm 1.1 \mathrm{keV}$ (1978RO08) [based on Q_{m}]. See also (1979NOZZ, 1980NO1A) and (1982BE1Z; theor.).
8. ${ }^{13} \mathrm{C}\left({ }^{3} \mathrm{He},{ }^{6} \mathrm{He}\right){ }^{10} \mathrm{C}$

$$
Q_{\mathrm{m}}=-15.235
$$

At $E\left({ }^{3} \mathrm{He}\right)=70.3 \mathrm{MeV}$ the angular distributions of the ${ }^{6} \mathrm{He}$ ions corresponding to the population of ${ }^{10} \mathrm{C}^{*}(0,3.35)$ have been measured. The group to ${ }^{10} \mathrm{C}^{*}(3.35)$ is much more intense than the groundstate group: multi-step processes may be important 1973KA16). (1976DE27) suggest, on the basis of an FRDWBA analysis, that the process can be interpreted as a direct-cluster transfer to both final states.
${ }^{10} \mathrm{~N},{ }^{10} \mathrm{O},{ }^{10} \mathrm{~F},{ }^{10} \mathrm{Ne}$
(Not illustrated)

Not observed: see (1979AJ01). A.H. Wapstra (private communication) suggests 39.5 MeV for the atomic mass excess of ${ }^{10} \mathrm{~N}$. See also (1982NG01; theor.).

References

(Closed 1 June 1983)

References are arranged and designated by the year of publication followed by the first two letters of the firstmentioned author's name and then by two additional characters. Most of the references appear in the National Nuclear Data Center files (Nuclear Science References Database) and have NNDC key numbers. Otherwise, TUNL key numbers were assigned with the last two characters of the form $1 \mathrm{~A}, 1 \mathrm{~B}$, etc. In response to many requests for more informative citations, we have, when possible, included up to ten authors per paper and added the authors' initials.

1959AJ76 F. Ajzenberg and T. Lauritsen, Nucl. Phys. 11 (1959) 1
1966 FO05 P.D. Forsyth, H.T. Tu and W.F. Hornyak, Nucl. Phys. 82 (1966) 33
1966FR09 J.M. Freeman, J.G. Jenkin and G. Murray, Phys. Lett. 22 (1966) 177
1966GR18 R.C. Greenwood, Phys. Lett. 23 (1966) 482
1966LA04 T. Lauritsen and F. Ajzenberg-Selove, Nucl. Phys. 78 (1966) 1
1966WA10 E.K. Warburton, J.W. Olness, K.W. Jones, C. Chasman, R.A. Ristinen and D.H. Wilkinson, Phys. Rev. 148 (1966) 1072

1969 AL17 D.E. Alburger, E.K. Warburton, A. Gallmann and D.H. Wilkinson, Phys. Rev. 185 (1969) 1242

1969FR02 J.M. Freeman, J.G. Jenkin and G. Murray, Nucl. Phys. A124 (1969) 393
1969 RO12 M.L. Roush, F.C. Young, P.D. Forsyth and W.F. Hornyak, Nucl. Phys. A128 (1969) 401

1972 RO03 D.C. Robinson, J.M. Freeman and T.T. Thwaites, Nucl. Phys. A181 (1972) 645
1973 DA09 S. Dahlgren, P. Grafstrom, B. Hoistad and A. Asberg, Nucl. Phys. A204 (1973) 53
1973 KA16 E. Kashy, W. Benenson, I.D. Proctor, P. Hauge and G. Bertsch, Phys. Rev. C7 (1973) 2251

1973 SI27 A.J. Sierk and T.A. Tombrello, Nucl. Phys. A210 (1973) 341
1974AJ01 F. Ajzenberg-Selove and T. Lauritsen, Nucl. Phys. A227 (1974) 1
1974 AN27 R.E. Anderson, J.J. Kraushaar, M.E. Rickey and W.R. Zimmerman, Nucl. Phys. A236 (1974) 77

1974 BE66 W. Benenson and E. Kashy, Phys. Rev. C10 (1974) 2633
1974FI1D D. Fick, Nukleonika 19 (1974) 693
1974 KE06 K.W. Kemper, S. Cotanch, G.E. Moore, A.W. Obst, R.J. Puigh and R.L. White, Nucl. Phys. A222 (1974) 173
1975AJ02 F. Ajzenberg-Selove, Nucl. Phys. A248 (1975) 1
1975BA52 H.W. Baer, J.A. Bistirlich, N. de Botton, S. Cooper, K.M. Crowe, P. Truol and J.D. Vergados, Phys. Rev. C12 (1975) 921

1975 BL07 R.C. Block, Y. Fujita, K. Kobayashi and T. Oosaki, J. Nucl. Sci. Tech. 12 (1975) 1
1975HA45 J.C. Hardy and I.S. Towner, Nucl. Phys. A254 (1975) 221
1975HO01 R.J. Holt, F.W.K. Firk, G.T. Hickey and R. Nath, Nucl. Phys. A237 (1975) 111
1975KU15 J.A. Kuehner, P.W. Green, G.D. Jones and D.T. Petty, Phys. Rev. Lett. 35 (1975) 423
1975 SC27 M.J. Schneider, B.W. Ridley, M.E. Rickey, J.J. Kraushaar and W.R. Zimmerman, Phys. Rev. C12 (1975) 335

1975 SC41 U. Schwinn, G. Mairle, G.J. Wagner and C. Ramer, Z. Phys. A275 (1975) 241
1975WA06 P. Wagner, R.M. Freeman, A. Gallman and E.K. Warburton, Phys. Rev. C11 (1975) 1459

1975 WI26 K.H. Wilcox, R.B. Weisenmiller, G.J. Wozniak, N.A. Jelley, D. Ashery and J. Cerny, Phys. Lett. B59 (1975) 142
1976 AJ04 F. Ajzenberg-Selove, Nucl. Phys. A268 (1976) 1
1976 DA15 S.E. Darden, G. Murillo and S. Sen, Nucl. Phys. A266 (1976) 29
1976 DE27 G. Delic and D. Kurath, Phys. Rev. C14 (1976) 619
1976FA13 L.W. Fagg, R.A. Lindgren, W.L. Bendel and E.C. Jones, Jr., Phys. Rev. C14 (1976) 1727

1976KN04 U. Kneissl, K.H. Leister, H.O. Neidel and A. Weller, Nucl. Phys. A264 (1976) 30
1976 LI08 P.W. Lisowski, R.L. Walter, C.E. Busch and T.B. Clegg, Nucl. Phys. A264 (1976) 188
1976 VA07 A. van der Woude and R.J. de Meijer, Nucl. Phys. A258 (1976) 199
1976 WI05 N. Willis, I. Brissaud, L. Bimbot, Y. Le Bornec and B. Tatischeff, Nucl. Phys. A261 (1976) 45

1976WO11 G.J. Wozniak, D.P. Stahel, J. Cerny and N.A. Jelley, Phys. Rev. C14 (1976) 815
1977BA1L Badovskii et al., Sov. At. Energy 43 (1977) 838
1977 KE09 K.W. Kemper, G.E. Moore, R.J. Puigh and R.L. White, Phys. Rev. C15 (1977) 1726
1977 KI04 A. Kiss, E. Koltay, G. Szabo and L. Vegh, Nucl. Phys. A282 (1977) 44
1977MO1A T. Motobayashi, Rept. Inst. Phys. Chem. Res. 53 (1977) 81
1977SA1B Sadkovskii, Feofilov, Denisov and Kolalis, Yad. Fiz. 26 (1977) 1200
1977 TU02 A. Turkevich, J.R. Cadieux, J. Warren, T. Economou, J. La Rosa and H.R. Heydegger, Phys. Rev. Lett. 38 (1977) 1129
1977 TU03 A. Turkevich, J.R. Cadieux, J. Warren, T. Economou and J. LaRosa, Phys. Lett. B72 (1977) 163

1978 AN20 M.K. Anikina, G.L. Vardenga, A.I. Golokhvastov, M.S. Zhuravleva, V.L. Ilina, E.S. Kuznetsova, Y. Lukstinsh, E.O. Okonov, T.G. Ostanevich, S.A. Khorozov et al., Yad. Fiz. 27 (1978) 724; Sov. J. Nucl. Phys. 27 (1978) 387

1978AR1J Arefev et al., Yad. Fiz. 28 (1978) 1534
1978 AU07 E.G. Auld, A. Haynes, R.R. Johnson, G. Jones, T. Masterson, E.L. Mathie, D. Ottewell, P. Walden and B. Tatischeff, Phys. Rev. Lett. 41 (1978) 462

1978BA1F Barschall, Ann. Rev. Nucl. Part. Sci. 28 (1978) 207
1978BE1G Berezhnoi, Klyucharev and Rutkevich, Ukr. Fiz. Zh. 23 (1978) 1841
1978BH03 R.K. Bhowmik, E.C. Pollacco, N.E. Sanderson, J.B.A. England and G.C. Morrison, Phys. Lett. B80 (1978) 41

1978BH1B Bhakar and Van Oers, Few Body Syst. Nucl. Forces, Graz, 1978, Springer Lect. Notes 87 (1978) 364

1978 BO09 M.C. Bouten and M. Bouten, Nucl. Phys. A299 (1978) 141
1978BU1B Buffington, Orth and Mast, Astrophys. J. 226 (1978) 355
1978DA1A Dalitz and Gal, Ann. Phys. 116 (1978) 167
1978DI1A Di Napoli et al., J. Inorg. Nucl. Chem. 40 (1978) 1973
1978DU1B Dubna-Warsaw-Leningrad Collaboration, Yad. Fiz. 27 (1978) 1246
1978 FU13 A.V. Fursaev, V.K. Tartakovskij and A.A. Pasichny, Ukr. Fiz. Zh. 23 (1978) 827
1978 GO14 N.F. Golovanova and I.M. Ilin, Izv. Akad. Nauk SSSR Ser. Fiz. 42 (1978) 1528; Bull. Acad. Sci. USSR Phys. Ser. 42 (1978) 154

1978HE1C Hendrie, AIP Conf. Proc. 47 (1978) 402
1978HE1D Heitzmann, Atomkernenergie 31 (1978) 262
1978HE1F Hendricks, Trans. Amer. Nucl. Soc. 30 (1978) 732
$1978 H O 23$ H.H. Hogue, P.L. Von Behren, D.H. Epperson, S.G. Glendinning, P.W. Lisowski, C.E. Nelson, H.W. Newson, F.O. Purser, W. Tornow, C.R. Gould et al., Nucl. Sci. Eng. 68 (1978) 38

1978LEZA C.M. Lederer, V.S. Shirley, E. Browne, J.M. Dairiki, R.E. Doebler, A.A. ShihabEldin, L.J. Jardine, J.K. Tuli and A.B. Buyrn, Table of Isotopes 7th Ed. (1978)

1978MA1F Malecki, Namyslowski, Reale and Minetti, Riv. Nuovo Cim. 1 (1978) 1
1978MU1B Muller, Phys. Today, Feb. (1969) 23
1978 NA05 K. Nakamura, S. Hiramatsu, T. Kamae, H. Muramatsu, N. Izutsu and Y. Watase, Nucl. Phys. A296 (1978) 431
1978PL1B Plattard et al., Conf. Int. on Neutronic Phys. and Nucl. Data for Reactors and Other Applications-Harwell (G.B.) (1978)
1978PO1A B. Povh, Ann. Rev. Nucl. Part. Sci. 28 (1978) 1
1978RA1C Raisbeck et al., Nature 275 (1978) 731

1978 RO08 R.G.H. Robertson, T.L. Khoo, G.M. Crawley, A.B. McDonald, E.G. Adelberger and S.J. Freedman, Phys. Rev. C17 (1978) 1535

1978 SA26 A. Saha, R. Kamermans, J. van Driel and H.P. Morsch, Phys. Lett. B79 (1978) 363
1978 SH14 N.G. Shevchenko, A.Y. Buki, B.V. Mazanko, V.N. Polishchuk and A.A. Khomich, Yad. Fiz. 28 (1978) 12; Sov. J. Nucl. Phys. 28 (1978) 5

1978 SM02 Y.F. Smirnov and G.F. Filippov, Yad. Fiz. 27 (1978) 73; Sov. J. Nucl. Phys. 27 (1978) 39

1978SO1A Sokol, Izv. Akad. Nauk SSSR Ser. Fiz. 42 (1978) 1829
1978 SU02 K.M. Subotic, B. Lalovic and B.Z. Stepancic, Nucl. Phys. A296 (1978) 141
1978TA1B Taras, AIP Conf. Proc. 47 (1978) 234
1978TS1A Tsangarides, Wills and Bent, Bull. Amer. Phys. Soc. 23 (1978) 952
1978 TU06 P.P. Tung, K.A. Erb, M.W. Sachs, G.B. Sherwood, R.J. Ascuitto and D.A. Bromley, Phys. Rev. C18 (1978) 1663
1978VA1A L.C. Vaz and J.M. Alexander, Phys. Rev. C18 (1978) 2152
1978WA1B Walter, AIP Conf. Proc. 47 (1978) 444
$1978 Z E 03$ N.S. Zelenskaya, V.M. Lebedev and T.A. Yushchenko, Yad. Fiz. 28 (1978) 90; Sov. J. Nucl. Phys. 28 (1978) 44
1979 AB11 S.N. Abramovich, B.Y. Guzhovsky, A.G. Zvenigorodsky and S.V. Trusillo, Yad. Fiz. 30 (1979) 1276; Sov. J. Nucl. Phys. 30 (1979) 665

1979AD1A S.K. Adhikari, Phys. Rev. C19 (1979) 325
1979ADZW M. Adib, A. Abdel-Kawy, Y. Eid, R.A.M. Maayouf, G. Shurite and I. Hamouda, Bull. Amer. Phys. Soc. 24 (1979) 864, AC7
1979AJ01 F. Ajzenberg-Selove, Nucl. Phys. A320 (1979) 1
1979AL1J Alster and Warszawski, Phys. Rept. 52 (1979) 87
1979AL1M Alder et al., 1978 RPI Symp., Photopion Nucl. Phys. (1979) 101
1979 AL21 V.V. Alizade, A.V. Kuptsov, V.P. Kurochkin, L.L. Nemenov, G.I. Smirnov and D.M. Khazins, Yad. Fiz. 30 (1979) 363; Sov. J. Nucl. Phys. 30 (1979) 187

1979 AL22 Y. Alhassid, R.D. Levine, J.S. Karp and S.G. Steadman, Phys. Rev. C20 (1979) 1789
1979AN08 E.J. Ansaldo, J.C. Bergstrom, R. Yen and H.S. Caplan, Nucl. Phys. A322 (1979) 237; Erratum Nucl. Phys. A342 (1980) 532
1979 AR04 A.V. Arefev, Y.D. Bayukov, A.E. Buklei, V.B. Gavrilov, N.A. Goryainov, L.N. Kondratev, G.A. Leksin, V.S. Pavlov, V.Y. Rusinov, V.B. Fedorov et al., Yad. Fiz. 29 (1979) 410; Sov. J. Nucl. Phys. 29 (1979) 205

1979 AT01 M. Attrep, Jr., W.B. Ledbetter and D.K. Riddle, J. Inorg. Nucl. Chem. 41 (1979) 1
1979AU07 G.F. Auchampaugh, S. Plattard and N.W. Hill, Nucl. Sci. Eng. 69 (1979) 30

1979 BA16 B. Bassalleck, H.-D. Engelhardt, W.D. Klotz, F. Takeutchi, H. Ullrich and M. Furic, Nucl. Phys. A319 (1979) 397

1979BA48 J.K. Bair and J. Gomez del Campo, Nucl. Sci. Eng. 71 (1979) 18
1979 BA68 V.N. Baturin, V.P. Koptev, E.M. Maev, M.M. Makarov, V.V. Nelyubin, V.V. Sulimov, A.V. Khanzadeev and G.V. Shcherbakov, Pisma Zh. Eksp. Teor. Fiz. 30 (1979) 86; JETP Lett. 30 (1979) 78
1979BE1N Beer et al., Conf. Proc. TRIUMF, Vancouver (1979) Paper 1B27
1979 BE60 G.G. Beznogikh, N.K. Zhidkov, L.F. Kirillova, V.A. Nikitin, P.V. Nomokonov, V.V. Avdeichikov, Yu.A. Murin, V.S. Oplavin, V.D. Maisyukov, Yu.V. Maslennikov et al., Pisma Zh. Eksp. Teor. Fiz. 30 (1979) 130; JETP Lett. 30 (1979) 323

1979BO1N Bobchenko et al., Yad. Fiz. 30 (1979) 1553
1979BO1P Boudard et al., Conf. Proc. TRIUMF, Vancouver (1979) Paper 4A16
1979BO22 V.I. Bogatin, O.V. Lozhkin and Y.P. Yakovlev, Nucl. Phys. A326 (1979) 508
1979BR1D Brajnik et al., Int. Conf. Nucl. Phys. with Electromag. Interact., Mainz (1979) 46
1979BY01 R.C. Byrd, R.L. Walter and S.R. Cotanch, Phys. Rev. Lett. 43 (1979) 260
1979 CL06 M.R. Clover, T.M. Cormier, B.R. Fulton and B.J. Herman, Phys. Lett. 43 (1979) 256
1979DE01 P. Desgrolard and P.A.M. Guichon, Phys. Rev. C19 (1979) 120
1979 DE15 P. Desgrolard and P.A.M. Guichon, Z. Phys. A290 (179) 373
1979 DO04 W.E. Dollhopf, C.F. Perdrisat, P. Kitching and W.C. Olsen, Nucl. Phys. A316 (179) 350

1979EG01 P. Egelhof, J. Barrette, P. Braun-Munzinger, W. Dreves, C.K. Gelbke, D. Kassen, E. Steffens, W. Weiss and D. Fick, Phys. Lett. B84 (1979) 176
1979EL12 R.J. Ellis, H.J. Ziock, K.O.H. Ziock, J. Bolger, E. Boschitz, J. Arvieux, R. Corfu and J. Piffaretti, Phys. Lett. B88 (1979) 253

1979FE02 J.M. Feagin, E. Merzbacher and W.J. Thompson, Phys. Lett. B81 (1979) 107
1979FE1E Feagin, Merzbacher and Thompson, IEEE Trans. on Nucl. Sci. 26 (1979) 1223
1979FL06 E. Flerackers, Nucl. Phys. A329 (1979) 45
1979FL1A Fleischer, American Scientist 67 (1979) 194
1979FO1F Fou, Rasmussen, Swann and Van Patter, IEEE Trans. on Nucl. Sci. 26 (1979) 1378
1979 FR12 S. Frankel, W. Frati, M. Gazzaly, Y.D. Bayukov, V.I. Efremenko, G.A. Leksin, N.A. Nikiforov, V.I. Tchistilin, Y.M. Zaitsev and C.F. Perdrisat, Phys. Rev. C20 (1979) 2257
1979 FU04 C.B. Fulmer, R.M. Wieland, D.C. Hensley, S. Raman, G.R. Satchler, A.H. Snell, P.H. Stelson and R.G. Stokstad, Phys. Rev. C20 (1979) 670

1979GLZV S.G. Glendinning, F.O. Purser and C.R. Gould, Bull. Amer. Phys. Soc. 24 (1979) 830, BE1

1979GLZY S.G. Glendinning, S. El-Kadi, D.H. Epperson, H.H. Hogue, C.E. Nelson, F.O. Purser, A. Beyerle, L.W. Seagondollar and C.R. Gould, Bull. Amer. Phys. Soc. 24 (1979) 656, HF2

1979 GO07 R. Gorgen, F. Hinterberger, R. Jahn, P. von Rossen and B. Schuller, Nucl. Phys. A320 (1979) 296

1979 GO09 J. Gomez del Campo, R.A. Dayras, J.A. Biggerstaff, D. Shapira, A.H. Snell, P.H. Stelson and R.G. Stokstad, Phys. Rev. Lett. 43 (1979) 26

1979GO1L Gove et al., IEEE Trans. on Nucl. Sci. 26 (1979) 1414
1979GO1M Goncalves et al., Conf. Proc. TRIUMF, Vancouver (1979) Paper 5B3
1979 HO13 B. Hoistad, G.S. Adams, M. Gazzaly, G. Igo, F. Irom and H. Nann, Phys. Rev. Lett. 43 (1979) 487

1979HU1B M.S. Hussein, Phys. Rev. C19 (1979) 807
1979IN1C Inoue and Tanaka, Nature 277 (1979) 209
1979JA1C Jackson et al., Conf. Proc. TRIUMF, Vancouver (1979) Paper A417
1979JO1C Jones, AIP Conf. Proc. 54 (1979) 116
1979JUZU Jurney, Proc. Third Symp. on Neutron Capture Gamma Rays, 1978 (1979) 461
1979KA1G Karban, Microscopic Optical Potentials, Hamburg, Germany (1979) 264
1979KE08 J. Keinonen and A. Anttila, Nucl. Phys. A330 (1979) 397
1979 KO21 V.I. Komarov, G.E. Kosarev, H. Muller, D. Netzband, V.D. Toneev, T. Stiehler, S. Tesch, K.K. Gudima and S.G. Mashnik, Nucl. Phys. A326 (1979) 297
1979 KO36 V.I. Komarov, G.E. Kosarev, H. Muller, D. Netzband, T. Stiehler and S. Tesch, J. Phys. (London) G5 (1979) 1717
1979KU05 D. Kurath, Nucl. Phys. A317 (1979) 175
1979LI1C Litherland, Bull. Amer. Phys. Soc. 24 (1979) 599
1979LI1D Li and Jiang, Phys. Energ. Fortis Phys. Nucl. (China) 3 (1979) 595
1979LIZT B.S. Lin and P.M.S. Lesser, Bull. Amer. Phys. Soc. 24 (1979) 593, BM5
1979 LO11 H. Lohner, B. Ludewigt, D. Frekers, G. Gaul and R. Santo, Z. Phys. A292 (1979) 35
1979MA38 R.E. Marrs, R.E. Pollock and W.W. Jacobs, Phys. Rev. C20 (1979) 2308
1979ME2A D.F. Measday and G.A. Miller, Ann. Rev. Nucl. Part. Sci. 29 (1979) 121
1979MO04 R.A. Moyle, B.G. Glagola, G.J. Mathews and V.E. Viola, Jr., Phys. Rev. C19 (1979) 631

1979MO14 T. Motobayashi, I. Kohno, T. Ooi and S. Nakajima, Nucl. Phys. A331 (1979) 193

1979MO1E Moss et al., Conf. Proc. TRIUMF, Vancouver (1979) Paper 4A11
1979NO1C Noya and Ohnishi, Tsukuba Symp. on Polarization Phenomena, Nov. 1979; Ed., K. Yagi (1979) 217

1979NOZZ J.A. Nolen, Jr., P.H. Barker and M.S. Curtin, Bull. Amer. Phys. Soc. 24 (1979) 63, JF14

1979OE01 W. Oelert, A. Djaloeis, C. Mayer-Boricke and P. Turek, Phys. Rev. C19 (1979) 1747
1979 PA09 L.A. Parks, K.W. Kemper, R.I. Cutler and L.H. Harwood, Phys. Rev. C19 (1979) 2206
1979PE1C Perroud, 1978 RPI Symp., Photopion Nucl. Phys. (1979) 69
1979 PI06 P.H. Pile, R.D. Bent, R.E. Pollock, P.T. Debevec, R.E. Marrs, M.C. Green, T.P. Sjoreen and F. Soga, Phys. Rev. Lett. 42 (1979) 1461
1979RA1C Ramaty, Kozlovsky and Lingenfelter, Astrophys. J. Suppl. 40 (1979) 487
1979RA1E Raisbeck et al., Nature 282 (1979) 279
1979 RI12 Y. Rihet, G. Costa, C. Gerardin and R. Seltz, Phys. Rev. C20 (1979) 1583
1979SA27 G.R. Satchler, Nucl. Phys. A329 (1979) 233
1979 SC07 P. Schwaller, M. Pepin, B. Favier, C. Richard-Serre, D.F. Measday and P.U. Renberg, Nucl. Phys. A316 (1979) 317

1979SC1D Scott, Prog. Nucl. Phys. 4 (1979) 5
1979SH09 J.R. Shepard, R.E. Anderson, J.J. Kraushaar, R.A. Ristinen, J.R. Comfort, N.S.P. King, A. Bacher and W.W. Jacobs, Nucl. Phys. A322 (1979) 92
1979 SH22 D. Shapira, R. Dayras, J.L.C. Ford, Jr., J. Gomez del Campo, A.H. Snell, P.H. Stelson and R.G. Stokstad, Nucl. Instrum. Meth. Phys. Res. 163 (1979) 325

1979SI1D Simpson, Bull. Amer. Phys. Soc. 24 (1979) 69
1979 SP01 R.H. Spear, Z.E. Switkowski, D.L. Kennedy and J.C.P. Heggie, Nucl. Phys. A318 (1979) 21

1979 ST15 D.P. Stahel, R. Jahn, G.J. Wozniak and J. Cerny, Phys. Rev. C20 (1979) 1680
1979ST1D Stanley, Glover and Petrovich, Bull. Amer. Phys. Soc. 24 (1979) 816
1979SU09 W. Sunkel and Y.C. Tang, Nucl. Phys. A329 (1979) 10
1979SU1F Suzuki and Kubo, Tsukuba Symp. on Polarization Phenomena, Nov. 1979; Ed., K. Yagi (1979) 211
1979TA1C Taneichi, Ueno and Shoda, Nucl. Interact., Canberra, Australia (1979) 456
1979TI1A Titov, Int. Conf. Nucl. Phys. with Electromag. Interact., Mainz (1979) 6.14
1979TR1B Truol, Proc. Mainz, 1979, Springer Lect. Notes 108 (1979) 351
1979VI05 A. Vidal-Quadras and M. Ortega, Nuovo Cim. A49 (1979) 235

1979 WA13 R.E. Warner, D.C. Martin, G.C. Ball, W.G. Davies, A.J. Ferguson and D. Horn, Nucl. Phys. A326 (1979) 209
1979WA1F Watermann et al., Med. Phys. (USA) 6 (1979) 432
1979WE1C Weber and Eisenberg, AIP Conf. Proc. 54 (1979) 190
1980 AB16 S.N. Abramovich, A.I. Baz and B.Ya. Guzhovsky, Yad. Fiz. 32 (1980) 402; Sov. J. Nucl. Phys. 32 (1980) 208
1980AD1A Adib et al., Proc. Int. Conf. on Nucl. Cross Sections for Tech., Knoxville, TN (1980) 101
1980AJ01 F. Ajzenberg-Selove and C.L. Busch, Nucl. Phys. A336 (1980) 1
1980BA2L Basu, Subba Rao and Srinivasan, Atomkernernerg. Kerntech. 36 (1980) 30, 32
1980BL02 L. Bland and H.T. Fortune, Phys. Rev. C21 (1980) 11
1980 BO14 K. Bodek, M. Hugi, J. Lang, R. Muller, A. Schiltz, J. Sromicki, E. Ungricht, L. Jarczyk and A. Strzalkowski, Phys. Lett. B92 (1980) 79
1980BO1B Bosted et al., Bull. Amer. Phys. Soc. 25 (1980) 559
1980BO1L Boucenna, Allab and Hadda, Bull. Amer. Phys. Soc. 25 (1980) 785
1980BO24 P.E. Bosted, K.I. Blomqvist, A.M. Bernstein, S.A. Dytman and R.A. Miskimen, Phys. Rev. Lett. 45 (1980) 1544
1980BO31 V.I. Bogatin, E.A. Ganza, O.V. Lozhkin, Yu.A. Murin and V.S. Oplavin, Yad. Fiz. 32 (1980) 27; Sov. J. Nucl. Phys. 32 (1980) 14

1980BR21 B.A. Brown, W.A. Richter and N.S. Godwin, Phys. Rev. Lett. 45 (1980) 1681
1980 CO10 T.M. Cormier and B.R. Fulton, Phys. Rev. C22 (1980) 565
1980 CO12 T.V. Congedo, I.S. Lee-Fan and B.L. Cohen, Phys. Rev. C22 (1980) 985
1980 CR03 J.F. Crawford, M. Daum, G.H. Eaton, R. Frosch, H. Hirschmann, R. Horisberger, J.W. McCulloch, E. Steiner, R. Hausammann, R. Hess et al., Phys. Rev. C22 (1980) 1184
1980 DE11 A. Deloff, Phys. Rev. C21 (1980) 1516
1980 DE39 C. Detraz, D. Guillemaud, M. Langevin, F. Naulin, M. Epherre, R. Klapisch, M. de Saint-Simon, C. Thibault and F. Touchard, J. Phys. Lett. (Paris) 41 (1980) L-459.
1980 DI02 M. Dillig, P. Couvert, T.S. Bauer, R. Beurtey, A. Boudard, G. Bruge, H. Catz, A. Chaumeaux, H.H. Duhm, J.L. Escudie et al., Nucl. Phys. A333 (1980) 477
1980EL1B Elmore et al., Bull. Amer. Phys. Soc. 25 (1980) 784
1980EL1C Elmore et al., Proc. Int. Conf. on Nucl. Phys., Berkeley (1980) 655
1980 FA07 E. Fabrici, S. Micheletti, M. Pignanelli, F.G. Resmini, R. De Leo, G. D’Erasmo and A. Pantaleo, Phys. Rev. C21 (11980) 844

1980FR1K Franz et al., Proc. Int. Conf. on Nucl. Phys., Berkeley (1980) 890

1980FU1G Furutani et al., Prog. Theor. Phys. Suppl. 68 (1980) 193
1980 GL03 C.W. Glover, K.W. Kemper, L.A. Parks, F. Petrovich and D.P. Stanley, Nucl. Phys. A337 (1980) 520
1980GO1B Gove et al., Nucl. Instrum. Meth. Phys. Res. 168 (1980) 425
1980 GR10 R.E.L. Green and R.G. Korteling, Phys. Rev. C22 (1980) 1594
1980GU1E Guet et al., Proc. Int. Conf. on Nucl. Phys., Berkeley (1980) 471
1980HA33 M.N. Harakeh, J. Van Popta, A. Saha and R.H. Siemssen, Nucl. Phys. A344 (1980) 15

1980 IS02 M.A. Islam, T.J. Kennett, S.A. Kerr and W.V. Prestwich, Can. J. Phys. 58 (1980) 168
1980IW1A Iwao, Lett. Nuovo Cim. 29 (1980) 40
1980KA03 T. Kammuri, H. Shimaoka, P.D. Kunz, S. Kato, K. Okada, M. Kondo, K. Hosono, T. Saito, N. Matsuoka, S. Nagamachi et al., Phys. Lett. B90 (1980) 197
1980KI1B Kilius et al., Nucl. Instrum. Meth. Phys. Res. 171 (1980) 355
1980KO1L Kostin, Koval, Kopanets and Tsytko, Ukr. Fiz. Zh. 25 (1980) 881
1980KO1V Koptev, Maev, Makarov and Khanzadeev, Yad. Fiz. 31 (1980) 1501
1980LA1B Lanford et al., Nucl. Instrum. Meth. Phys. Res. 168 (1980) 505
1980LE02 T.-S.H. Lee and D. Kurath, Phys. Rev. C21 (1980) 293
1980LI1F Lin and Lesser, Bull. Amer. Phys. Soc. 25 (1980) 577
1980MA1F Maleki, Rao and Levinger, Bull. Amer. Phys. Soc. 25 (1980) 606
1980MA1Z Mandal and Saha, Can. J. Phys. 58 (1980) 300
1980MA33 G. Mack, R.C. Byrd, P.W. Lisowski and R.L. Walter, Nucl. Phys. A345 (1980) 241
1980MI01 T. Mikumo, M. Sasagase, M. Sato, T. Ooi, Y. Higashi, Y. Nagashima and M. Yamanouchi, Phys. Rev. C21 (1980) 620
1980MU1B N.C. Mukhopadhyay, Nucl. Phys. A335 (1980) 111
1980MU1D Muller et al., Nucl. Instrum. Meth. Phys. Res. 170 (1980) 151
1980NA1B Nagl and Uberall, Bull. Amer. Phys. Soc. 25 (1980) 606
1980 NI09 N.A. Nikiforov, Y.D. Bayukov, V.I. Efremenko, G.A. Leskin, V.I. Tchistilin, Y.M. Zaitsev, S. Frankel, W. Frati, M. Gazzaly and C.F. Perdrisat, Phys. Rev. C22 (1980) 700
1980NI1F Nishioka, Euro. Symp. on Few Body Prob. in Nucl. and Part. Phys. (1980)
1980NO1A Nolen, Proc. Int. Conf. in At. Masses and Fund. Constants; Eds., Nolen and Beneson (1980) 505

1980OKZZ S. Okabe, Proc. Int. Conf. on Nucl. Phys., Berkeley (1980) 9
1980OL1C Olson et al., Proc. Int. Conf. on Nucl. Phys., Berkeley (1980) 200

1980 PA01 L.A. Parks, D.P. Stanley, L.H. Courtney and K.W. Kemper, Phys. Rev. C21 (1980) 217

1980 PA19 R.L. Parks, S.T. Thornton, L.C. Dennis and K.R. Cordell, Nucl. Phys. A348 (1980) 350

1980RE1B Read et al., Bull. Amer. Phys. Soc. 25 (1980) 592
1980 RI06 W.A. Richter and P.R. de Kock, Z. Phys. A297 (1980) 343
1980RO1F Roy-Choudhury, Gautam and Surak, Pramana 14 (1980) 57
1980SEZX K.K. Seth, S. Iversen, H. Nann, M. Kaletka, D. Barlow and D. Smith, Proc. Int. Conf. on Nucl. Phys., Berkeley (1980) 164
1980 SJ02 T.P. Sjoreen, M.C. Green, W.W. Jacobs, R.E. Pollock, F. Soga, R.D. Bent and T.E. Ward, Phys. Rev. Lett. 45 (1980) 1769

1980SK1A Skrzypczak et al., Proc. Int. Conf. on Nucl. Phys., Berkeley (1980) 575
1980 ST25 K. Stricker, J.A. Carr and H. McManus, Phys. Rev. C22 (1980) 2043
1980 TR02 H.-J. Trost, A. Schwarz, U. Feindt, F.H. Heimlich, S. Heinzel, J. Hintze, F. Korber, R. Lekebusch, P. Lezoch, G. Mock et al., Nucl. Phys. A337 (1980) 377

1980VA03 R. Vandenbosch, Nucl. Phys. A339 (1980) 167
1980WA1K Walter and Byrd, Proc. Int. Conf. in the (p, n) Reaction and the Nucleon-Nucleon Force (1980) 469
1980WI09 J.P. Wieleczko, S. Harar, M. Conjeaud and F. Saint-Laurent, Phys. Lett. B93 (1980) 35

1980WI1L L. Winsberg, Phys. Rev. C22 (1980) 2123
1980WI1M Wiedenbeck and Greiner, Astrophys. J. 239 (1980) L139
1980ZH1C Zheng, Li and Shen, Transactions of the N.Y. Acad. of Sci. 40 (1980) 274
1981AB1A Abe, RIFP-421 (1981) 428
1981AU1C Auld, Santa Fe 1980, AIP Conf. Proc. 69 (1981) 93
1981AU1D Audouze, Prog. Part. Nucl. Phys. 6 (1981) 125
1981AU1G Austin, Prog. Part. Nucl. Phys. 7 (1981) 1
1981 AV02 I.K. Averyanov, A.I. Golubev and A.A. Sadovoy, Yad. Fiz. 33 (1981) 66
1981BA1R Bayukov et al., Yad. Fiz. 33 (1981) 183
1981 BA37 A.K. Basak, O. Karban, S. Roman, G.C. Morrison, C.O. Blyth and J.M. Nelson, Nucl. Phys. A368 (1981) 74
1981 BA38 A.K. Basak, O. Karban, S. Roman, G.C. Morrison, C.O. Blyth and J.M. Nelson, Nucl. Phys. A368 (1981) 93
1981BA64 F.C. Barker, Aust. J. Phys. 34 (1981) 7

1981 BE63 V.B. Belyaev and O.P. Solovtsova, Yad. Fiz. 33 (1981) 699; Sov. J. Nucl. Phys. 33 (1981) 363

1981BL1G M. Blann and T.T. Komoto, Phys. Rev. C24 (1981) 426
1981 BO03 A. Boudard, Y. Terrien, R. Beurtey, L. Bimbot, G. Burge, A. Chaumeaux, P. Couvert, J.M. Fontaine, M. Garcon, Y. Le Bornec et al., Phys. Rev. Lett. 46 (1981) 218; Comments Phys. Rev. Let. 47 (1981) 147

1981BO1C D.H. Boal and R.M. Woloshyn, Phys. Rev. C23 (1981) 1206
1981BO1D Boyd, Santa Fe 1980, AIP Conf. Proc. 69 (1981) 373
1981BO1Y Bouten and Bouten, Prog. Part. Nucl. Phys. 5 (1981) 55
1981BR1E Brooks, Lister, Nelson and Dhuga, Santa Fe 1980, AIP Conf. Proc. 69 (1981) 656
1981BY1B Byrd and Walter, Santa Fe 1980, AIP Conf. Proc. 69 (1981) 1475
1981BY1C Byrd and Walter, Bull. Amer. Phys. Soc. 26 (1981) 624
1981 CE04 F.E. Cecil and R.F. Fahlsing, Phys. Rev. C24 (1981) 1769; Erratum Phys. Rev. C25 (1982) 2137

1981 CI03 M.A. Cirit and F. Yazici, Phys. Rev. C23 (1981) 2627
1981CO1D Conzett, Santa Fe 1980, AIP Conf. Proc. 69 (1981) 1452
1981DAZZ J.H. Dave, C.R. Gould, L.W. Seagondollar, S.G. Glendinning, C.R. Howell, R.S. Pedroni, F.O. Purser and R.L. Walter, Bull. Amer. Phys. Soc. 26 (1981) 551, BG7

1981 DE13 J.-L. Dethier and Fl. Stancu, Phys. Rev. C23 (1981) 1503
1981DE2G de Wet, Found. Phys. 11 (1981) 155
1981 ER10 J. Ero, Z. Fodor, P. Koncz, Z. Seres, M. Csatlos, B.A. Khomenko, N.N. Khovanskij, Z.V. Krumstein, Yu.P. Merekov and V.I. Petrukhin, Nucl. Phys. A372 (1981) 317

1981FA1E Farwell, Grootes and Schmidt, Bull. Amer. Phys. Soc. 26 (1981) 1159
1981FE2A H.W. Fearing, Prog. Part. Nucl. Phys. 7 (1981) 113
1981 FL04 C.E. Floyd, P.P. Guss, K. Murphy, R.C. Byrd, G. Tungate, S.A. Wender, R.L. Walter and T.B. Clegg, Phys. Rev. Lett. 47 (1981) 1042
1981FL1A Floyd et al., Santa Fe 1980, AIP Conf. Proc. 69 (1981) 407
$1981 F R 17$ E. Friedman, Phys. Lett. B104 (1981) 357
1981GA1A Gagliardi et al., Santa Fe 1980, AIP Conf. Proc. 69 (1981) 939
1981GA1B Garcia-Munoz, Simpson and Wefel, Bull. Amer. Phys. Soc. 26 (1981) 557
1981GA1C Garcia-Munoz, Guzik, Simpson and Wefel, Bull. Amer. Phys. Soc. 26 (1981) 557
1981GE1B Geesaman et al., Proc. Versailles Conf. (1981) 302
1981 GI08 M. Giffon, A. Goncalves, P.A.M. Guichon, J. Julien, L. Roussel and C. Samour, Phys. Rev. C24 (1981) 241

1981GI15 Yu.R. Gismatullin, Izv. Akad. Nauk SSSR Ser. Fiz. 45 (1981) 674
1981GU1D Guzik, Astrophys. J. 244 (1981) 695
1981HAZJ R.C. Haight and S.M. Grimes, Bull. Amer. Phys. Soc. 26 (1981) 1138, CE1
1981HE05 P. Heusi, M. Berta, V. Meyer and R.E. Pixley, Nucl. Phys. A357 (1981) 381
1981HO13 J. Hohn, J. Kayser, W. Pilz, D. Schmidt and D. Seeliger, J. Phys. (London) G7 (1981) 803

1981JO02 P.L. Jolivette, Nucl. Phys. A370 (1981) 256
1981KE02 T.J. Kennett, M.A. Islam and W.V. Prestwich, Can. J. Phys. 59 (1981) 93
1981 KE15 B.K. Kerimov, M.Ya. Safin and I.M. Al-Khamisi, Yad. Fiz. 34 (1981) 996; Sov. J. Nucl. Phys. 34 (1981) 554
1981 KE16 B.K. Kerimov, A.I. Elgavkhari and A.G. Ganiev, Izv. Akad. Nauk SSSR Ser. Fiz. 45 (1981) 2189; Bull. Acad. Sci. USSR Phys. Ser. 45 (1981) 145

1981 KH08 A.F. Khodyachikh, P.I. Vatset, V.N. Gurev, I.V. Dogyust and V.V. Kirichenko,Yad. Fiz. 34 (1981) 1425; Sov. J. Nucl. Phys. 34 (1981) 789
1981 KI04 Yu.V. Kirichenko, V.Yu. Gonchar, E.V. Inopin and V.N. Tarasov, Ukr. Fiz. Zh. 26 (181) 904

1981KN06 W. Knupfer and A. Richter, Phys. Lett. B101 (1981) 375
1981KO1U Kong et al., Phys. Energ. Fortis Phys. Nucl. (China) 5 (1981) 600
1981 KR17 S.P. Krekoten, A.M. Mukhamedzhanov and E.A. Romanovsky, Izv. Akad. Nauk SSSR Ser. Fiz. 45 (1981) 790
1981KR1C Kruse et al., Bull. Amer. Phys. Soc. 26 (1981) 543
1981KR1J Kramer, John and Schenzle, Clustering Phenomena in Nuclei 2 (1981)
1981 KU04 D. Kurath and W. Teeters, Phys. Lett. B101 (1981) 5
$1981 L A 13$ M. Lattuada, F. Riggi, C. Spitaleri, D. Vinciguerra and C.M. Sutera, Nuovo Cim. A63 (1981) 530

1981LI1K Litherland et al., Nucl. Sci. 28 (1981) 1469
1981MA18 J.F. Mateja, A.D. Frawley, L.C. Dennis, K. Abdo and K.W. Kemper, Phys. Rev. Lett. 47 (1981) 311

1981MA1J Maday et al., Proc.Versailles Conf. (198) 538
1981ME13 M.C. Mermaz, J. Barrette and H.E. Wegner, Phys. Rev. C24 (1981) 2148
1981MO20 J. Mougey, R. Ost, M. Buenerd, A.J. Cole, C. Guet, D. Lebrun, J.M. Loiseaux, P. Martin, M. Maurel, E. Monnand et al., Phys. Lett. B105 (1981) 25

1981MU1D Murphy et al., Santa Fe 1980, AIP Conf. Proc. 69 (1981) 1478
1981MU1E Mukhopadhyay and Hintermann, Santa Fe 1980, AIP Conf. Proc. 69 (1981) 1068

1981MU1F Murnick, Chung, Niv and McGlashan-Powell, Bull. Amer. Phys. Soc. 26 (1981) 623
1981MUZQ S.F. Mughabghab, M. Divadeenam and N.E. Holden, Neutron Cross Sections Vol. 1 Part A, Z=1-60 (1981)
1981 NA05 T. Nakamura, Y. Chiba, M. Aoki and S. Kaneko, Nucl. Phys. A365 (1981) 457
1981NI1B Niskanen, Santa Fe 1980. AIP Conf. Proc. 69 (1981) 62
1981 LL01 A. Olin, P.R. Poffenberger, G.A. Beer, J.A. Macdonald, G.R. Mason, R.M. Pearce and W.C. Sperry, Nucl. Phys. A360 (1981) 426

1981PR1B Protheroe, Bull. Amer. Phys. Soc. 26 (1981) 556
1981RA1F Raisbeck et al., Nature 293 (1981) 825
1981 RI06 P.J. Riley, C.L. Hollas, C.R. Newsom, R.D. Ransome, B.E. Bonner, J.E. Simmons, T.S. Bhatia, G. Glass, J.C. Hiebert, L.C. Northcliffe et al., Phys. Lett. B103 (1981) 313

1981RO1M Roy et al., Proc. Versailles Conf. (1981) 133
1981SA1G Savin, Kruse and Moniot, Bull. Amer. Phys. Soc. 26 (1981) 543
1981SC1D Schmidt, Farwell and Grootes, Bull. Amer. Phys. Soc. 26 (1981) 593
1981 SE04 R.M. Sealock, H.-Y. Wu and J.C. Overley, Nucl. Phys. A357 (1981) 279
1981 SE06 M. Seya, M. Kohno and S. Nagata, Prog. Theor. Phys. 65 (1981) 204
1981 SI09 M.K. Singham and F. Tabakin, Ann. Phys. 135 (1981) 71
1981SI1D Singham and Tabakin, Proc. Versailles Conf. (1981) 129
1981 SL03 R.J. Slobodrian, C. Rioux, R. Roy, H.E. Conzett, P. von Rossen and F. Hinterberger, Phys. Rev. Lett. 47 (1981) 1803
1981 ST05 C.E. Stronach, B.J. Lieb, H.O. Funsten, W.J. Kossler, H.S. Plendl and V.G. Lind, Phys. Rev. C23 (1981) 2150
1981ST1P Stokstad, Nukleonika 26 (1981) 373
1981 TA 22 S.L. Tabor, L.C. Dennis and K. Abdo, Phys. Rev. C24 (1981) 2552
1981TH1C Thomas, Mangini and Parker, Nucl. Sci. 28 (1981) 1478
1981THZY S.T. Thornton, R.L. Parks, K.R. Cordell and C.-A. Wiedner, Bull. Amer. Phys. Soc. 26 (1981) 611, HI13
1981UL1B Ullmann et al., Med. Phys. (USA) 8 (1981) 396
1981VA1D van Driel et al., Kernfysisch Versneller Inst. (KVI) 235 (1980) 1
1981VA1E R. Vandenbosch and A.J. Lazzarini, Phys. Rev. C23 (1981) 1074
1981VI1B Vigdor, Santa Fe 1980, AIP Conf. proc. 69 (1981) 1429
1981WA1G Walter, Santa Fe 1980, AIP Conf. proc. 69 (1981) 344
1981WA1J Wang, Zhang, Li and Ruan, Proc. Versailles Conf. (1981) 374

1981WH01 W.R. Wharton and B.D. Keister, Phys. Rev. C23 (1981) 1141
1981YA1A Yamazaki et al., Proc. Versailles Conf. (1981) 115
1982AB1D Abramovich, Gushovskii and Protopopov, in Kiev (1982) 566
1982 AL08 D.V. Aleksandrov, Yu.A. Glukhov, A.S. Demyanova, V.I. Dukhanov, I.B. Mazurov, B.G. Novatsky, A.A. Ogloblin, S.B. Sakuta and D.N. Stepanov, Yad. Fiz. 35 (1982) 277; Sov. J. Nucl. Phys. 35 (1982) 158

1982AU02 E.G. Auld, G. Jones, G.J. Lolos, E.L. Mathie, P.L. Walden and R.B. Taylor, Phys. Rev. C25 (1982) 2222

1982AV1A I.K. Ver'yanov, A.I. Golubev, A.A. Sadovoi, Yad. Fiz. 35 (1982) 833; Sov. J. Nucl. Phys. 35 (1982) 484

1982BA24 M.T. Barriuso and F. Fernandez, Lett. Nuovo Cim. 33 (1982) 305
1982BA2G B.F. Bayman, P.J. Ellis and Y.C. Tang, Phys. Rev. lett. 49 (1982) 532
1982BA2T Barabash et al., Yad. Fiz. 36 (1982) 155
1982BA52 F.C. Barker, Aust. J. Phys. 35 (1982) 291
1982BE1Z J.J. Bevelacqua, Rev. Mex. Fis. 28 (1982) 573
1982BE54 Yu.A. Berezhnoi, A.P. Klyucharev and N.Ya. Rutkevich, Ukr. Fiz. Zh. 27 (1982) 1475
1982BI1C Bikov et al., in Kiev (1982) 559
1982BO1J D.H. Boal, Phys. Rev. C25 (1982) 3068
1982 BO35 C. Borcea, E. Gierlik, A.M. Kalinin, R. Kalpakchieva, Yu.Ts. Oganessian, T. Pawlat, Yu.E. Penionzhkevich and A.V. Rykhlyuk, Nucl. Phys. A391 (1982) 520

1982BR1N Brown et al., Nature 299 (1982) 718
1982BU03 B.L. Burks, R.E. Anderson, T.B. Clegg, H. Paetz gen.Schieck, E.J. Ludwig, R.L. Varner and J.F. Wilkerson, Phys. Rev. C25 (1982) 1168

1982BY1A Byrd, Murphy and Walter, Bull. Amer. Phys. Soc. 27 (1982) 460
1982CH07 Y.-D. Chan, D.E. DiGregorio, J.L.C. Ford, Jr., J. Gomez del Campo, M.E. Oritz and D. Shapira, Phys. Rev. C25 (1982) 1410

1982CH1M Choudhury et al., MSU (1982) 88
1982COZV B. Cottman, A.M. Bernstein, K.I. Blomqvist, S.A. Dytman and J. Nelson, Bull. Amer. Phys. Soc. 27 (1982) 709, BE7

1982 DE14 V. DeCarlo and N. Freed, Phys. Rev. C25 (1982) 2162
1982DE1N de Wet, Found. Phys. 12 (1982) 285
1982 DO01 K.G.R. Doss, P.D. Barnes, N. Colella, S.A. Dytman, R.A. Eisenstein, C. Ellegaard, F. Takeutchi, W.R. Wharton, J.F. Amann, R.H. Pehl et al., Phys. Rev. C25 (1982) 962

1982 DO08 I.V. Dogyust, P.I. Vatset, V.V. Kirichenko and A.F. Khodyachikh, Yad. Fiz. 35 (1982) 810

1982EL07 R.J. Ellis, H.J. Ziock, K.O.H. Ziock, Y. Tzeng, J. Arvieux, R. Corfu, J. Piffaretti, L.C. Liu and E.R. Siciliano, Phys. Rev. C26 (1982) 1544

1982ER1E Eramzhyan, Fetisovm Majling and Zofka, Conf. on Hypernucl. Kaon Phys., Heidelberg, June 1982 (1982) 91
1982 FU04 T. Fukuda, M. Ishihara, M. Tanaka, I. Miura, H. Ogata and H. Kamitsubo, Phys. Rev. C25 (1982) 2464
1982FU09 C.B. Fulmer, S. Mukhopadhyay, G.R. Satchler, R.L. Auble, J.B. Ball, F.E. Bertrand, E.E. Gross and D.C. Hensley, Nucl. Phys. A385 (1982) 83
$1982 G O 03$ N.G. Goncharova, B.S. Ishkhanov and V.I. Mokeev, Yad. Fiz. 35 (1982) 43; Sov. J. Nucl. Phys. 35 (1982) 26
1982 GO05 S.A. Goncharov, Ya. Dobesh, E.I. Dolinsky, A.M. Mukhamedzhanov and Ya. Tseipek, Yad. Fiz. 35 (1982) 662
1982GO1E Gogitidze et al., in Kiev (1982) 338
1982GU1H H.H. Gutbrod, A.I. Warwick and H. Wieman, Nucl. Phys. A387 (1982) 177
1982HA1A Haight, Proc. 4th Int. Symp., Grenoble, 1981 (1982) 510
1982HA42 Q. Haider and F.B. Malik, Phys. Rev. C26 (1982) 989
1982HO1C Hoistad, AIP Conf. Proc. 79 (1982) 105
1982HO1F Hoppe et al., Bad Honnef Symp., 1981 (1982) 135
1982IK1A Ikeda, Miyahara and Bando, Conf. on Hypernucl. Kaon Phys., Heidelberg, June 1982 (1982) 149

1982KL1A Klein, Middleton and Tang, Nucl. Instrum. Meth. Phys. Res. 193 (1982) 601
1982 KO11 N.N. Kolesnikov, D. Amarasingam and V.I. Tarasov, Yad. Fiz. 35 (1982) 32; Sov. J. Nucl. Phys. 35 (1982) 20

1982KO1L Kolesnikov, Kopilov andf Kolesov, in Kiev (1982) 187
1982KU1G Ku et al., Nature 299 (1982) 240
1982KU1J Kusakabe et al., Nature 299 (1982) 712
1982 LA26 J. Lange, K. Kumar and J.H. Hamilton, Rev. Mod. Phys. 54 (1982) 119
1982 LE10 M. LeMere, Y.C. Tang and H. Kanada, Phys. Rev. C25 (1982) 2902
1982 LO02 G.J. Lolos, E.L. Mathie, P.L. Walden, G. Jones, E.G. Auld and R.B. Taylor, Phys. Rev. C25 (1982) 1082
1982 LO13 M. Lozano, J.I. Escudero and G. Madurga, J. Phys. (London) G8 (1982) 1259
1982 LU01 B. Ludewigt, G. Gaul, R. Glasow, H. Lohner and R. Santo, Phys. Lett. B108 (1982) 15

1982LY1A U. Lynen, H. Ho, W. Kuhn, D. Pelte, U. WinklerW. F.J. Muller, Y. -T. Chu, P. Doll, A. Gobbi, K. Hildenbrand et al., Nucl. Phys. A387 (1982) 129

1982MA20 J.F. Mateja, A.D. Frawley, L.C. Dennis, K. Abdo and K.W. Kemper, Phys. Rev. C25 (1982) 2963

1982MA25 G. Mairle, G.J. Wagner, P. Grabmayr, K.T. Knopfle, Liu Ken Pao, H. Riedesel, K. Schindler, V. Bechtold, L. Friedrich and P. Ziegler, Nucl. Phys. A382 (1982) 173
1982MO1K C.B.O. Mohr, Aust. J. Phys. 35 (1982) 1
1982NA01 J. Navarro, J. Bernabeu, J.M.G. Gomez and J. Martorell, Nucl. Phys. A375 (1982) 361

1982NA1K Nann, AIP Conf. Proc. 79 (1982) 219
1982NG01 Nguyen Tien Nguyen and I. Ulehla, Czech. J. Phys. B32 (1982) 1040
1982 OG02 Yu.Ts. Oganesyan, Yu.E. Penionzhkevich, E. Gierlik, R. Kalpakchieva, T. Pawlat, C. Borcea, A.V. Belozerov, Yu.P. Kharitonov, S.P. Tretyakova, V.G. Subbotin et al., Pisma Zh. Eksp. Teor. Fiz. 36 (1982) 104; JETP Lett. 36 (1982) 129
1982 OR02 M.E. Ortiz, J. Gomez del Campo, Y.D. Chan, D.E. DiGregorio, J.L.C. Ford, D. Shapira, R.G. Stokstad, J.P.F. Sellschop, R.L. Parks and D. Weiser, Phys. Rev. C25 (1982) 1436

1982OV1A Overley, Bull. Amer. Phys. Soc. 27 (1982) 770
1982PA1F D.K. Pal, C. Tuniz, R.K. Moniot, T.H. Kruse and G.F. Herzog, Science 218 (1982) 787

1982PE1F Pella et al., Bull. Amer. Phys. Soc. 27 (1982) 729
1982RA1L Rahman Khan, Conf. on Hypernucl. Kaon Phys., Heidelberg, June 1982 (1982) 115
1982 RA20 R.D. Ransome, C.L. Hollas, P.J. Riley, B.E. Bonner, W.D. Cornelius, O.B. van Dyck, E.W. Hoffman, S.A. Wood and K. Toshioka, Nucl. Instrum. Meth. Phys. Res. 201 (1982) 315

1982 RI04 L. Ricken, D. Bohle, G. Domogala, K. Glasner and E. Kuhlmann, Z. Phys. A306 (1982) 67

1982 RO04 D. Rowley, J. LeRose, K. Min, B.O. Sapp, P. Stoler, E.J. Winhold, P.F. Yergin, A.M. Bernstein, K.I. Blomqvist, H.S. Caplan et al., Phys. Rev. C25 (1982) 2652

1982SA1U Sakai, Inst. for Nucl. Study (Japan) (1982)
1982SM1F Smith and Liskien, Eur. Appl. Res. Nucl. Sci. Technol. Sect. 4 (1982) 969
1982VE02 J.J.M. Verbaarschot, G.A. Timmer and P.J. Brussaard, Nucl. Phys. A378 (1982) 280
1982VE05 W.J. Vermeer and A.R. Poletti, J. Phys. (London) G8 (1985) 851
1982VE11 W.J. Vermeer, T.H. Zabel, M.T. Esat, J.A. Kuehner, R.H. Spear and A.M. Baxter, Aust. J. Phys. 35 (1982) 283

1982WA1G P.L. Walden, Nucl. Phys. A374 (1982) 277
1982ZU03 B.W. Zulkoskey, R.M. Sealock, H.S. Caplan and J.C. Bergstrom, Phys. Rev. C26 (1982) 1610

1983ABZW S.N. Abramovich, B.Ya. Guzhovsky, S.A. Dunaeva, A.G. Zvenigorodsky and S.V. Trusillo, in Moscow (1983) 362

1983ANZY R.E. Anderson, C.R. Gould, B.C. Karp, K. E.Nash, R.S. Pedroni, H.G. Pfutzner and R.L. Walter, Bull. Amer. Phys. Soc. 28 (1983) 648, AF1

1983 BE02 E. Betak and V.D. Toneev, J. Phys. (London) G9 (1983) L47
1983 BE16 S.L. Belostotsky, Yu.V. Dotsenko, J. Ero, Z. Fodor, L.G. Kudin, N.P. Kuropatkin, A.A. Lobodenko, O.V. Miklukho, V.N. Nikulin, O.E. Prokofev et al., Phys. Lett. B124 (1983) 469

1983BY01 R.C. Byrd, C.E. Floyd, P.P. Guss, K. Murphy and R.L. Walter, Nucl. Phys. A399 (1983) 94

1983CE01 F.E. Cecil, R.F. Fahlsing, N. Jarmie, R.A. Hardekopf and R. Martinez, Phys. Rev. C27 (1983) 6

1983 CH08 A. Chalupka, H. Vonach, E. Huenges and H.J. Scheerer, Z. Phys. A310 (1983) 135
1983 CI08 O. Civitarese, B.V. Carlson, M.S. Hussein and A. Szanto de Toledo, Phys. Lett. B125 (1983) 22

1983DE1P Deineko et al., in Moscow (1983) 318
$1983 G O 07$ D. Gola, W. Bretfeld, W. Burgmer, H. Eichner, Ch. Heinrich, H.J. Helten, H. Kretzer, K. Prescher, H. Oswald, W. Schnorrenberg et al., Phys. Rev. C27 (1983) 1394

1983GO1R Gontcharova, Kissener and Eramzhian, in Moscow (1983) 188
1983GO1T Goltsov, Goncharova and Matveev, in Moscow (1983) 211
1983KR1B Kruse, Bull. Amer. Phys. Soc. 28 (1983) 44
$1983 L E 28$ J.R. Letaw, R. Silberberg and C.H. Tsao, Astrophys. J. Suppl. 51 (1983) 271
1983NAZZ J. Napolitano and S.J. Freedman, Bull. Amer. Phys. Soc. 28 (1983) 650, AG4
1983 RI01 C. Rioux, R. Roy, R.J. Slobodrian and H.E. Conzett, Nucl. Phys. A394 (1983) 428
1983RO1G Rotter, Phys. Rev. C27 (1983) 2261
1983 SA06 M. Sato, M. Sasagase, Y. Nagashima, J. Schimizu, T. Nakagawa, Y. Fukuchi and T. Mikumo, Phys. Rev. C27 (1983) 2621
1983SEZW R.E. Segel, A. Hassan, S.M. Levenson, S. Mukhopadhyay, P. Zupranski, J.V. Maher and P.P. Singh, Bull. Amer. Phys. Soc. 28 (1983) 691, DG10
1983 SH04 V. Shkolnik and Y.C. Tang, Nucl. Phys. A397 (1983) 132
1983SO1B Southon et al., Nucl. Instrum. Meth. Phys. Res. 205 (1983) 251
1983ST1H Stepanenko et al., in Moscow (1983) 387

1983SU1C Suter et al., IEEE Trans. on Nucl. Sci. 30 (1983) 1528
1983VA1H Vasilieva et al., in Moscow (1983) 331
1985 AJ01 F. Ajzenberg-Selove, Nucl. Phys. A433 (1985) 1; Erratum Nucl. Phys. A449 (1986) 155

1986AJ01 F. Ajzenberg-Selove, Nucl. Phys. A449 (1986) 1
HO82F Unknown Source

[^0]: ${ }^{\text {a }}$ See also Table 10.4.

[^1]: ${ }^{a}$ See also Tables 10.6, 10.7 and 10.11.

[^2]: ${ }^{\text {a }}$ (1979AN08; $E_{\mathrm{e}}=67$ to 194 MeV). See also Table 10.18 in (1979AJ01) and (1978SH14).
 ${ }^{\mathrm{b}}$ Assumed to correspond to 2^{+}state at 5.16 MeV . $\Gamma_{\gamma_{0}}=(3.5 \pm 0.3) \times 10^{-4} \mathrm{eV}$ for M2 if the transition were to the 2^{-}state at 5.11 MeV : see also footnote ${ }^{8}$ in Table 10.18 (1979AJ01).
 c (1976FA13, 1979AN08).
 ${ }^{d}$ Determined by (1979AN08); $\Gamma \approx 760 \mathrm{keV}$.

[^3]: ${ }^{\text {a }}$ See Table 10.21 in (1979AJ01) for references.

