Adopted Levels 2018Le18

²¹B Levels

Cross Reference (XREF) Flags

⁹Be(⁴⁰Ar,X) ¹²C(²²C, ¹⁹B2n)

Comments

⁹Be(⁴⁰Ar,X) **2003Oz01**

2003Oz01: Production yields for fragmentation of 94 MeV/nucleon 40 Ar projectiles were measured on berylium and tantalum targets at RIKEN/RIPS. No events were observed corresponding to 21 B, while 3 to 12 events were expected. Hence, 21 Bg.s. is neutron unbound.

¹²C(²²C, ¹⁹B2n) **2018Le18**

2018Le18: XUNDL dataset compiled by TUNL, 2019.

A beam of $E_{effective}$ =233 MeV/nucleon (target midpoint) ^{22}C ions, from the RIKEN/RIBF facility, impinged on a 1.8 g/cm² carbon slate that was located at the target position of the SAMURAI spectrometer. The ^{19}B reaction products were momentum analyzed using the SAMURAI focal plane, while the momentum of coincident neutrons were determined using the 120 module NEBULA plastic scintillator array. A prevalent peak near $E(2n+^{19}B)\approx 2.5$ MeV was observed in the relative energy spectrum, which was determined by analysis of invariant mass spectrum; note: the absence of ^{19}B excited states simplifies the analysis. This is the first observation of any ^{21}B resonance.

The peak was fit by assuming a Breit-Wigner shape, which resulted in a resonance with $E(2n+^{19}B)=2.4$ MeV 4 with $\Gamma<3$ MeV. The authors exploited a technique developed in (2016Ko11) that fitted the spectrum "with a combination of the uncorrelated distribution derived from event mixing and simulated events arising from the decay of a resonance in ^{21}B . The latter was assumed to occur by (decay into the) three-body phase space into $^{19}B+n+n$, and E_{rel} was reconstructed between the fragment and the neutron with the shortest time of flight." This method yielded $E(2n+^{19}B)=2.47$ MeV 19 with $\Gamma<0.6$ MeV.

A comparison with Shell Model predictions suggest the ground state is formed via the removal of the $0p_{3/2}$ proton from 22 C, hence $J^{\pi}=(3/2^{-})$ is suggested.

²¹B Levels

E(level)	J^{π}	Γ	Comments
0	(3/2 ⁻)	<600 keV	E(level): From E(2n+ ¹⁹ B)=2.47 MeV 19, which implies Δ M=78.38 MeV 40. J^{π} : From Shell Model systematics.

TUNL Nuclear Data Evaluation

REFERENCES FOR A=21

2003Oz01	A.Ozawa, Y.Yamaguchi, M.Chiba, R.Kanungo et al Phys.Rev. C 67, 014610 (2003).
	Search for ²¹ B.
2006Ko02	V.B.Kopeliovich, A.M.Shunderuk, G.K.Matushko - Phys.Atomic Nuclei 69, 120 (2006).
	Mass Splittings of Nuclear Isotopes in Chiral Soliton Approach.
2012Yu07	C.Yuan, T.Suzuki, T.Otsuka, F.Xu, N.Tsunoda - Phys.Rev. C 85, 064324 (2012).
	Shell-model study of boron, carbon, nitrogen, and oxygen isotopes with a monopole-based universal interaction.
2016Ko11	Y.Kondo, T.Nakamura, R.Tanaka, R.Minakata et al Phys.Rev.Lett. 116, 102503 (2016).
	Nucleus ²⁶ O: A Barely Unbound System beyond the Drip Line.
2017Wa10	M.Wang, G.Audi, F.G.Kondev, W.J.Huang et al Chin.Phys.C 41, 030003 (2017).
	The AME2016 atomic mass evaluation (II). Tables, graphs and references.
2018Le18	S.Leblond, F.M.Marques, J.Gibelin, N.A.Orr et al Phys.Rev.Lett. 121, 262502 (2018).
	First Observation of $^{\tilde{2}0}B$ and ^{21}B .