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8
Li

(Fig. 7)

GENERAL:

Theory: See (1955LA1D, 1956KU1A, 1957FR1B, 1957KU1B).

1. 8Li(β−)8Be Qm = 16.001

The weighted mean of half-lives reported in (1955AJ61) is 0.848 ± 0.004 sec. A value of

0.873± 0.013 sec is given by (1958VE20). See also (1958IM1A). The decay is complex: see 8Be.

2. 6Li(t, p)8Li Qm = 0.803

Q0 = 0.790± 0.011 (1954AL35).

The ground state reaction has been observed by (1952MO19, 1952PE02, 1954AL35, 1955CU17).

(1955CU17) also reports one event corresponding to the transition to an excited state at 0.7 ± 0.2
MeV.

3. 7Li(n, γ)8Li Qm = 2.035

The thermal capture cross section is 33 ± 5 mb (1947HU06), 42 ± 10 mb (1956KO1C). At

En = 275 keV, neutron capture is not observed: σ < 0.25 mb (1956KO1C). Polarization of 8Li

produced by polarized thermal neutrons has been detected by (1957BU44). See also (1957KU1B,

1958IM1A, 1958SH1A).

4. 7Li(n, n)7Li Eb = 2.035

Cross sections for Li metal and for 7Li are reported in (1958HU18: see also (1956GO62,

1957KA1B, 1958BR16)). The thermal cross section is 1.07±0.04 b (C. Hibdon: see (1955HU1B,

1956TH06)).

A pronounced resonance occurs at En = 258 keV (see Table 8.2). Total cross sections and

angular distributions establish that the state has J = 3+, formed by p-waves (1956WI04). A

further, broad peak centering at En ≈ 5 MeV may indicate a broad level of 8Li at ≈ 6.5 MeV

(1958HU18: see also (1956GO62)).
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Table 8.1: Energy levels of 8Li

Ex in 8Li (MeV) Jπ τ1/2 or Γ (keV) Decay Reactions

0 2+ τ1/2 = 0.848± 0.004 sec β− 1, 2, 3, 9, 12, 14, 18

0.975± 0.012 ≤ 3+ (γ) 2, 9, 18

2.260± 0.005 3+ 28 n 4, 9

3.22 1(+) ≈ 1000 n 5

Table 8.2: 7Li(n, n)7Li resonance parameters a

(1956WI04) (1956TH06, 1958HU18)

Eres (keV) 256 258± 3 b

Γ (keV) 32 32 c

Γn(Er) (keV) 35.8

γ2
n (keV) 351 307

Eλ (keV) −49 −43

radius (10−13 cm) 4.08 4.0

σmax (b) 12.0

a Energies in the laboratory system.
b Eres = 275 keV, σmax = 7.0± 0.2 b (1956GO62).
c
35± 5 keV (1958HU18).

Data on coherent scattering and total cross section for zero-energy neutrons permit two so-

lutions for the two s-wave scattering lengths corresponding to anti-parallel (J = 1−) and parallel

(J = 2−) interactions; for the first solution, the interaction is essentially pure J = 1−, for the other,

pure J = 2−. Measurement of the interference between the s-wave background and the p-wave

(channel spin 2) resonance indicate that the second solution is the correct one, and it is concluded

that the splitting between parallel and anti-parallel interactions is about 1.5 MeV (1956TH06).

(1956WI04) find, on the other hand, that the observed asymmetries in the angular distributions

indicate a nearly statistical (5
3
) mixture of J = 1− and 2− background. Use of scattering in 7Li as

a polarization analyzer is discussed by (1956WI1E).

See also (1956BE98, 1957KH1A).

5. 7Li(n, n′)7Li* Eb = 2.035
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The excitation function for 0.48-MeV γ-rays shows an abrupt rise from threshold (indicating

s-wave formation and emission) and a broad maximum (Γ ≈ 1 MeV) at En = 1.35 MeV. The

rise above threshold indicates the existence of a J = 1− level, which may be identified with the

1.35-MeV resonance (if a strong d-wave contribution is included). On the other hand, the latter

resonance appears to be better described as a J = 1+ level, formed by p-waves. Under this

assumption, Er(lab) = 1.45 MeV, Γ = 1.14 MeV, with the sum of reduced widths θ2in + θ2out ≈

0.5× (3~2/2MR2). The ratio θ2in/θ2out = 0.1 to 0.4 or 1.0 to 3.0 (1955FR10).

6. 7Li(n, p)7He Qm = −14 Eb = 2.035

Not observed: see 7He.

7. 7Li(n, d)6He Qm = −7.779 Eb = 2.035

At En = 14 MeV, the cross section is 9.8± 1.1 mb (1953BA04). See also (1954FR03).

8. (a) 7Li(n, t)5He Qm = −3.423 Eb = 2.035

(b) 7Li(n, t)4He + n Qm = −2.466

The cross section for reaction (a) is 55 ± 8 mb at En = 14 MeV (1954FR03). See also

(1954MA1E) and (1954BA1B).

9. 7Li(d, p)8Li Qm = −0.192

Q0 = −0.183± 0.02 (1955KH31).

Three proton groups are observed, corresponding to the ground state and to levels at 0.974 ±
0.015 (1955LE24), 0.977 ± 0.02 MeV (1955KH31, 1955KH35) and 2.28 MeV (1955LE24). A

search for further levels in the range Ex = 2.28 to 8 MeV revealed no levels with Γ < 80 keV

(1958HA10, 1958HA1G). At Ed = 14 MeV, the angular distributions of the protons, analyzed

by stripping theory, indicate ln = 1 and therefore even parity, J ≤ 3, for the ground state and

the 0.98-MeV level (1955LE24). On the assumption that J = 2+ and 1+ for the ground state

and 0.98-MeV level, respectively, (1957FR1B) calculate θ2 = 0.054 and 0.028 from the data of

(1955LE24). These two levels are presumed to arise from a 33P term, with a third component of

J = 0+ expected at higher energy (1957FR1B). See also (1955GI1A).
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10. 7Li(t, d)8Li Qm = −4.224

Not observed.

11. 7Li(α, 3He)8Li Qm = −18.543

Not observed.

12. 9Be(γ, p)8Li Qm = −16.885

See 9Be and (1958CH31).

13. 9Be(n, d)8Li Qm = −14.658

Not observed.

14. 9Be(p, 2p)8Li Qm = −16.885

Production of 8Li at Ep = 20 MeV is reported by (1956LE46). At Ep = 185 MeV, the summed

proton spectrum shows two peaks, corresponding to pickup of protons with binding energies of

≈ 18 and ≈ 26 MeV, respectively. There is some indication of α-particle structure (1958MA1B,

1958TY49).

15. 9Be(d, 3He)8Li Qm = −11.409

See (1954WI25).

16. 9Be(t, α)8Li Qm = 2.928

Not observed.

17. 10B(n, 3He)8Li Qm = −15.771

Not observed.

18. 11B(n, α)8Li Qm = −6.636

See 12B.
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8
Be

(Fig. 8)

GENERAL:

Theory: See (1955HE1E, 1956KU1A, 1956PE1A, 1957BI1C, 1957FR1B, 1958WI1E).

1. 8Be → 4He + 4He Qm = 0.094

Recent Q-values are 93.7±0.9 keV (1957CO59: 9Be(p, d)8Be), 90±5 keV (1955TR03: 11B(p,

α)8Be): the weighted mean of all measurements is 94.1± 0.7 keV (1957VA11). The width of the

ground state is 4.5± 3 eV (1956RU41: 15% of Wigner limit), ≤ 3.5 eV (1956HE57). The second

value leads to τm ≥ 2× 10−16 sec. (Combination of these values places the mean life in the range

τm = 2 to 4.5× 10−16 sec.) An upper limit to the mean life is 6× 10−15 sec (1955TR03). See also

(1955AJ61).

2. 4He(α, p)7Li Qm = −17.347 Eb = −0.094

See 7Li.

3. 4He(α, α)4He Eb = −0.094

Absolute differential cross sections are reported for Eα = 0.15 to 3.0 MeV (1956HE57),

Eα = 3.0 to 5.9 MeV (1956RU41), Eα = 12.9 to 21.6 MeV (1953ST52), Eα = 12.3 to

22.9 MeV (1956NI20), Eα = 20 and 20.4 MeV (1951BR92, 1951MA1B), Eα = 30 MeV

(1951GR45, 1952GR1A), Eα = 38.5 MeV (1957BU13), and Eα = 44.7 MeV (1957CO63).

See also (1958CH35).

Phase shifts summarizing the work of (1956HE57), (1956RU41) and (1956NI20) are presented

in (1956RU41) and (1958NI05). These three sets of data appear to join smoothly, but do not appear

to fit well with the data of (1953ST52). For Eα < 3 MeV, only the s-wave phase shift is important.

A careful survey in the range 146 − 202 keV reveals no effect of the ground state and places an

upper limit of Γ ≤ 3.5 eV on this state (1956HE57): see Table 8.5. Analysis of the 0 to 6 MeV data

by effective range theory leads to a value Γ = 4.5± 3 eV for the ground-state width; θ2 ≈ 0.15 of

the Wigner limit (with R = 5.7× 10−13 cm). Some evidence of shape-dependence is found in this

analysis (1956RU41). According to (1958NI05) a good account of the s-wave phase shift below

6 MeV is given by hard-sphere scattering plus resonance scattering from the ground state with a

width θ2 = 0.75 (R = 4.44× 10−13 cm). There is no indication of other S-states below Ex = 11.5
MeV (1958NI05).
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Table 8.3: Energy levels of 8Be

Ex in 8Be (MeV) Jπ; T Γ (MeV) Deacy Reactions

0 0+; 0 2.5± 1 eV α 1, 3, 12, 13, 14, 21, 22,

24, 26, 29, 30, 31, 32,

33, 34, 35, 36, 37, 38,

39, 40, 41, 42

2.90 a 2+; 0 1.2± 0.3 b α 3, 12, 14, 21, 26, 27,

28, 29, 30, 31, 32, 33,

35, 36, 37, 38, 39, 40

11.7 4+; 0 ≈ 6.7 α 3, 12, 21, 27, 28

16.08 0.31 (α) 21, 39, 41

16.67 (2+; 1) 0.19 α 21, 39, 41

(17.6) (2+; 1) (< 0.3) (α) 39

17.64 1+; (1) 10.7± 0.5 keV γ, p 14, 16, 21

18.15 1+; (0) 147 keV γ, p 14, 16, 17, 21

18.9 (2−; 0) > 0.5 n, p 15, 16, 17, 25

19.1 (3−) 0.4 γ, p 14, 15, 16

19.22 3+; (1) 0.19 n, p 15, 16

19.9 (2+) ≈ 0.9 (n), α, p 15, 20

21.6 ≈ 0.8 n, p 15

22.6 (+) ≈ 0.35 d, n, α, p, γ 5, 6, 10, 14

a A number of additional states from Ex = 2 to 15 MeV have been reported by various observers: see, e.g.
7Li(d, n)8Be, 10B(d, α)8Be, 11B(p, α)8Be, 12C(γ, α)8Be and (1954TI1C).
b See Table 8.4.
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Table 8.4: Energy and width of first excited state of 8Be

Ex (MeV) Γ (MeV) Reaction Reference

2.9 2.0 4He(α, α)4He (1956RU41)

1.9 7Li(p, γ)8Be (1958ME78)

2.95 1.6± 0.4 7Be(d, p)8Be (1958SP1A)

3.0± 0.1 1.0± 0.2 8Li(β−)8Be (1955AJ61) a

2.8± 0.1 0.8 9Be(d, t)8Be (1955CU16)

2.87± 0.06 0.9± 0.2 b 10B(d, α)8Be (1955AJ61) a

2.94± 0.06 0.84 11B(p, α)8Be (1955AJ61) a

3.06 0.9 12C(γ, α)8Be (1955GO59)

a See also text in reaction 3 in 8Be.
b θ2 ≈ 2 (1953TR04).

The d-wave phase shift first becomes appreciable near Eα = 2.5 MeV (1956HE57) and appears

to pass through resonance at 6.0 MeV (1956RU41). The g-wave shift rises continuously from

Eα = 11 to 23 MeV; a broad 8Be level is indicated at Ex = 11.7 MeV (1956NI20, 1958NI05).

The course of the phase shifts appears to be consistent with a simple two-body interaction with

an attractive potential near R ≈ 5 × 10−13 cm and a repulsive core at a smaller radius; some

dependence of the well shape on l is required (1951HA1B, 1956HE1B, 1956RU41, 1958NI05,

1958VA1B). A detailed comparison with the model of (1951HA1B) is made by (1958NI05). At

38.5 MeV, the s and d phase shifts are large, while the δ4, δ6 and δ8 phase shifts are small. These

results are consistent with 0+ and 2+ states near 19 MeV (see 7Li(p, α)4He) and are not inconsistent

with a 4+ state at ≈ 11 MeV (1957BU13). See also (1955AJ61), (1956HA1C, 1958MC1C; theor.)

and (1954SN1A).

4. 6Li(d, γ)8Be Qm = 22.279

Not observed: see (1953SA1A, 1954SI07).

5. (a) 6Li(d, n)7Be Qm = 3.380 Eb = 22.279

(b) 6Li(d, n)4He + 3He Qm = 1.796

The excitation curve has been measured for Ed = 0.06 to 5.5 MeV (1952BA64, 1954HI34,

1956NE13, 1957SL01). A broad s-wave resonance is indicated at Ed = 0.41 MeV, Γ = 0.45 MeV
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Table 8.5: Levels of 8Be from 4He(α, α)4He a

Ex (MeV) Jπ Γc.m. R (10−13 cm) θ2 (3~2/2MR2)

0 0+ 2.5± 1 eV 5.7 0.15

4.44 0.75

2.9 2+ 2.0 MeV 5.0 0.7

3.5 0.4

11.8 4+ 6.7 MeV 4.44 1.3

a From (1956HE57, 1956RU41, 1958NI05). Double entries indicate alternative

solutions.

(1952BA64, 1956NE13). At this energy the neutron yield to the 0.43-MeV state of 7Be is isotropic,

while at Ed = 600 keV and above, the angular distributions indicate a strong admixture of stripping

process (1956NE13). A sharp resonance at Ed = 2.12 MeV is reported by (1952BA64). However,

(1957SL01) find that the forward cross section rises from ≈ 22 mb/sr at Ed = 1.1 MeV to ≈ 57
mb/sr at 5.5 MeV without sharp resonances. This is confirmed by (1954BU1B) who reports no

appreciable change in slope at Ed ≈ 1.8 MeV and suggests that the increase in neutron yield

observed by (1952BA64) might have been due to oxygen contamination.

The ratio of 430-keV γ-radiation from this reaction and 477-keV γ-radiation from the mirror

reaction, 6Li(d, p)7Li, has been measured for Ed = 0.2 to 1.8 MeV. This ratio, which measures

Γn/Γp, rises from 1.1 to about 1.13 at Ed = 0.45 MeV, falling to 0.98 at Ed = 1.8 MeV. The

theoretical ratio, assuming charge symmetry, rises from 0.96 at low energy to 0.98 at Ed = 1.8
MeV. It is concluded that the predictions of charge independence are borne out within 15%, and

that the slight deviation observed may be connected with the resonance near Ed = 0.45 MeV

(1957WI24). See also (1954HI34).

6. (a) 6Li(d, p)7Li Qm = 5.027 Eb = 22.279

(b) 6Li(d, p)4He + 3H Qm = 2.561

Cross sections and angular distributions have been measured for Ed = 30 keV to 3 MeV

by (1950KR1A, 1953SA1A: see (1950WH02, 1954NI10, 1957JA37)). A broad maximum near

Ed = 1.0 MeV is interpreted by (1950WH02) as indicating a level at Ed = 0.4 MeV, Γ ≈ 0.5
MeV. The angular distributions at Ed > 1 MeV indicate stripping effects, with ln = 1 (1954NI10).

See also the discussion of the work of (1957WI24) in the preceding section. See also (1955AJ61).

7. 6Li(d, d)6Li Eb = 22.279
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See 6Li.

8. 6Li(d, t)5Li Qm = 0.765 Eb = 22.279

The cross section for tritium production rises rapidly to 190 mb at 1 MeV, then more slowly to

290 mb near 4 MeV. There is evidence of deviation from isotropy near 0.4 MeV (1955MA20). See

also 5Li.

9. 6Li(d, 3He)5He Qm = 0.839 Eb = 22.279

See 5He.

10. 6Li(d, α)4He Qm = 22.373 Eb = 22.279

Cross sections have been measured for Ed = 30 keV to 1.6 MeV (1953SA1A: see (1950WH02,

1954HI34, 1957JA37)). A broad maximum is observed at Ed = 0.6 MeV which is interpreted in

terms of a resonance at Ed = 0.35 MeV, Γ ≈ 0.5 MeV (1950WH02: see, however, (1954HI34)).

See also (1956PO1A), (1956SA1B; theor.) and (1952AJ38).

11. 6Li(t, n)4He + 4He Qm = 16.115

See (1952CU1B).

12. 6Li(3He, p)8Be Qm = 16.786

At E(3He) = 1.25 MeV, proton groups are observed to the ground state, the 2.9-MeV state

and possibly to a state at ≈ 12.3 MeV (Γ ≈ 2 MeV, intensity ≈ 6% of 2.9-MeV transition). It

is suggested that the 12.3-MeV state may be that observed in 4He(α, α)4He. No other states are

observed with Ex
<
∼ 14 MeV. The upper limits on the intensities of groups leading to such states

are 1% (of 2.9-MeV transition) for sharp states and 3% for levels 1 MeV wide (1956MO19). These

results are confirmed by (1956SC01) at E(3He) = 1.5 and 2 MeV: no group of width <
∼ 1 MeV

appears for Ex < 14 MeV with an intensity as much as 2% of the 8Be*(2.9) group. See also

(1953KU24, 1955AL57).
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13. 6Li(α, d)8Be Qm = −1.565

This reaction has been observed at Eα = 31.5 MeV (1956WA29).

14. 7Li(p, γ)8Be Eb = 17.253

The cross section has been studied from Ep = 30 keV (1957JA37) to 7.7 MeV. Resonances

are observed at Ep = 0.44, 1.03 and 2.1 MeV: see Table 8.6. There is no further structure up

to 5 MeV (1952BA1B). The radiation comprises two components, one from the ground-state

transition, with Eγ = 17.2 + 7
8
Ep and the other from the transition to the 2.9-MeV broad excited

state, with Eγ ≈ 14.3 + 7
8
Ep. Both are resonant at the 0.44-MeV resonance, but only the lower

energy transition shows the 2.1-MeV resonance (1957NE22). The intensity ratio of the higher to

the lower-energy radiation increases from 0.5 at Ep = 0.2 MeV to 1.7 at Ep = 0.44 MeV and

falls to 1.0 at Ep = 0.6 MeV (1956CA1A: θ = 90◦). Between Ep = 1.0 and 3.5 MeV the ratio

is constant within 30% at 2
3

(1955WI1D, 1957NE22). Evidence for a component at ≈ 12 MeV is

discussed by (1953TI1C: see also (1955CA19)). A broad resonance appears near Ep = 5.8 MeV

probably corresponding to the “giant” (γ, p) resonance, Ex = 22.3 MeV (1959GE33).

The angular distributions of both γ-rays show small deviations from isotropy at the Ep = 0.44
MeV resonance and exhibit strong interference effects nearby. The observed distribution of the

17.6-MeV radiation at resonance is consistent with p-wave formation if the channel spin ratio

χ ≡ σ(1)/σ(2) = 1
4
: this ratio implies an intermediate coupling with a/K = 2 to 3 (1958NE17:

see also (1950DE1A, 1957FR1B)). Angular distributions in the range Ep = 0.9 to 1.2 MeV are

reported by (1954KR06) an 0◦/90◦ cross sections for Ep = 1.5 to 3.5 MeV by (1957NE22). The

latter observations indicate that some process other than direct s-wave capture is responsible for

the background between resonances (1954WI1A, 1957NE22).

A study of (γ-α) coincidences at Ep = 0.45 MeV yields an angular correlation which rules

out the assignment J = 0+ to the 2.9-MeV 8Be level and indicates that the 14.7-MeV γ-radiation

contains a mixture of E2 and M1 radiation (1956BO1H: see also (1954DE1D)). The alpha spectra,

taken singly (1956LA1A) and in coincidence with γ-rays (1958ME78) show no evidence of weakly

excited levels reported by (1954IN1A: see also (1955TI1B)). In the work of (1958ME78), the 2.9-

MeV level appears to have a width of 1.9 MeV; compare (1950BU1B). There is some evidence for

a broad level near Ex = 10 MeV (1956LA1A).

See also (1955RI1A, 1956PO1A) and (1957FR1B, 1957KU58; theor.).

15. 7Li(p, n)7Be Qm = −1.646 Eb = 17.253

The cross section has been studied from the threshold at Ep = 1.8811 MeV (see 7Be) to

10 MeV (1957BO1F, 1957JA37, 1957KA1C: see also (1958TA03)). Resonances are indicated

at Ep = 1.93, 2.25, (3.0) and 5.0 MeV (see Table 8.7). Absolute cross sections are given by
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Table 8.6: Resonances in 7Li(p, γ)8Be a

Er (keV) Γlab (keV) 8Be* (MeV) References

441.4 ± 0.5 12 17.64 (1948BO21, 1949FO18)

441.5 ± 0.5 12.2 ± 0.5 (1952HU1C)

441.2 ± 0.6 12 ± 1 (1955BU1A, 1956BU27)

1030 ± 5
b 168 b 18.15 (1954KR06)

2000 (1954PR1A)

2100 400 (1955SW1A)

2130 400 19.1 (1957NE22)

a See also Table 8.7.
b From 7Li(p, p)7Li (1949FO18).

(1948TA16) and (1958MA07): see also (1959MA20: footnote 14). Angular distributions in the

range Ep = 2.0 to 2.5 MeV show strong (cos θ) terms, suggesting interference of states of oppo-

site parity (1948BR1A, 1948TA16). (1954AD1A) has shown that the behavior in this region can

be accounted for by ascribing the 2.25-MeV resonance to p-wave formation, with J = 3+ and

γ2
p = γ2

n = 0.8 × 10−13 MeV-cm (presumably the T = 1 analogue of 8Li*(2.28)), and assum-

ing a background due to s-wave, J = 1− and 2−, levels of undetermined location. According to

(1957NE22), a better account of the cross section below 2.4 MeV is obtained with the J = 3+ level

assumed to have γ2
n/γ2

p = 5.5 and a single s-wave J = 2− level at Ep = 1.9 MeV, with γ2
n/γ2

p = 5.5.

With this large ratio the low energy cross section can be accounted for in detail and can be made

to agree with that derived from the inverse reaction 7Be(n, p)7Li (1957NE22, 1958MA07: see also

(1955HA34)). [It is of interest to note that a similar apparent deviation from charge independence

occurs in 10B(α, n)13N and 10B(α, p)13C (see 14N). On the other hand, see 6Li(d, p)7Li and 6Li(d,

n)7Be.] Using the stacked-foil method, (1957KA1C) report structure in the excitation function

corresponding to 8Be levels at 21.5, 22.5, 23.85, (24.9) and (25.6) MeV. At Ep = 10 MeV, the

cross section for production of 7Be is 120± 20 mb (1957KA1C), 100± 20 mb (1957BO1F).

The relative intensity of the low-energy neutrons (to 7Be*(0.43)) to the high-energy (ground

state) neutrons varies with energy: see Table 8.8. In the range Ep = 2.5 to 2.9 MeV, the low-

energy neutrons are practically isotropic (c.m. system). From the shape of the excitation function,

(1955BA1L) conclude that the reaction to 7Be* proceeds by s-wave protons in and s-wave neutrons

out.

It is pointed out by (1954AD1A) that the existence of the J = 3+ level, apparently well

separated from the other components J = 1+ and 2+ which can be formed with channel spin 2,

indicates a strong spin-orbit interaction, which should lead to polarization of the neutrons and scat-

tered protons. Polarization measurements are reported by (1954AD1A, 1954WI42, 1955OK01,

1956WI1E, 1958CL98, 1958CR85, 1958ST28). See also (1957RO1C, 1958GI15).
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16. 7Li(p, p)7Li Eb = 17.253

Absolute differential scattering cross sections are reported for Ep = 0.4 to 1.4 MeV (1953WA27),

Ep = 1.4 to 3.0 MeV (1956MA12), and Ep = 14.5, 20.0 and 31.5 MeV (1956KI54). Anomalies

appear at Ep = 0.44, 1.03, 1.88, 2.1 and 2.5 MeV (see Table 8.7). Both the 0.44- and the 1.03-

MeV resonances are ascribed to p-waves, J = 1+, with channel spins 1 and 2 in a ratio of 1 to 5

(1953CH1A, 1953LI1A, 1955LI1B: compare 7Li(p, γ)8Be).

The anomaly at Ep = 1.88 MeV coincides with the 7Li(p, n)7Be threshold and is ascribed to the

abrupt change in total width of a broad (2− ?) resonance when neutron emission becomes possible

(1956MA12, 1957NE22). The observed structure at 2.0 − 2.25 MeV may reflect interference of

the p-wave 2.25-MeV (J = 3+) resonance with one at Ep = 2.1 MeV, also formed by p-waves

(1956MA12). Preliminary results of a phase shift analysis suggest, on the other hand, interference

between a J = 3− level at Ep = 2.1 MeV with a 2− level at Ep = 1.9 MeV, and interference of the

3+ level at Ep = 2.25 MeV with a broad 1+ level near 3 MeV (J. Olness quoted in (1957NE22)).

17. (a) 7Li(p, p′)7Li* Eb = 17.253

(b) 7Li(p, p′γ)7Li

A pronounced resonance appears in the yield of inelastically scattered protons (1951BR10,

1954MO04) and 0.48-MeV γ-rays (1954KR06) at Ep = 1.030 ± 0.005 MeV, Γ = 168 keV.

The angular distribution of the protons is approximately isotropic at resonance, σ = 42 mb, and

asymmetric above it, consistent with an s- or p-wave resonance interfering with a non-resonant

wave of opposite parity (1954MO04: see also (1955LI1B)).

The yield of 480-keV radiation rises smoothly from Ep = 1.5 to 3.0 MeV except for a pro-

nounced cusp at 1.881 MeV (1955HA34, 1957NE22). Analysis of the excitation function suggests

that the inelastic process is enhanced by the J = 2− level at 1930 keV and that the cusp results

from the sudden increase in the total width when neutron emission becomes possible (1957NE22).

See also (1951BA79).

18. 7Li(p, d)6Li Qm = −5.026 Eb = 17.253

See 6Li.

19. 7Li(p, t)5Li Qm = −4.261 Eb = 17.253

See 5Li.
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Table 8.7: Levels in 8Be from 7Li + p

Eres
8Be* Γlab lp Jπ ; T θ2p

7Li(p, γ)8Be 7Li(p, n)7Be 7Li(p, p′)7Li* References

(keV) (MeV) (keV) σres (mb) ωΓγ (eV) ln γ2
n /γ2

p θ2n Γp′ (keV)

441.5 17.64 12.2 1 1+ ; 1 0.064 6.0 9.4 0 (1949FO18, 1952HU1C)

1030 18.15 168 1 1+ ; (0) res. 2 ≈ 6 (1949FO18, 1951BR10,

1954KR06, 1954MO04)

1900 18.94 > 500 0 2− non res. (1957NE22, 1958MA07)

2100 19.1 400 2(1) (3−) res. 0 4.5 b > 0.3 res. (1957NE22, 1958MA07)

2250 19.22 220 1 3+ ; (1) 0.04 (non res.) small small (1957NE22)

(≈ 3000) (19.9) > 1000 (1) (1+) 1 5.5 c [0.2] small (1957NE22) d

≈ 3000 19.9 a ≈ 1000 (1) (2+) (res.) (1957NE22, 1958MA07) d

5000 21.6 ≈ 900 res. e (1951BL1A, 1952BA1B, 1959GI47)

a 7Li(p, α)4He.
b 5.2 ± 0.3 (1958MA07); Γn = Γp at Ep = 1.93 to 1.97 MeV.
c 5.2; γ2

n = 2.9 × 10−13 MeV-cm (1958MA07), Γn = Γp .
d See also (1955MA84).
e (1959GI47) find Eres ≈ 5.0 ± 0.5 MeV, Γ ≈ 0.9 MeV, σ ≈ 140 mb, J ≥ 3 (if single resonance).

Table 8.8: Relative yield of neutrons to 7Be*(0.43) and 7Be(0)

Ep (MeV) θ(lab) I0.43/I0 (%) References

2.40 all 0.18± 0.06 (1955MA84)

2.5 all 2.5 a (1955BA1K, 1955BA1L)

2.75 30◦ 9± 1.5 (1950JO57)

2.89 30◦ 10.5± 1 (1950JO57)

3.0 8 a (1955BA1K, 1955BA1L)

3.66 30◦ 12± 1 (1950JO57)

3.9− 5.4 ≈ 10 (1954CR1A)

5.0 20◦ − 90◦ 52.5 (1950GR1A)

a See curve in (1955BA1K).

20. 7Li(p, α)4He Qm = 17.347 Eb = 17.253

The cross section, which has been measured to 3.8 MeV, exhibits a broad maximum at Ep = 3
MeV which is interpreted in terms of a level ≈ 1 MeV wide, with J = 2+, at Ep ≈ 3 MeV,

and a several-MeV broad level of J = 0+, underlying the region: see (1948HE01, 1948HE1B,

1948IN1A, 1953SA1A, 1957JA37). Absolute differential cross sections are reported by (1958FR03)

for Ep = 1.0 to 1.5 MeV: at 1.01 MeV, dσ/dω (lab, 90◦) = 0.67 mb/sr, see also (1956MA12). Dif-

ferential cross sections have also been measured at Ep = 15.0 and 18.5 MeV; there are indications

of a triton pickup process at these energies (1957MA1F). See also 4He(α, p)7Li, (1955AJ61,

1955RI1A, 1956BA1E, 1956CR47, 1958BU38).
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Table 8.9: Slow neutron thresholds in 7Li(d, n)8Be

(1957SL01)

Ed (MeV) Γc.m. (MeV) 8Be* (MeV)

1.35 0.31 16.08

2.10 0.19 16.67

3.32 < 0.02 17.61

4.08 0.23 18.20

21. 7Li(d, n)8Be Qm = 15.026

A careful study of the neutron spectrum at Ed = 2 MeV at several angles reveals only two

distinct groups, corresponding to 8Be(0) and 8Be*(2.9). No other levels below Ex = 10 MeV

appear in this work: upper limits for groups leading to levels near Ex = 4 to 5 MeV and Ex = 7.5
MeV are 10% and 20%, respectively, of the ground state group. Angular distributions of the ground

state and 3-MeV state neutrons exhibit lp = 1 stripping patterns at forward angles (1954TR1A,

1955TR1B). Other workers have reported neutron groups corresponding to levels at 2.2, 2.9, 4.1,

5.1 and 7.6 MeV: see for instance, (1953TR1B, 1954RE1A, 1955BE1D, 1955GI1B, 1955IH1A,

1955IH1B), as well as states at 10 MeV (1941RI1A), 11.1 and 14.7 MeV (1950WH1B).

Thresholds for slow neutron production indicate 8Be levels at 16.08, 16.67, 17.61 and 18.20

MeV (1954BO79, 1957SL01) (see Table 8.9). It is suggested that the 16.67-MeV level is the

lowest T = 1 level of 8Be, and that the levels at 17.61 and 18.20 MeV correspond to those seen

in (7Li + p) at Ep = 0.44 and 1.03 MeV (1954BO79). A search for nuclear pairs from possible

pair-emitting states of 8Be yielded an upper limit of 2× 10−5 mb at Ed = 0.33 MeV for excitation

of such states in the range Ex = 5.0 to 8.5 MeV (1955BE62). See also (1955CA1A, 1955CA1C,

1955PE1C, 1956BO1F, 1956BO43, 1956CA1B, 1956RI37, 1957CA14).

22. 7Li(3He, d)8Be Qm = 11.759

See (1954MO92) and (1955AL57).

23. 7Li(α, t)8Be Qm = −2.560

Not observed.

24. 7Li(7Li, 6He)8Be Qm = 7.247
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See (1957NO17).

25. (a) 7Be(n, p)7Li Qm = 1.646 Eb = 18.899

(b) 7Be(n, α)4He Qm = 18.993

At thermal energies, the (n, p) cross section is (5.1 ± 0.6) × 104 b (1955HA34) while the (n,

α) cross section is < 25 mb (1958SE08). These observations are consistent with the odd parity of
7Be. Less than 10% of transitions involve 7Li*(0.48). Comparison of the (n, p) cross section with

the cross section for 7Li(p, n)7Be gives evidence for an l = 0 level in 8Be within 20 keV below

the neutron threshold, with Γ < 30 keV (1955HA34). See, however, (1957NE22, 1958MA07),

and see also (1954AD1A). Comparison of the thermal cross section with the (p, n) cross section

observed in the inverse reaction supports the assignment J = 3
2

for 7Beg.s. (1957NE22).

26. 7Be(d, p)8Be Qm = 16.672

At Ed = 0.85 MeV, θ = 30◦, 90◦ and 270◦, proton groups are observed corresponding to 8Beg.s.
and the broad level, Ex = 2.95 MeV, Γ = 1.6 ± 0.4 MeV. No other prominent groups appear for

Ex < 5.8 MeV (1958SP1A).

27. 8Li(β−)8Be Qm = 16.001

Q0 = 15.94± 0.08 (1958VE20).

The observed β-spectrum closely matches the mean of reported α-spectra (1955FR29) for

Eβ > 3 MeV and is consistent with 89% branching via 8Be*(2.9), with log ft = 5.67 and 11%

to higher states, possibly 8Be*(11.7), log ft = 4.6. Less than 1% of transitions involve 8Beg.s.:

log ft > 8 (1958VE20: see also (1955AJ61)). Upper limits to transitions to sharp states in 8Be

with Ex = 2, 4 and 6 MeV are, respectively, 2.5, 1 and 0.5% (1955FR29: see also (1956AR21)).

The α-β angular correlation is isotropic within a few per cent for all β-energies: see (1955AJ61).

It is pointed out by (1955MO1A) that a small, ≈ 0.5%, anisotropy may be expected at high β-

energies because of the increased importance of l = 1 and 2 emission, even in an allowed tran-

sition. Anisotropy in the β-decay from partially oriented 8Li nuclei is reported by (1957BU44:

see also (1958SH1A)). The distribution of recoil momenta and the neutrino-recoil correlation es-

tablish that the decay is at least 90% Gamow-Teller and that the Gamow-Teller portion is at least

90% axial vector in character. The observations also require J = 2+ for the 8Li ground state

(1958BA1E, 1958LA07, 1958LA08: see also (1958MO1D)). An upper limit of 0.2 ± 0.1 % is

reported by (1956TA07) on the number of disintegrations leading to 4.9-MeV γ-radiation: see also

(1953BU35). See also (1955GI1A) and (1955JA1C, 1955LA1D; theor.).
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28. 8B(β+)8Be Qm = 17.978

The observed positron spectrum matches the 8Li-8B α-spectra for Eβ+ > 6 MeV. About 80%

of transitions involve 8Be*(2.9), log ft = 5.72, with ≈ 19% to higher states, possibly 8Be*(11.7),

log ft = 4.6. Less than 5% go to 8Beg.s., log ft > 7.3 (1958VE20). See (1950AL57, 1952KI1A,

1954GI1A). See also (1955GI1A).

29. (a) 9Be(γ, n)8Be Qm = −1.667

(b) 9Be(n, 2n)8Be Qm = −1.667

Q0 = −1.664± 0.004 (1956CO56).

At Eγ = 6 MeV, most of the transitions are to the 2.9-MeV state (1954CA1A). See also 9Be

and (1956CO56). For reaction (b), see 9Be and 10Be.

30. 9Be(p, d)8Be Qm = 0.560

Angular distributions of ground-state deuterons are remarkably similar for Ep = 5, 10, 16.5

and 22 MeV and show strong contributions from the pickup process (1951HA1A, 1953CO1C,

1955SU1A, 1956RA32, 1956RE04, 1956SU1A, 1958SU14). The significance of this result, which

is not consistent with the simple Butler theory, is discussed by (1955DA1D, 1956GL25: see also

(1955DA1E, 1955SA1D, 1956DA1D, 1956KO1B, 1957GR1C). At Ep = 16.5 MeV, the distribu-

tion is consistent with ln = 1, R0 = 3.0×10−13 cm, and θ2 = 0.024 for 8Be(0)+n (1956RE04). At

higher energies, the distributions appear to be affected by pickup from within the nuclear volume

(1956BE14, 1956SE1A). For Ep = 31 and 95 MeV, unresolved 8Be states near 17 MeV appear,

possibly representing pickup of a 1s neutron in 9Be (1956BE14, 1956SE1A: see 9Be).

At Ep = 7.4 MeV, a search for 8Be levels revealed only the ground-state and the 2.9-MeV

state in the range Ex = 0 to 6.5 MeV (1956CA1C). See also (1954FI35, 1955GI1A, 1956ST30,

1957BE49) and (1955LA1C; theor.).

31. (a) 9Be(d, t)8Be Qm = 4.592

(b) 9Be(d, t)4He4He Qm = 4.686

At Ed ≈ 1.2 and 3.5 MeV, the ground and first excited states are observed: see (1952CU1A,

1953CU1B, 1953GE01, 1956GE1A, 1956JU1D). For the first excited state, (1955CU16) finds

Ex = 2.8± 0.1 MeV, Γ = 0.8 MeV. At Ed = 0.5 MeV (θ = 60◦ and 90◦), there is no evidence for

excited states of 8Be withEx = 3.4 to 4.8 MeV: the upper limit to the intensity of the corresponding
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groups is 2% of the 2.9-MeV group (1956GE1A). At Ed = 14.8 MeV (θ = 15◦), there is no

evidence for states with Ex = 7.1 to 15.4 MeV (1956CA1C).

Recent studies of the angular distribution of ground-state tritons for Ed = 0.1 to 15 MeV have

been reported by (1955JU10, 1955JU1B, 1956HA90, 1957SM78: see also (1955AJ61)). Below

Ed ≈ 0.5 MeV, the tritons show strong backward peaking, suggestive of interference of compound

nucleus states of opposite parity (1957SM78: see 11B). At high energies, the reaction proceeds

mainly by pickup, with ln = 1 (1956HA90). See also (1955DA1E; theor.), (1957HA1F) and 9Be.

32. 9Be(3He, α)8Be Qm = 18.911

At E(3He) = 0.90 MeV, the ground (weak) and 2.9-MeV (strong) states are observed: see

(1955AJ61).

33. 10B(γ, d)8Be Qm = −6.025

8Be states up to Ex = 10 MeV are reported to be involved in this reaction: see (1954TI1C,

1955AJ61, 1955TI1A).

34. 10B(n, t)8Be Qm = 0.234

See (1951PE1B, 1954RI15, 1955JA18, 1956FR18, 1957TI1A) and 11B.

35. 10B(p, 3He)8Be Qm = −0.532

See (1952CR30, 1955RE16).

36. (a) 10B(d, α)8Be Qm = 17.819

(b) 10B(d, α)4He4He Qm = 17.913

All observers agree that transitions occur to the ground state and a state at Ex ≈ 2.87 ± 0.06
MeV, Γ = 0.93±0.15 MeV, (weighted mean of (1951WH1A, 1953CU1C, 1953TR04)). However,

there is conflicting evidence on whether other states with Ex < 15 MeV are involved in this reac-

tion. (1954CU1A) report additional states at (4), 5.1 and 7.5 MeV (see also (1955AJ61)). However,

(1953TR04: Ed = 0.6 to 1.07 MeV) report no other low lying states; (1956BO1J: Ed = 5 MeV,
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θ = 50◦ and 90◦) have not observed any other states below Ex = 9 MeV; (1955HO48: Ed = 1.4
to 3.2 MeV, several angles) find no evidence for excited states other than the 2.9-MeV level below

Ex ≈ 10 MeV; and (1956KA1A, 1958KA31: Ed = 1.7 MeV) find no groups corresponding to
8Be states with Ex = 9.8 to 14.8 MeV above the continuum attributed to 10B(d, α)4He4He.

The observed α-spectrum corresponding to the 2.9-MeV level may be reasonably well ac-

counted for by the Breit-Wigner formula with lα = 2, Eλ = 5.29 MeV, γ2
α = 13.4 × 10−13

MeV-cm, R = 4.48× 10−13 cm [θ2 ≈ 2] (1953TR04).

37. (a) 11B(γ, t)8Be Qm = −11.230

(b) 11B(γ, t)4He4He Qm = −11.136

These reactions have been observed in boron-loaded photoplates. Six states of 8Be below

Ex = 5 MeV are reported to be involved in reaction (a) (1953ER1A). See also (1955TI1A).

38. 11B(p, α)8Be Qm = 8.582

Alpha-particle groups corresponding to the ground state and to the 2.9-MeV state are reported;

Ex = 2.94 ± 0.06 MeV, Γ = 0.84 MeV (1951LI1B, 1953BE61: see (1955AJ61)). Excitation of

several additional levels is reported by (1953GL1A); however, a careful search by (1955HO48)

reveals no evidence for any levels with Ex < 7 MeV except the ground state and that at 2.9 MeV.

The alpha particles leading to the ground state are strongly anisotropic at the Ep = 163-keV

resonance (12C* = 16.11, J = 2+; T = 1); it is thus unlikely that J = 2 (1952TH1B). The

directional correlation of successively emitted α-particles at Ep = 163 keV indicates isotropic

breakup of 8Be(0) and hence J = 0, with J = 2 excluded. From the angle between the α-

particles resulting from the breakup, Q = 90 ± 5 keV is obtained; the half-life is < 4 × 10−15

sec (1955TR03). The angular correlation of alpha particles leading to the 2.9-MeV state with

those resulting from the subsequent breakup is consistent with J = 2+ for the 2.9-MeV state

(1955GE1A). Certain peculiarities in the relative yields of ground state and 2.9-MeV excited state

α-particles suggest that the latter level may have a significant T = 1 admixture: see (1953BE61,

1955HO48).

Nuclear pairs have been reported withE(π) = 7MeV (1951PH1B); see, however, (1955BE62).

See also (1955TI1B).

39. 12C(γ, α)8Be Qm = −7.375

For Eγ < 40 MeV, the reaction involves mainly states of 8Be at 0, 2.9, (4.1) (16.5 ± 0.2;

Γ < 0.4), 16.8±0.2 (Γ < 0.3), 17.6±0.2 (Γ < 0.3) MeV, with indications of further states near 6,
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10 and 15 MeV. There is no evidence for three-body reactions in this work (1955GO59). Evidence

for levels at 3.2, 4.0, (7.5) and 9.0 MeV is reported by (1955GL1A: see also (1954TI1C)). The

ground state decay energy is given as 87±8 keV; for the first excited state, Ex = 3.06 MeV, Γ = 0.9
MeV (1955GO59). The excitation function is characterized by a number of resonances, suggesting

that the process takes place via definite energy levels of 12C (see 12C); the principal types of levels

involved being J = 1−; T = 1, (E1 absorption) and J = 2+; T = 0, 1 (E2) (1955GO59: see

also (1953GE1B, 1955TI1A, 1957MU1C)). For Eγ < 25 MeV, the reaction proceeds mainly to
8Be(0) and 8Be*(2.9); angular correlations indicate J = 0 and J = 2, respectively for these states.

Wide variations in the branching ratio with energy are attributed to differences in isobaric spin

impurities, estimated as 0.05× 10−3 for the ground state, and ≥ 10−3 for 8Be*(2.9).

For Eγ > 26 MeV the reaction changes radically, now involving the 17 to 18 MeV states of 8Be,

with E1 absorption. The fact that these levels are so strongly excited in this manner suggests that

they have T = 1. Angular distributions indicate J = 2 for 8Be*(16.8) and J = 2 (or possibly 0)

for 8Be*(17.6). It is noted that the latter level cannot be identified with the well-known 17.63-MeV,

J = 1+ level (see 7Li+p) (1955GO59: see, however, (1953WA27)). Excitation of proton-emitting

levels near Ex = 18 and 22 MeV is reported by (1956LI05). See also (1953GU1A, 1955HA1D,

1955TI1A).

40. (a) 12C(n, n′)4He4He4He Qm = −7.281

(b) 12C(p, p′)4He4He4He Qm = −7.281

Reaction (a) has been studied for En = 12.3 to 20.1 MeV by (1955FR35) who find evidence

for transitions through the ground state and the 2.9-MeV level. See also (1955AJ61) and 12C.

Reaction (b) at Ep = 29 MeV appears to proceed predominantly through the ground state and

the 2.9-MeV level. It is not clear whether higher levels in 8Be are involved (1955NE18). See also

(1955CU1C, 1956SA1C, 1956SA1D, 1957JA1B).

41. 16O(γ, α)12C* → 8Be + 4He Qm = −14.524

At Eγ ≈ 22 MeV, the reaction appears to proceed mainly via the 9.6 and 10.8-MeV states of
12C to the ground state of 8Be. For Eγ > 24 MeV, transitions through the 15(?) and 16-MeV T = 1
state(s) of 12C, to the 2.9-MeV state of 8Be appear to dominate: see (1955AJ61) and (1955HA1D,

1955TI1A, 1956DA1C).

42. 16O(p, p′)4He4He4He4He Qm = −10.822

At Ep = 29 MeV, more than half the transitions are through the ground state of 8Be; there is

no evidence for participation of any excited states of 8Be (1955KO1A). See also (1957JA1B).
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Table 8.10: Energy levels of 8B

Ex in 8B (MeV) Jπ τ1/2 or Γ (MeV) Decay Reactions

0 (2+, 3+) τ1/2 = 0.77± 0.01 sec β+ 1, 2, 3, 4

(0.6± 0.1) a 0.15± 0.1 2

(0.80± 0.05) a 0.05± 0.03 2

a Note added in proof : See, however, (1959FA02).

8
B

(Fig. 9)

Mass of 8B: The mass excess of 8B is 25.287 ± 0.008 MeV, from the threshold energy of the
6Li(3He, n)8B reaction.

1. 8B(β+)8Be Qm = 17.978

Q0 = 17.91± 0.12 MeV (1958VE20).

The half-life of 8B is 0.78 ± 0.01 sec (1958DU78), 0.61 ± 0.11 sec (1952SH44), 0.65 ± 0.1
sec (1950AL57), 0.75 ± 0.02 sec (1958VE20). The decay proceeds mainly to the 2.9-MeV state

of 8Be, log ft = 5.72 (1958VE20). See also (1958DU78) and 8Be.

2. 6Li(3He, n)8B Qm = −1.976

The threshold has been observed, both in production of slow neutrons and of 8B positron ac-

tivity, at E(3He) = 2.9661 ± 0.0017 MeV, yielding a mass excess of 25.287 ± 0.008 MeV. 8B is

then stable with respect to 7Be+ 1H by 138± 9 keV. Two additional thresholds 1 for slow neutron

production are reported, in the range E(3He) = 2.9 to 6.0 MeV, at 3.9± 0.1 and 4.16± 0.05 MeV

which may correspond to excited states of 8B at Ex = 0.6 ± 0.1 MeV (Γ = 0.2 ± 0.1 MeV) and

0.80 ± 0.05 MeV (Γ = 0.07 ± 0.04 MeV). It is pointed out that the existence of two low-lying

levels in 8B would be rather surprising in view of the level structure of 8Li (1958DU78).

3. (a) 9Be(p, 2n)8B Qm = −20.418

(b) 10B(p, t)8B Qm = −18.528

(c) 12C(p, nα)8B Qm = −26.136

1 Note added in proof : See, however, (1959FA02).
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See (1950AL57).

4. (a) 10B(γ, 2n)8B Qm = −27.002

(b) 11B(γ, 3n)8B Qm = −38.456

(c) 12C(γ, p3n)8B Qm = −54.423

See (1952SH44).
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