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5H
(Not illustrated)

The possible existence of a particle-stable5H is discussed by (1957BL1A) who point out that
a T = 3

2
level of 5He-5Li might plausibly be formed by combination of3H or 3He and a deuteron

in the singlet (T = 1) state at an energy≈ 2.3 MeV higher than the known16.7 − 16.8 MeV
level. If such a level exists, calculation of Coulomb corrections and n-1H mass difference suggests
a mass excess of 32.22 MeV for5H, which would be 0.35 MeV stable against3H+2n. Presumably
5H would then decay byβ-emission (≈ 19 MeV) followed by neutron emission (1957BL1A). A
search for delayed neutrons from7Li(γ, 2p)5H with 320-MeV bremsstrahlung yielded no evidence
of formation of5H (1958TA1A). It is concluded that less than 1% of the expected yield of7Li(γ,
2p)5H leads to a particle-stable product (1958TA1A); see also (1958CE1A). A reaction yielding
5H might be3H(t, p)5H with Q ≈ −8.1 MeV, assuming the mass of5H given by (1957BL1A).

5He
(Fig. 1)

1. 3H(d, γ)5He Qm = 16.629

At Ed = 160 keV, the capture cross section is less than 0.5 mb. This limitis not inconsistent
with Γγ ≈ 11 eV as estimated from the mirror reaction3He(d,γ)5Li (1955SA52).

2. (a)3H(d, n)4He Qm = 17.586 Eb = 16.629

(b) 3H(d, 2n)3He Qm = −2.991

(c) 3H(d, pn)3H Qm = −2.226

Q0 = 17.580 ± 0.025 (1957MA1C).

Excitation curves and angular distributions for reaction (a) fromEd = 8 keV to 10 MeV are
summarized by (1956FO1A, 1957JA37). Additional data are given forEd = 0.04 to 0.73 MeV
by (1957BA1F, 1957BA1G), for Ed = 1.0 to 5.8 MeV by (1956GA51) and forEd = 0.25 to
7.0 MeV by (1957BA21). BelowEd = 100 keV, the cross section follows the Gamow function,
σ = (A/E)exp(−44.40E−1/2) (1953JA1A, 1954AR02). A strong resonance,σ(peak) = 5.0 b,
appears atEd = 107 keV. A precision measurement (±5%) of the cross section atEt = 1.50 MeV
gives 20.0 and 19.6 mb/sr (c.m.) at30◦ and60◦ (lab), respectively (1958AL05). There is some
question as to whether a broad maximum exists between 4 and 8 MeV (1956GA51, 1957BA21).

In the regionEd = 10 to 500 keV, the cross section is closely fitted with the assumption of
s-wave formation of aJ = 3

2

+
state, with the parameters given in Table5.2. For a given interaction
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Table 5.1: Energy levels of5He

Ex in 5He Jπ Γ Decay Reactions

(MeV) (MeV)

0 3

2

−

0.55 ± 0.03 n, α 5, 6, 8, 9, 10, 11,
12, 13, 14, 16, 17

3 − 6 1
2

−

3 − 5 n, α 8, 14

16.69 3

2

+
0.08 n, d, t,α 2, 8

(≈ 20) > 1 n, d, t,α 2

radius, two sets of parameters are obtained, depending uponwhetherΓn/Γd is assumed> 1 or
< 1 (1952AR30, 1952CO35). Agreement with the mirror reaction,3He(d, p)4He, is obtained with
the second choice (1955KU03). The fact that the proton width is relatively small suggests that
this level arises from excitation of the4He core. See also (1951FL1A, 1954JO1C, 1955JO1A,
1957DA1B, 1958LE1A) and (1955HA1B; theor.).

The angular distribution of neutrons is isotropic at and below resonance, and shows increasing
forward peaking at higher energies (1957JA37). Angular distributions atEd = 6 MeV are almost
identical to those of3H(d, p)4H (1957BR23). At Ed = 10 MeV, the distribution is dominated by
the stripping process, withlp = 0 (1951BU1B). Again, close correspondence is found with the
mirror reaction. See also (1955HE89, 1956BA1D, 1958LE1A, 1958PA09).

At Ed = 12 to 14 MeV, reactions (b) and (c) are observed (1956BO44, 1958BR14). The3He
distributions from (b) show no evidence for a bound dineutron or for a well-defined virtual state,
although some interaction between the neutrons does appearto occur. Absolute differential cross
sections are reported (1958BR14).

For Ed > 3.71 MeV, deuteron breakup (reaction (c)) is energetically possible. The cross sec-
tion for this process has been studied forEd = 3.8 to 6.0 MeV by (1955HE90). At Ed = 14
MeV, the number of low-energy (4 to 10 MeV) neutrons is about three times as large as observed
in the corresponding reaction3He(d, pn)3He. The difference may indicate formation of aT = 0,
22-MeV excited state of4He via 3H(d, n)4He* (1956BO1F, 1956BO43, 1956BO44: see, how-
ever, (1958BR14)). See also (1954CO1B, 1955BA1G, 1955BE1B, 1956FO1A, 1957BL1A) and
(1955LA1B, 1956BL1A, 1958PO1A; theor.).

3. 3H(d, p)4H

Assuming the atomic mass excess of4H = 26 MeV (if first T = 1 state in4He hasEx = 22
MeV), Qm for this reaction would be−4 MeV. This reaction has not been observed (1951MC37).
An attempt has also been made by (1955RE44) to observe theβ-decay of4H formed in the 300-
MeV proton bombardment of12C. The results are negative: ifτ1/2 = (2 to 4) × 10−3 sec,σ < 1
µb; if τ1/2 = (4 to 10) × 10−3 sec,σ < 10 µb. See also (1957NO17: 10B(7Li, 4H)13N).
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Table 5.2: Resonance parameters for3H(d, n)4He and3He(d, p)4He

Er Γlab ld Jπ ln,p R Eλ γ2
d γ2

n,p θ2
d

c θ2
n,p

c Ex

(keV) (keV) (×10−13 cm) (keV) (keV) (keV) (MeV)

107a 135 0 3

2

+ 2 5.0 −464 2000 56 1.0 0.018 16.69

7.0 −126 715 17 0.7 0.011

430b ≈ 450 0 3

2

+
2 5.0 −391 2930 42 1.4 0.013 16.81

7.0 129 780 12 0.7 0.008

a 3H(d, n)4He: (1952AR30, 1952CO35, 1955KU03). See also (1957BA1F, 1957BA1G).
b 3He(d, p)4He: (1955KU03).
c Units of3~

2/2MR2.

4. 3H(d, d)3H Eb = 16.629

Differential cross sections forEd = 0.96 to 3.2 MeV are tabulated by (1952ST69) and for
Ed = 10 MeV by (1952AL36); see also (1957BR23, 1957JA37). The distributions are closely
similar to those for3He(d, d)3He. See also (1958BA82).

5. 3H(t, n)5He Qm = 10.371

The ground state of5He has been observed atEt = 1.48 MeV (1957BA10) and 1.9 MeV
(1958JA06). The neutron spectrum contains an excess of medium-energyneutrons, attributed to
direct three-body reaction or to a broad excited state of5He. An earlier reported peak correspond-
ing to a 2.6-MeV excited state (1951LE1A) is not confirmed (1957BA10). The alphas show a
double peaking, reflecting the influence of the P3/2 ground state, superposed on a distribution aris-
ing from the P1/2 state and direct three-body disintegration (1958JA06); see6He.

6. 3H(3He, p)5He Qm = 11.136

Q0 = 11.18 ± 0.07 (1953AL1A);

Q0 = 11.13 ± 0.07 (1953MO61).

The spectrum shows a well-defined proton peak correspondingto the ground state, super-
posed on a background attributed to the three-body breakup (1953AL1A, 1953MO61). See also
(1954GO18).
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7. 3H(α, d)5He Qm = −7.215

Not observed.

8. 4He(n, n)4He Eb = −0.957

Total cross sections forEn = 0.0004 eV to 20 MeV are given in (1955HU1B, 1957HU1D,
1958HU18); angular distributions of (1952AD09) and (1953SE29) are given in (1956HU1A):
additional data forEn = 2.6 to 4.1 MeV are given by (1957ST1B), for En = 14 MeV by
(1954SM97, 1955SH1D) and atEn = 15.7 MeV by (1954AL28). The current experimental and
theoretical situation is surveyed by (1958HO1B). The total cross section has a peak of 7.4 b at
En = 1.15 ± 0.05 MeV, Ec.m. = 0.95, with a width of≈ 1.7 MeV (1951BA85), Γc.m. = 1.4 ± 0.2
MeV (1958HU18). The thermal cross section is 0.78 b (1951HI1A), 0.71 ± 0.1 b (1951MC63),
0.74 ± 0.04 b (1955SO56).

Both the total cross sections and the angular distributionsare well accounted for by the phase
shifts determined by (1949CR1A, 1952DO30) for 4He(p, p)4He with a shift inEλ of about 1 MeV:
see also (1955CL1A; theor.). Earlier discrepancies in the range 3 to 4 MeV (1952HU1A) appear
to have been resolved by (1957ST1B). In a polarization measurement, (1957LE1B, 1957LE1C)
find δ(P1/2) = 12 ± 1◦ at En = 2.45 MeV, in disagreement with the valueδ = 20◦ derived
from 4He(p, p)4He, but agreeing with a low cross section point atEn = 2.61 MeV reported by
(1953SE29). The s-wave phase shift decreases monotonically with increasing energy, and can be
accounted for by hard-sphere scattering, withR = 2.9 × 10−13 cm (1952AD09, 1952DO30: see,
however, (1954BR1B, 1954HO1B, 1955HO1C, 1956VA1C)). The P3/2 shift shows strong reso-
nance behavior near 1 MeV, while the P1/2 shift changes more slowly, possibly indicating a broad
P1/2 level at several-MeV excitation (1952DO30). At En = 15.7 MeV the angular distribution is
best accounted for withδ(D3/2) = −14◦, δ(D5/2) = −7◦, the latter being somewhat less than the
hard-sphere value, suggesting a higher resonance (1954AL28). Theory: see5Li. (For present pur-
pose, the ground state of5He is assumed to correspond to the maximum in the total cross section;
Ec.m. = 0.95 MeV).

A resonance is reported atEn = 22.15 ± 0.13 MeV, Γ ≤ 120 keV, corresponding to the
16.7-MeV level (see3H(d, n)4He) (1957BO14). See also (1957IN1A).

Polarization of neutrons scattered in He has been discussedby (1952AD09, 1953SE29, 1953SI1A,
1955LE1D, 1956LE1B, 1957LE1B, 1957LE1C, 1957WH1A, 1958PA09) and others.

9. (a)4He(d, p)5He Qm = −3.184

(b) 4He(d, pn)4He Qm = −2.226

Q = −3.10 ± 0.05 (1954FR22) for reaction (a).
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The proton spectrum observed atEd = 14.8 MeV, θ = 19.5◦, shows a prominent peak, of
width Γc.m. = 550 ± 30 keV, and a monotonic continuum of lower energy protons, attributed to
reaction (b). There is no evidence of structure corresponding to possible sharp excited states of
5He. Cross sections for the ground-state group are dσ/dΩ = 25±5 mb/sr atθc.m. = 18◦ and15±4
mb/sr atθc.m. = 24◦. The dimensionless reduced width of the ground-state group, analyzed by
stripping theory isθ2 = 0.05, more than a factor of 10 smaller than is indicated by4He(n, n)4He
(see4He(p, p)4He in 5Li) (1956WA1B, 1957WA01). For reaction (b), see6Li.

10. 6Li(γ, p)5He Qm = −4.655

The threshold isEγ = 4.64 ± 0.08 MeV (1958RY77); see6Li.

11. 6Li(n, d)5He Qm = −2.428

At En = 14 MeV, a well-defined ground-state group (Γc.m. = 0.8 MeV) is observed, as is a
continuum extending toEx ≈ 4 MeV in 5He. Angular distributions of the ground-state group and
of the continuum indicatelp = 1 for the ground state transition and are not inconsistent with lp = 1
for the continuum (1954FR03): see6Li and reaction 8 in7Li.

12. 6Li(d, 3He)5He Qm = 0.839

At Ed = 14.5 MeV, the ground-state group is observed:Q0 = 0.91 ± 0.09 MeV, Γc.m. =
0.69 ± 0.2 MeV (1955LE24).

13. 6Li(t, α)5He Qm = 15.158

Q0 = 15.15 ± 0.04 (1956CR47).

The width of the ground stateΓc.m. = 0.7 ± 0.2 MeV (1956CR47). See also (1954AL35,
1956BA1E, 1956MA09).

14. 7Li(n, t)5He Qm = −3.423

The angular distribution exhibits a forward maximum atEn = 14 MeV. The total cross section
is 55±8 mb (1954FR03). At En = 14 MeV, events corresponding to transitions to the ground state
and possibly to a level at2.4 ± 0.6 MeV are observed in Li-loaded photoplates; the latter group
may actually be due to a level at 9.25 MeV in7Li (1954AL24): see7Li(n, n′)7Li*.
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15. 7Li(p, 3He)5He Qm = −4.188

Not reported.

16. 7Li(d, α)5He Qm = 14.163

Q0 = 14.26 ± 0.09 (1955LE1C);

Q0 = 13.719 ± 0.02 (1955KH31, 1955KH35);

Q0 = 14.15 ± 0.22 (1957FA10);

Q0 = 14.11 ± 0.08 (1958WE27).

The angular correlation of ground state alpha particles andthose resulting from the break up
of 5He is W (θ) = 1 + 1.2 sin2 θ, excluding aJ = 1

2
assignment, bur consistent withJ = 3

2

(1951FR1A). (1956RI37) reportsW (θ) = sin2 θ, also consistent withJ = 3

2

−. The (α − n)
correlation observed atEd = 0.16 MeV, yields W (θ) = 1 + (0.75 ± 0.05) sin2 θ and is again
consistent with the assignmentJ = 3

2

−

for the ground state of5He (1957FA10). The coincidence
α-spectrum agrees in shape with a computed spectrum based on the 4He(n, n)4He cross sections
(1956RI37).

The width of the ground state of5He is0.3±0.1 MeV (1953CU20), 0.66±0.2 MeV (1955LE24).
The work of (1953CU20, 1956JU1B) atEd = 0.6 to 1.5 MeV appears to indicate an excited state
at Ex = 2.5 ± 0.2 MeV, Γ ≈ 1.5 ± 0.3 MeV. High-resolution magnetic spectra, observed for
Ed = 1.0 to 2.2 MeV show only the ground state peak, superposed on a continuous distribution,
with no evidence of an excited-state group. The shape of the ground state peak is well accounted
for with the parametersγ2 = 17.6 × 10−13 MeV-cm, R = 2.9 × 10−13 cm, taken from (n,α)
scattering data (1958WE27).

17. 9Be(γ, α)5He Qm = −2.529

See9Be.
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Table 5.3: Energy levels of5Li

Ex Jπ Γ Decay Reactions

(MeV) (MeV)

0 3

2

−

≈ 1.5 p, α 2, 5, 6, 9, 10, 11, 12, 13

5 − 10 1
2

−

3 − 5 p, α 6

16.81 3

2

+
≈ 0.3 d, 3He, p,α, γ 2, 3, 4

5Li
(Fig. 2)

1. 3H(3He, n)5Li Qm = 10.297

Not reported.

2. 3He(d,γ)5Li Qm = 16.555

The excitation curve measured fromEd = 0.2 to 2.85 MeV shows a broad maximum atEd =
0.45 ± 0.04 MeV (Eγ = 16.6 ± 0.2, σ = 50 ± 10 µb, Γγ = 11 ± 2 eV). Above this maximum,
non-resonant capture is indicated by a slow rise of the crosssection. The radiation appears to
be isotropic to±10% atEd = 0.58 MeV, consistent with s-wave capture (1954BL89). See also
(1955KU1B), (1955BA1G; theor.).

3. (a)3He(d, p)4He Qm = 18.351 Eb = 16.555

(b) 3He(d, np)3He Qm = −2.226

Cross sections and angular distributions for reaction (a) from Ed = 35 keV to 10 MeV are
given in (1957JA37); see also (1957BO79, 1957FI1A). Below 100 keV the cross section fol-
lows the simple Gamow form:σ = (18.2 × 103/E)exp(−91E−1/2) b (E in keV) (1953JA1A,
1954AR02). A pronounced resonance occurs atEd = 430 keV, of about 450-keV width. The
peak cross section is given as0.695 ± 0.014 b by (1952BO68, 1955KU03) and0.92 ± 0.07 b by
(1953YA02, 1954FR01). The resonance is closely fitted with the one-level dispersion formula,
using the parameters listed in Table5.2 (see3H(d, n)4He). See also (1955BA1G, 1955HA1B,
1955JO1A, 1956KL1A), (1958PO1A; theor.).
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The angular distribution of protons is isotropic near resonance and shows froward peaking at
higher energies; the similarity to3H(d, n)4He is very close. See also (1955KU1B, 1957BO79,
1957BR23).

AboveEd = 3.71 MeV, deuteron breakup (reaction (b)) is observed (1955HE90).

4. 3He(d, d)3He Eb = 16.555

Differential cross sections forEd = 0.4 to 3 MeV are plotted in (1957JA37); see also (1952AL36,
1957BR23, 1957FI1A). In the rangeEd = 380 to 570 keV,θc.m. = 65◦, the scattering cross section
is considerably below Rutherford scattering and is consistent with s-wave formation of aJ = 3

2

+

state. AboveEd = 2 MeV, the distributions are quite similar to those observed in 3H(d, d)3H
(1952AL36, 1954BR05, 1957BR23).

5. 3He(3He, p)5Li Qm = 11.062

The proton spectrum atE(3He) = 360 keV shows an unresolved ground-state group super-
posed on a broad continuum. No evidence is found for well-defined proton groups of lower energy
than the ground-state group (1954GO18). See also (1953AL1A), (1957BR18) and6Be.

6. 4He(p, p)4He Eb = −1.796

Differential elastic scattering cross sections have been measured at numerous energies from
0.95 to 95 MeV, as indicated in Table5.4; curves at several energies are given by (1957JA37) and
(1957BR28). Phase shifts derived from the experimental data are listed in the table. AtEp = 40
MeV, the differential cross section shows “diffraction” maxima and minima characteristic of the
optical model (1957BR24: see also (1956BU95, 1957GI14, 1957HO1C, 1958GA13)). Recent
surveys of the experimental and theoretical situation are reported by (1958GA13, 1958HO1B,
1958MI93).

Even at low energies, the phase shift analysis clearly requires a splitting of P1/2 and P3/2 levels,
generally attributed to spin-orbit effect. Either order ofthe P-doublet can be used to fit the cross
section data (1949CR1A, 1952DO30): that the P3/2 state is the lower is established by measure-
ments of the polarization of scattered protons (1952HE15, 1955SC1A, 1956JU10, 1958SC1A).
The tabulated phase shifts apply to this case.

The P3/2 phase shift shows a pronounced resonance effect, passing through90◦ at Ep = 2.8
MeV (1949CR1A), while the P1/2 changes only slowly over a range of several MeV. Analysis by
(1952DO30), based on resonance theory, yields for the P3/2 level (ground state of5Li) Eλ(c.m.) =
−4.1 MeV, γ2

λ = 25 × 10−13 MeV-cm and for the P1/2, Eλ(c.m.) = 3.4 MeV, γ2
λ = 105 × 10−13

MeV-cm (see also (1952AD09)). (These widths correspond toθ2
p = 0.9 and 3.9 times the sum-rule
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limit, respectively, usingR = 2.9 × 10−13 cm.) It thus appears that the P1/2 state, if resonance
theory is at all appropriate here, is extremely broad and located5 − 10 MeV above the ground
state. A new analysis of all data< 18 MeV yields Eres(lab) = 2.6 MeV, γ2

p = 12 × 10−13

MeV-cm, θ2
p = 0.40 for the ground state andEres(lab) = 10.8 MeV, γ2

p = 30 × 10−13 MeV-cm,
θ2
p = 1.0 for the excited state, usingR = 2.6× 10−13 cm (1958MI93). The s-wave phase shifts are

well accounted for by hard-sphere scattering, withR = 2.9 × 10−13 cm (1952AD09, 1952DO30:
see, however, (1956VA1C)), R = 2.0 × 10−13 cm (1958MI93). Semi-empirical phase shifts and
polarizations forEp = 10 to 40 MeV are given by (1958GA13).

Proton and neutron scattering in helium are discussed in terms of a central potential with spin-
orbit interaction by (1954BR1B, 1954HO1B, 1954JA1A, 1954SA1B, 1955HO1C, 1958GA13).
(1955HO1C) obtain a good account of the s- and p-wave interactions witha Gaussian potential
and Serber exchange force. The effect of tensor forces is discussed by (1956FE1A). See also
(1956AB1A, 1956LE1C, 1958HO1B).

Polarization of the scattered protons is discussed by (1949CR1A, 1952AD09, 1952DO30,
1952HE15, 1955SC1A, 1956BR1D, 1956JU10, 1957RO1A, 1957SC1B, 1957SE40, 1958BR24,
1958SC1A, 1958SC27) and others.

For α-scattering in hydrogen: see (1954JU1B, 1954RU1A, 1957RO1A). See also (1956EI05,
1957TY27).

7. (a)4He(p, d)3He Qm = −18.351 Eb = −1.796

(b) 4He(p, pn)3He Qm = −20.577

Angular distributions are reported atEp = 27.9 MeV (1957WI22), 31.6 MeV (1952BE1A)
and 95 MeV (1955TE1A) for reaction (a). The cross section atEp = 40 MeV, θ = 30◦, is 10 ± 1
mb/sr (1956EI05). For reaction (b), see (1957WI22) and (1956EI05).

8. 4He(p, 2p)3H Qm = −19.812 Eb = −1.796

See (1957WI22) and (1956EI05).

9. 4He(d, n)5Li Qm = −4.023

At Ed = 13 MeV, a broad, asymmetric neutron group corresponding to theground state is
observed. There is no evidence for structure correspondingto the P1/2 excited state (1956BO1F,
1956BO43).

10. 6Li(γ, n)5Li Qm = −5.494
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Table 5.4: Phase shifts in4He(p, p)4He a

Ep (lab) S1/2 P1/2 P3/2 D3/2 D5/2 References

(MeV) (deg) (deg) (deg) (deg) (deg)

0.95 −12.0 3.3 3.3 0 0 (1949CR1A, 1949FR20)

1.49 −18.1 4.1 20.4 (1949CR1A, 1949FR20)

1.70 −17.6 4.2 31.1 (1949CR1A, 1949FR20)

2.02 −24.6 8.1 47.8 (1949CR1A, 1949FR20)

2.22 −26.7 9.4 60.6 (1949CR1A, 1949FR20)

2.53 −28.2 13.1 78.8 (1949CR1A, 1949FR20)

3.03 −27.3 10.3 99.3 0.7 0.1 (1958MI93)

3.04 −32.0 15.7 96.6 (1949CR1A, 1949FR20)

3.51 −30.9 18.8 107.6 1.3 −1.1 (1958MI93)

3.58 −35.2 20.3 105.4 (1949CR1A, 1949FR20)

4.02 −32.9 23.6 112.4 2.1 −1.7 (1958MI93)

4.50 −43.1 29.1 111.6 −3.1 −0.5 (1958MI93)

5.00 −51.8 35.5 109.9 −4.7 0.1 (1958MI93)

5.1 (no analysis) (1951BR93)

5.78 −47.9 38.7 112.9 −1.3 −0.49 (1952DO30, 1954KR1B, 1955LU60)

7.50 −57.95 52.51 112.1 −1.87 +0.44 (1956PU41)

9.48 −65.36 54.72 109.2 −5.73 −3.21 (1952PU1A, 1956PU41)

9.55 (optical model) (1954FR22, 1957GI14: see (1955WI26, 1957HO1C))

9.76 (no analysis) (1955WI26)

9.8 (no analysis) (1954CO69)

12.0 −66.9 60.1 108.7 (1957BR28) b

14.0 −76.7 50.2 92.7 (1957BR28) b

16.0 −81.1 49.1 89.5 (1957BR28) b

17.0c (−14) (−17) (1954AL28)

17.45 −85.7 53.2 94.8 (1956BR29, 1957BR28)

18 −85.8 46.4 85.4 (1956BR29, 1957BR28)

19.4 (no analysis) (1956VA1B, 1957VA1B)

27.9 (no analysis) (1957WI22)

31.6 (no analysis) (1953CO62)

39.85 (optical model) (1957BR24)

95 (no analysis) (1955TE1A)
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a Phase shifts forEp = 1 to 18 MeV are plotted by (1958MI93); extrapolated values from 10 to 40 MeV are tabulated by

(1958GA13).
b (1957BR28) also tabulates values forEp = 13, 15 and 17 MeV; D-wave< 8◦.
c From4He(n, n)4He.

The photoneutron threshold is5.4± 0.2 MeV (1951TI06), 5.35± 0.2 MeV (1951SH63), 5.6±
0.1 MeV (1955TI1A), 5.73 ± 0.05 MeV (1958RY77). An earlier reported higher state is not
confirmed (1955TI1A).

11. 6Li(p, d)5Li Qm = −3.267

Q0 = −3.0 ± 0.15 (1955LI09).

At Ep = 18.6 MeV, the ground-state group appears as a broad, asymmetric peak (Γ = 1.8
MeV) which tails off to a low continuum at lower energies. Theangular distribution of the ground-
state group has a maximum at15◦ (c.m.) and, at small angles, conforms with stripping theory
(ln = 1) (1955LI09).

12. 6Li(d, t)5Li Qm = 0.765

Q0 = 0.80 ± 0.15 (1958FR52).

At Ed = 1 MeV a broad ground-state triton group is observed (Γc.m. = 1.5 MeV). The distri-
bution of protons from the5Li breakup indicates a pronounced forward distribution (1958FR52).
Se also8Be.

13. 6Li( 3He,α)5Li Qm = 15.084

See (1955AL57) and (1953KU24).

14. 7Li(p, t)5Li Qm = −4.262

This reaction has been observed atEp = 17.5 MeV (1957MA04).
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