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6He
(Fig. 3)

GENERAL:

Spin of 6He: In a Stern-Gerlach experiment, (1958CO68) find µ(6He) < 0.16 nuclear magne-
tons ifJ is taken as 1; it is concluded thatJ(6He) = 0.

Theory: See (1955BA1J, 1958SK1A).

1. 6He(β−)6Li Qm = 3.536

Theβ-spectrum is simple, with an end pointEβ(max)= 3.50±0.05 (1952WU22), 3.50±0.02
MeV (1956SC40). Recently reported half-lives are0.852 ± 0.016 sec (1956VE10), 0.83 ± 0.02
sec (1958HE46), 0.85 ± 0.03 sec (1955RU06). The weighted mean of half-lives cited here and in
(1950HO80, 1955AJ61) is 0.813 ± 0.007 sec. UsingQm, log ft is 2.92.

The electron-neutrino correlation is found to beW (θ) = 1+α(p/W ) cos θ, with α = −(0.39±
0.02), in good agreement with the valueα = −1

3
for pure axial vector interaction (1958HE46,

1959HE1E, 1959PL52). An earlier report by (1955RU06) appears to have been in error: see
(1958AL1G, 1958WU60). See also (1955BA1J, 1955LA1D, 1957LE1E; theor.).

2. (a)3H(t, n)5He Qm = 10.371 Eb = 12.272

(b) 3H(t, α)2n Qm = 11.328

(c) 3H(t, α)2n

At Et = 1.9 MeV, theα-spectrum, observed at30◦, extends from 1 to 7 MeV, with peaks at
Eα = 2 and 5 MeV. The same general shape is observed at other angles and for Et = 0.95 to 2.1
MeV. These peaks are attributed to a two-stage process involving formation and breakup of5He
in the P3/2 and P1/2 states and are superposed on the three-body spectrum, reaction (b). Structure
observed near the end point may indicate a correlation between the two neutrons (1958JA06). At
Et = 1.48 MeV, the neutron spectrum shows a continuum from 0 to 12 MeV with a broad peak at
11.3 MeV, corresponding to formation of5He in the ground state (1957BA10).

The cross section for neutron production rises monotonically from 0.1 to 2.2 MeV (1951AG30,
1957JA37, 1958JA06). At Et = 1.90 MeV, the total cross section for production ofα-particles is
106 ± 5 mb (1958JA06).

3. 3H(t, t)3H Eb = 12.272
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Table 6.1: Energy levels of6He

Ex in 6He Jπ Γ Decay Reactions

(MeV) (MeV)

0 0+ τ1/2 = 0.813 ± 0.007 sec β− 1, 5, 7, 8, 9, 10, 11, 12

1.71 ± 0.01 (2+) . 0.1 α, n, (γ) 7, 10, 11

(3.4) (. 0.3) 11

(6.0 ± 0.9) 11

(9.3 ± 0.7) α, n 11

Differential scattering cross sections have been measuredat Et = 1.58 to 2.01 MeV by
(1956HO12). At Et = 1.90 MeV, θ(lab) = 30◦, σ(θ) = 286 mb/sr (±5%) (1958AL05). A
phase-shift analysis shows that the distributions atEt = 1.80 and 2.01 MeV are adequately ac-
counted for by a1S phase shift corresponding to a hard sphere of radius2.35× 10−13 cm. There is
no evidence of p-waves or of resonance in this region (1955FR1C).

4. 3H(α, p)6He Qm = −7.540

Not reported.

5. 6Li(n, p)6He Qm = −2.753

See7Li.

6. 6Li(t, 3He)6He Qm = −3.518

Not reported.

7. 7Li(γ, p)6He Qm = −10.006

A γ-emitting level atEx = 1.6 ± 0.2 MeV is reported by (1954TI16). This evidence, based
on the colinearity of p and6He tracks in photoplates, appears to conflict with other indications that
this state decays predominantly to4He+2n (1954AL35: see, however, (1956MA1R, 1956MA50)).
See7Li(t, α)6He.
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8. 7Li(n, d)6He Qm = −7.779

See8Li.

9. 7Li(p, 2p)6He Qm = −10.006

The summed proton spectrum atEp = 185 MeV shows two peaks, attributed to formation of
6Heg.s. by removal of a p-proton from7Li and 6He* ≈ 15 MeV, formed by removal of an s-proton
(1957TY35, 1958MA1B, 1958TY49).

10. 7Li(d, 3He)6He Qm = −4.512

At Ed = 14.5 MeV, the ground state and the 1.71-MeV level are observed. The angular
distributions analyzed by pick-up theory indicate even parity for both states. Peak differential
cross sections are 8.0 mb/sr atθc.m. = 17◦ and 2.0 mb/sr atθc.m. = 16.5◦ for the ground and
1.7-MeV states, respectively (1955LE24); θ2 = 0.055 and 0.017 (1957FR1B).

11. 7Li(t, α)6He Qm = 9.807

Q0 = 9.79 ± 0.03 (1954AL35);

Q0 = 9.79 ± 0.14 (1956MA09).

The energy of the first excited state is1.71±0.01 MeV, Γ <
∼ 100 keV (1954AL35, 1955AL1C).

Preliminary results may indicate a state at 3.4 MeV,Γ < 0.3 MeV (1954AL35, 1955AL1C).
(1956MA1R, 1956MA50) report evidence for a state at (6.0 ± 0.9 MeV) and for one or more
states at9.3 ± 0.7 MeV (3.8-MeV tritons from9Be(d, t)8Be were used). Angular distributions
at Et = 240 keV are consistent withJ = 0 and 2 for the ground state and the 1.7-MeV level,
respectively (1954AL38: see10Be). At Et = 0.84 MeV, θ = 90◦, the cross sections for formation
of 6He(0) and6He*(1.7) are 16 and 26 mb/sr, respectively (1956MA09).

The absence of6He recoils corresponding to the 1.7-MeV state implies that this state decays
predominantly into4He+ 2n (1954AL35). See also (1955CU17, 1956BA1E) and (1952AJ38).

12. 9Be(n,α)6He Qm = −0.628

See10Be.
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6Li
(Fig. 4)

GENERAL:

Theory: See (1954MO1C, 1955AD1A, 1955AU1A, 1955BA1J, 1955IR1A, 1955LA1C, 1955OT1A,
1956FE1A, 1956ME1A, 1956NE1B, 1957FR1B, 1957LE1E, 1957LY1A, 1957SO1A, 1957TA1A,
1958PI1A, 1958SK1A).

1. (a)3H(3He, d)4He Qm = 14.319 Eb = 15.790

(b) 3H(3He, p)5He Qm = 11.136

(c) 3H(3He, p)4He+ n Qm = 12.093

The relative intensities (43 ± 2, 6 ± 2, 51 ± 2) of reactions (a), (b) and (c), do not vary for
E(3He) = 225 to 600 keV. The deuterons are isotropic (c.m.) atEt = 360 keV. The total cross
section, reported forE(3He) = 100 to 800 keV, varies from 0.5 mb to 0.18 b, without show-
ing resonance behaviour, the main variation being accounted for by the Coulomb barrier effect
(1953MO61). See also (1953AL1A) and (1957JA37).

2. 3He(α, p)6Li Qm = −4.004

See (1958CH35).

3. 4He(d,γ)6Li Qm = 1.471

An upper limit for capture radiation atEd = 1.055 MeV (2.18-MeV state) is 0.1 mb (1954SI07).
A search for resonant capture radiation atEd = 3.1 MeV (6Li* = 3.56) yieldsΓdα < 0.2 eV. It
is concluded that the intensity of parity non-conserving parts of the wave functions,F 2 <

∼ 10−7

(1958WI15).

4. 4He(d, d)4He Eb = 1.471

Differential cross sections have been measured forEd = 0.88 to 3.51 MeV (1949BL66),
Ed = 1.0 to 1.2 MeV (1953LA28), Ed = 0.28 to 4.62 MeV (1955GA26), Ed = 6.5 MeV
(1947GU1A), Ed = 7.94 MeV (1951BU1C), Ed = 10.3 MeV (1951AL26), Ed = 13.7 and
19.0 MeV (1954FR22): see (1957JA37).

6



Table 6.2: Energy levels of6Li

Ex in 6Li Jπ; T Γ Decay Reactions

(MeV) (keV)

0 1+; 0 stable 4, 6, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 22, 23

2.184 ± 0.003 3+; 0 21 α, d 4, 11, 12, 13, 14, 18, 19,
20, 22, 24

3.560 ± 0.006 0+; 1 < 5 γ 12, 18, 20, 22

4.52 ± 0.08 2+; 0 ≈ 600 α, d 4, 12, 13, 14, 19, 20

5.35 ± 0.07 ; (1) < 100 20

5.5 ± 0.4 1+; 0 ≈ 1000 α, d 4, 20

6.63 ± 0.08 ; (1) < 200 20

7.40 ± 0.10 ; (0) ≈ 500 α, d, p, n 13, 19, 20

(8.37 ± 0.08) ; (1) (< 200) 20

(9.3 ± 0.2) (≈ 500) 20

At Ed = 1.07 MeV, a strong resonance is observed (see Table6.3) attributed to d-wave forma-
tion of aJ = 3+ state. The best fit is obtained with the p-wave phase shift setequal to zero. If an
interaction radius ofR = 3.5 × 10−13 cm is used, the s-wave phase shift requires a contribution
from the ground state, whose width is thus determined to beθ2 = 0.51; for a radiusR = 5.0×10−13

cm, hard-sphere scattering alone suffices (1955GA74).
The anomaly in the region 3.5 to 4.5 MeV requires two levels,J = 1+ and2+ (see Table6.3)

formed by d-waves. Again the p-wave phase shift differs fromthe hard sphere value, suggesting
an odd parity state at higher energy. There is no indication of the 3.56-MeV6Li level, consistent
with its assumedJ = 0+, T = 1 character. The three states found here are presumed to be
the components of a3D term; their spacings indicate a coupling rather close to the L-S limit
(1955GA74: see (1953IN1A)).

5. (a)4He(d, p)5He Qm = −3.184 Eb = 1.471

(b) 4He(d, n)5Li Qm = −4.023

(c) 4He(d, pn)4He Qm = −2.226

Ground-state protons from reaction (a) and ground-state neutrons from (b) have been studied
by (1957WA01: Ed = 14.8 MeV) and by (1956BO1F, 1956BO43: Ed = 13.5 MeV), respectively;
see5He, 5Li. The cross section for (a) is25 ± 5 mb/sr atθ = 18◦ (c.m.) and15 ± 5 mb/sr at24◦

(c.m.) (1957WA01).
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Table 6.3: Levels of6Li from 4He(d, d)4He (1955GA74) a

Eres Γ Ex ld Jπ Eλ
b θ2

d

(MeV) (keV) (MeV) (MeV)

0 0 1+ −2.26 0.51

1.070 ± 0.003 35 ± 5 2.183 2 3+ 2.333 0.80

4.57 ± 0.08 900 4.52 2 2+ 7.05 1.0

5.1 − 6.5 1000 4.9 − 5.8 2 1+ 5.5 − 9.7 0.2 − 1.0

a Interaction radius= 3.5 × 10
−13 cm.

b Measured from6Li ground state.

Cross sections for production of low-energy neutrons have been measured in the rangeEd = 3
to 6 MeV by (1955HE90). It is argued that reaction (c) probably involves production of the1S state
of the deuteron and hence is isobaric spin forbidden in the present case: the low energy neutrons
are therefore attributed to reaction (a) (1955HE90). See also (1951AL26, 1951BU1C, 1957JA37).

6. 6He(β−)6Li Qm = 3.536

See6He.

7. 6Li(γ, n)5Li Qm = −5.494

The cross section is0.3±0.2 mb atEγ = 6.2 MeV (1956ED15) and0.5±0.2 mb forEγ = 14.8
to 17.6 MeV (1951TI06). See also (1957BA1H, 1957FO1A, 1958BE1C, 1958PR66, 1958RY77).

8. 6Li(γ, p)5He Qm = −4.655

This reaction has been observed with photoplates forEγ(max) = 30 to 80 MeV. The angular
distribution is of the forma + b sin2 θ(1 + cos θ)2 (1956KL19). For 17.5-MeV bremsstrahlung, no
n-p correlation is observed; this result argues against a (4He+ d) model for6Li (1958PR66). See
also (1955TI1A, 1958RY77).

9. 6Li(γ, d)4He Qm = −1.471
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The cross section is<∼ 5 µb in the rangeEγ = 2.6 to 17 MeV (1952GL1A, 1952TI1A,
1953JE1A, 1954TI25, 1955TI1A). Electric dipole absorption is forbidden by isobaric spinse-
lection rules (1953GE1B); the relative weakness of both electric and magnetic interaction may be
made plausible on a simple (4He+ d) model for6Li (1953JE1A: see also (1954VA1A, 1955DA1A,
1955DA1C, 1958PR66)).

10. 6Li(γ, t)3He Qm = −15.790

The cross section is< 10 µb atEγ = 17.6 MeV (1954TI25).

11. (a)6Li(e, e′)6Li

(b) 6Li(e, p)5He Qm = −4.655

(c) 6Li(e, d)4He Qm = −1.471

Elastic scattering of 187-MeV electrons yields an r.m.s. radius of2.78 × 10−13 cm±2%: for
the uniform model,R0 = 1.98 × 10−13 cm (1955ST85, 1956HO93). At Ee = 426 MeV, the data
are fitted by an r.m.s. radius of(2.2±0.2)×10−13 cm. Inelastic scattering has been observed to the
2.18-MeV state and to higher states (1957HO1D, 1957HO1E). See also (1957EH1A, 1957ME1B).

Reactions (b) and (c) have been observed and angular distributions measured atEe = 500 MeV
(1957KE1A).

12. 6Li(p, p′)6Li*

At Ep = 7.0 to 7.5 MeV, and three angles, proton groups are observed corresponding to the
ground state, to a state at 2.188 MeV (Γc.m. = 25 keV) and to a state at 3.559 MeV (Γ < 5 keV):
(see Table6.4). No other sharp levels (Γ < 100 keV) are seen belowEx = 5 MeV: the intensity
limit of groups corresponding to such states is 3% of the intensity of the group corresponding to the
2.18-MeV state. A group of≈ 1 MeV breadth would have escaped detection unless its intensity
were≈ 3 times that of the 2.18-MeV state group (1957BR12). At Ep = 14.8 and 19.0 MeV, the
angular distributions of the protons to the 2.18-MeV state peak at≈ 40◦. The protons from the
3.56-MeV state appear weakly, if at all, on the side of the broad group from the 4.5-MeV level
(Γ ≈ 1.8 MeV) (1956SH1B). For a theoretical discussion of the data see (1957LE1E). See also
(1952AJ38, 1952FR1B, 1958CH26).

13. 6Li(d, d′)6Li*
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Table 6.4: Levels of6Li from 6Li(p, p′)6Li, 6Li(d, d′)6Li,
7Li(d, t)6Li and 9Be(p,α)6Li (1957BR12)

Reaction Ex (MeV) Γc.m. (keV)
6Li(p, p′)6Li 2.188 25.4
6Li(p, p′)6Li 3.559 < 5
6Li(d, d′)6Li 2.186 24.5
7Li(d, t)6Li (2.18) < 27

9Be(p,α)6Li 2.192 29
9Be(p,α)6Li 3.561

Mean: 2.188 ± 0.006 24

3.560 ± 0.006 < 5

At Ed = 7.0 and 7.5 MeV (θ = 60◦ and90◦), deuteron groups are observed corresponding
to the ground state and to a level at 2.186 MeV (Γc.m. = 24 keV: see Table6.4). At Ed =
7.5 MeV, θ = 60◦, an upper limit of 0.9% of the intensity of the 2.18-MeV groupis given for
a group corresponding to the 3.56-MeV state. The fact that the 2.18-MeV state was observed
in this experiment but that the 3.56-MeV state was not is consistent with the assignmentsT =
0 and T = 1, respectively, for these states. No other sharp groups withEx < 5 MeV were
observed: their intensity limits are 1% of the intensity of the 2.18-MeV state. A 1-MeV broad
group would have escaped detection unless its intensity were> 2 times that of the 2.18-MeV state
group (1957BR12). At Ed = 15 MeV, the angular distribution of the deuterons to the 2.18-MeV
state has been measured by (1956HA90). Comparison is made with predictions based on nuclear
and electric interactions (1956HA90).

Excitation of6Li states at 2.2,≈ 4.5, and76.±0.3 MeV is observed in deuteron bombardment,
Ed(max)= 13.8 MeV, of Li-loaded emulsions. Observed stars are reported tocorrespond to d+ α

decay of the first two states and decay intoα + p+ n of the last (1956SO21). At Ed = 17.5± 0.25
MeV, these three states and two additional states at 5.9 and 8.3 MeV are reported (1956SO33).

14. 6Li(α, α′)6Li

Angular distributions of elastic and inelastic scatteringhave been studied atEα = 31.5 MeV
by (1956WA29). Inelastic groups corresponding to the 2.18 and 4.52-MeV levels are observed;
the isobaric spin-forbidden group corresponding to the 3.56-MeV level is< 4% as intense. The
angular distributions of the inelastic groups are well described by the direct interaction theory of
(1953AU1A) with R = 6.6 and5.8 × 10−13 cm, respectively (1956WA29).
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15. 6Li(p, 3He)4He Qm = 4.022

Angular distributions observed atEp = 15 and 18.5 MeV indicate a deuteron pickup process.
An analysis based on Born approximation theory leads to deuteron reduced widths for the ground
state of6Li of θ2

d = 0.30 and 0.45 (1956LI37). See also7Be.

16. (a)6Li(n, t)4He Qm = 4.787

(b) 6Li(n, d)5He Qm = −2.428

Angular distributions atEn = 1.5 and 2.0 MeV reported by (1954WE11) andEn = 14 MeV
by (1954FR03) are analyzed by (1955DA1A, 1955DA1B, 1955DA1C, 1955SA1C) in terms of
pickup theory in Born approximation, using a (4He + d), two-body model for6Li. (1956LI37)
calculateθ2 = 0.5 from the data of (1954FR03) on reaction (a). See also7Li.

17. 7Li(γ, n)6Li Qm = −7.252

See7Li and (1955TI1A, 1958TI1A).

18. 7Li(p, d)6Li Qm = −5.026

At Ep = 17.5 MeV, angular distributions of the deuterons to the ground state and the 2.18-MeV
level, analyzed by pickup theory, indicateln = 1 and hence even parity,J ≤ 3 for both states. The
absolute differential cross section (at≈ 20◦ (c.m.)) for the formation of the ground state is17 ± 4
mb/sr, in good agreement with the value computed from the observed cross section for the inverse
reaction. The cross section for the formation of the excitedstate is about half that for the ground
state. The derived reduced widths (7Li) are θ2

n = 0.05 andθ2
n = 0.035 for 6Li(0) and 6Li*(2.2),

respectively. The ratio is in good agreement with that calculated from shell theory in intermediate
coupling with1.4 ≤ a/K ≤ 2.1, near theL-S limit (1956RE04). See also (1957SI36). At Ep = 18
and 31.8 MeV, a deuteron group has also been observed leadingto the 3.56-MeV state (1952FR1B,
1957SI36). See also (1955HI1A, 1957MA04, 1958EL1A).

19. 7Li(d, t)6Li Qm = −0.994

11



Table 6.5: States in6Li from 7Li( 3He,α)6Li (1955AL1C)

Ex in 6Li Γ T

(MeV) (keV)

0

2.19 < 100

3.56 ± 0.06 < 100

4.3 ± 0.2

5.35 ± 0.07 < 100 (T = 1)

(5.6 ± 0.2) (≈ 2000) (T = 0)

6.63 ± 0.08 < 200 (T = 1)

7.40 ± 0.10 ≈ 600 (T = 0)

(8.37 ± 0.08) (< 200) (T = 1)

(9.3 ± 0.2) (≈ 600)

At Ed = 14.5 MeV, the angular distributions of the tritons analyzed by pickup theory, indicate
ln = 1, and hence even parity, for the ground state and the 2.18-MeVstate. Peak cross sections
are 32.4 and 16.0 mb/sr atθc.m. = 11◦ and 16◦, respectively (1955LE24). The corresponding
reduced widths areθ2 = 0.11 and 0.061 (1957FR1B: compare7Li(p, d)6Li). See also (1953HO48,
1956HA90, 1957BR12, 1958EL1A). At Ed(max) = 13.8 MeV, stars are observed in Li-loaded
emulsions corresponding to excitation of6Li states at 2.2,≈ 4.5 and 7.5 MeV with subsequent
disintegrations into (α + d) (1956SO21). At Ed = 17.5 MeV, the decay of additional states at 5.2,
5.9, 6.7, 8.3, 9.5 and 10.1 MeV is also reported (1956SO33). A search in the regionEx = 4.4 to 8.5
MeV has revealed only the 5.4-MeV level; no other level appears with Γ < 80 keV (1958HA10,
1958HA1G).

20. 7Li( 3He,α)6Li Qm = 13.325

Alpha-particle groups observed atE(3He) = 700 to 900 keV are listed in Table6.5. 6Li-recoils
corresponding to the 3.56-MeV state are observed, indicating that the state decays byγ-emission.
The states at 2.2, 4.3 and (5.6) MeV are presumably those observed in 4He(d, d)4He. The small
width of the 5.35 and (8.37)-MeV states suggests that they haveT = 1 (1955AL1C).

21. 9Be(γ, t)6Li Qm = −17.687

See (1955AJ61).
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22. 9Be(p,α)6Li Qm = 2.125

At Ep = 7.2 to 7.5 MeV (θ = 30◦ and60◦), alpha-particle groups are observed to the ground
state and to levels at 2.188 (Γc.m. = 24 keV) and 3.560-MeV (see Table6.4). No other sharp
levels withEx < 5 MeV are seen with an intensity greater than 5% of the intensity of the groups
to the 2.18 and 3.56-MeV states (1957BR12). The 3.56-MeV state is observed to decay byγ-
radiation:Eγ = 3.572±0.012 MeV. The internal pair spectrum is consistent with an M1 transition
(1954MA26). Both theγ-ray angular distribution and the (α-γ) correlation are isotropic atEp =
2.56 MeV, consistent withJ = 0 for 6Li*(3.56) (1956ST93). Determination of the Doppler shift
establishes that the lifetime is< 3 × 10−14 sec (1957RO1B), < 3.3 × 10−14 sec (1957LE1D:
see (1958WA1C)), consistent with M1 radiation but not with E2. The fact that the ground-state
and 2.18-MeV stateα-particles do not show resonance atEp = 2.56 MeV is consistent with the
assumption that the first two levels haveT = 0: see10B (1954MA1C). See also (1956RA32).

23. 10B(γ, α)6Li Qm = −4.459

See10B.

24. 10B(n, dn′2α) Qm = −5.930

At En = 12.2 to 19.5 MeV, this reaction proceeds partly through the 2.18-MeV state of6Li
(1956FR18).

6Be
(Not illustrated)

Mass of 6Be: From theQ-value of the6Li(p, n)6Be reaction (1957BO1F), and using the Wap-
stra masses (1955WA1A) for 6Li, 1H and n, the mass excess(M − A) of 6Be is20.3 ± 0.2 MeV
(see also (1955AJ61)).

1. (a)3He(3He, 2p)4He Qm = 12.858 Eb = 10.4

(b) 3He(3He, p)5Li Qm = 11.062

The total cross section shows a monotonic increase forE(3He) = 100 to 800 keV. AtE(3He) =
200 keV, it is at least 2.5µb. BelowE(3He) = 350 keV, the cross section fits the simple Gamow
exponential form. At higher energies, partial waves ofl ≥ 2 appear to be required (1954GO18).
See also (1953AL1A).
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2. (a)3He(α, n)6Be Qm = −9.2

(b) 4He(3He, n)6Be Qm = −9.2

Not observed.

3. 6Li(p, n)6Be Qm = −5.2

At Ep = 9 MeV, a neutron group is observed withQ = −5.2± 0.2 MeV; the reported ground-
state width is< 300 keV (1957BO1F).

4. 6Li( 3He, t)6Be Qm = −4.5

Not observed.
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