Adopted Levels, Gammas

 $Q(\beta^{-})=17970\ 80;\ S(n)=2160\ 80;\ S(p)=1.794\times10^{4}\ 13;\ Q(\alpha)=-17770\ 80$ 2017Wa10

The nucleus 20 N is particle stable. Its atomic mass excess is 21.770 MeV 80 (2017Wa10).

A review of the production of nuclei far from stability is presented in (1989VoZM). Bulk properties of ²⁰N have been calculated or analyzed with general theoretical models in (1988PoZS, 1992Wa22, 1993Pa14, 1993Po11, 1997Ba54, 2002Ka73, 2004La24, 2004Ne16, 2006Ko02, 2012Yu07, 2015Sh21, 2016Ma06, 2016Zh05, 2018Fo04).

^{20}N	Levels
----------	--------

Cross Reference (XREF) Flags

А	1 H(21 N, 20 N)	н	20 C β^- decay	0	²⁰⁸ Pb(²⁰ N, ²⁰ Nγ):coulex
B	${}^{9}\text{Be}({}^{36}\text{S}, {}^{20}\text{N}), {}^{12}\text{C}(x, {}^{20}\text{N}\gamma)$	т	$^{21}N(p,pn)$	P	208 Pb(21 N, 20 N γ)
c C	${}^{9}\text{Be}({}^{40}\text{Ar},{}^{20}\text{N})$	î	$Ni(^{40}Ar,^{20}N)$	0	232 Th(p, 20 N)
D D	${}^{9}\text{Be}({}^{48}\text{Ca},{}^{20}\text{N})$	к	$^{48}Ca(^{18}O,^{20}N)$	R	232 Th(18 O, 20 N)
F	$C(^{20}N,X)$	L	181 Ta(40 Ar, 20 N)	S	232 Th(22 Ne, 20 N)
F	$C(^{21}N,^{20}N)$	M	181 Ta(48 Ca, 20 N)	т	$U(p,^{20}N)$
G	$Si(^{20}N,X)$	N	181 Ta(86 Kr, 20 N)	-	0(p, 1)
, , , , , , , , , , , , , , , , , , ,	~~(~ · · · · · · · · · · · · · · · · ·		In(In, It)		

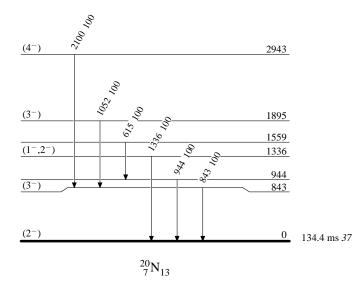
E(level)	$J^{\pi \dagger}$	T _{1/2}	XREF	Comments
0	(2 ⁻)	134.4 ms <i>37</i>	ABCDEFGH JKLMNO	 %β⁻ n: From (2006Su12). J[#]: From (2008So09). See also (2012Yu07). T_{1/2}: Weighted average of 136 ms <i>3</i> (2006Su12), 129 ms 8 (P.L. Reeder et al., Int. Conf. on Nucl. Data for Science and Technology, May 9-13, 1994, Gatlinburg, Tennessee), 70 ms <i>40</i> (1988DuZT), 100 ms +<i>30</i>-20 (1988Mu08,1990Mu06); see also (1989MuZT, 1990St08). Others: 142 ms <i>19</i> (1991Re02) and 130.0 ms <i>66</i> (unpublished private communications of (2008ReZZ)/(1995ReZZ)). The delayed neutron probability, P_n, has been reported as 57% +<i>11</i>-7 (1988Mu08,1990Mu06), <i>66</i>.1% <i>50</i> (1991Re02), 46% <i>11</i> (2006Su12). A reanalysis of (1991Re02) to include data published in the International conference on nuclear data for science and technology: nuclear data for the twenty-first century, Gatlinburg, TN, U.S.A.,9-13 May 1994) estimated P_n=52.0% <i>33</i>. The measurements of (2006Su12) provide the only quantitative measure of ²⁰O and ¹⁹O spectroscopy for levels and transitions involved in the decay. The %β⁻1n=42.9 <i>14</i> is deduced; furthermore, only ¹⁹O*(96,1472) levels are fed in the 1n decay. Beta-decay to neutron bound levels in ²⁰O is found to comprise 53.8% <i>13</i> of decays with an additional upper limit of 3.3% feeding ²⁰O_{g.s.} directly. The P_n=P_{1n}+2P_{2n}=52.0% <i>33</i> value from the revised zero-threshold measurement of (1991Re02) can be combined with P_{1n}=42.9% <i>14</i> from (2006Su12) to estimate the value of P_{2n}≈4.5%. The P_{2n} contribution in the decay was not considered when the limit on direct feeding of ²⁰O_{g.s.} was deduced. See also (1987BaZI,1987DuZU,1988BaYZ,1993ReZX,1994KiZU).
944 <i>24</i>			AB	%IT=100
1336 23	$(1^{-},2^{-})$		В	%IT=100
1559 30	(- ,-)		AB	%IT=100
1895 34	(3 ⁻)		В	%IT>0
2943 32	(3^{-})		B	%IT>0 %IT>0
3500?	(0	%IT>0; %n≈100

Adopted Levels, Gammas (continued)

²⁰N Levels (continued)

E(level)	XREF	Comments	
4600?	0	%IT>0; %n≈100	_
5500	0	%IT>0; %n≈100	
7000	0	%IT>0; %n≈100	
9000	0	%IT>0; %n≈100	
10200	0	%IT>0; %n≈100	
11500	0	%IT>0; %n≈100	

 † From comparison with shell-model calculations.


$\gamma(20)$	'N)
	11

E_i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_f^{π}
843	(3 ⁻)	843 4	100 14	0	(2^{-})
944		944 24	100	0	(2^{-})
1336	$(1^{-},2^{-})$	1336 <i>23</i>	100	0	(2^{-})
1559		615 18	100	944	
1895	(3 ⁻)	1052 29	100	843	(3-)
2943	(4 ⁻)	2100 26	100	843	(3 ⁻)

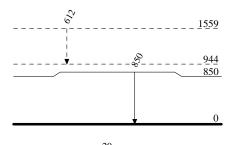
Adopted Levels, Gammas

Intensities: Relative photon branching from each level

1 **H**(21 **N**, 20 **N**) 2006OkZZ

2006OkZZ: A secondary beam of E(²¹N)=72 MeV/nucleon, produced at the RIKEN Projectile fragment Separator (RIPS), impinged on a liquid hydrogen (LiqH₂) target with a thickness of 120 mg/cm². The target was surrounded by 48 blocks of NaI(Tl) scintillators to detect de-excitation γ -rays. The outgoing ²⁰N particle was identified using ΔE , time-of-flight (TOF) and magnetic rigidity (MDC and FDC3) information.

Two Doppler-shift-corrected γ -rays were observed at 612 keV 21 and 850 keV 17.


See related work in (2010El05), and see quasifree (p,2p) cross section studies in (2018At01).

					²⁰ N Levels
E(level) 0 850 944? 1559?					
					γ ⁽²⁰ N)
$\frac{E_{\gamma}}{612^{\dagger} 21}$ $850 17$	E _i (level) 1559? 850	E _f 944? 0			
† Place	ment of tran	sition in th	ne level scheme i	s uncertain.	

 ${}^{1}\mathbf{H}({}^{21}\mathbf{N},{}^{20}\mathbf{N})$ 2006OkZZ Legend

Level Scheme

 $--- \rightarrow \gamma$ Decay (Uncertain)

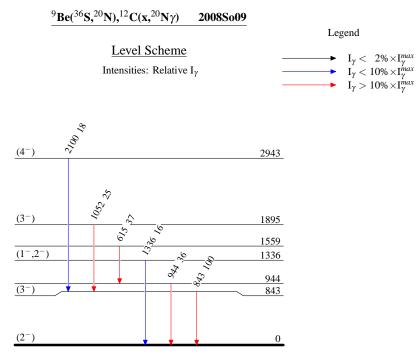
 ${}^{20}_{7}\mathrm{N}_{13}$

 9 Be(36 S, 20 N), 12 C(x, 20 N γ) 2008So09

2008So09: XUNDL dataset compiled by McMaster University, 2008.

- An $E(^{36}S)=77.5$ MeV/nucleon beam was delivered to the GANIL/SPEG spectrometer. In the first part of the experiment, the beam bombarded a 2.77 mg/cm² ⁹Be target and the SPEG magnetic spectrometer was used to momentum analyze the reaction products and identify $^{20}N_{g.s.}$.
- In the second part, a ¹²C target, at the entrance of the SISSI device, produced a cocktail beam of ²⁴F, ^{25,26}Ne, ^{27,28}Na, and ^{29,30}Mg that was purified in the α spectrometer and then delivered to a carbon target at the dispersive image of the SPEG spectrometer. The target was surrounded by the 74 element BaF₂ *Chateau de crystal* array and four HPGe detectors. The γ rays observed in coincidence with ²⁰N ions detected at the SPEG focal plane were analyzed to obtain information on the ²⁰N level structure. E γ , I γ , $\gamma\gamma$ -coin were measured using 74 BaF₂ crystals and four HPGe detectors.

Energy levels and J^{π} values were proposed from comparison with shell-model calculations. See also (2008SoZT).


²⁰N Levels

E(level)	$J^{\pi^{\dagger}}$
0	(2 ⁻)
843 4	(3 ⁻)
944 <i>24</i>	
1336 23	$(1^{-},2^{-})$
1559 <i>30</i>	
1895 <i>34</i>	(3-)
2943 <i>32</i>	(4 ⁻)

[†] From comparison with shell-model calculations.

$\gamma(^{20}N)$

Eγ	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}
615 18	37 5	1559		944	
843 4	100 14	843	(3 ⁻)	0	(2^{-})
944 24	36 8	944		0	(2^{-})
1052 29	25 5	1895	(3 ⁻)	843	(3 ⁻)
1336 <i>23</i>	16 4	1336	$(1^{-},2^{-})$	0	(2^{-})
2100 26	18 5	2943	(4 ⁻)	843	(3 ⁻)

 ${}^{20}_{7}N_{13}$

⁹Be(⁴⁰Ar,²⁰N) 2000Oz01,2007No13

2000Oz01: A beam of ⁴⁰Ar at E \approx 1 GeV/nucleon impinged on a Be target (4007 mg/cm²) at the GSI SIS/FRS facility. The ²⁰N fragments of interest were identified using the B ρ settings along with scintillators to measured Δ E and time-of-flight (TOF). Fragmentation production cross sections were measured as $\sigma_{\rm F}$ =3.38×10⁻⁶ b 77.

2007No13: Production of ²⁰N via projectile fragmentation was studied at the RIKEN Accelerator Research Facility using ⁴⁰Ar beams at E=90, 94 MeV/nucleon that impinged on either a 95 mg/cm² thick ⁹Be target or a 17 mg/cm² thick ^{nat}Ta target. The beams were momentum analyzed using the RIPS doubly achromatic spectrometer before being identified using two surface-barrier silicon counters and a plastic scintillator to identify products via ΔE and time-of-flight (TOF) at the focal plane. The fragment momentum distribution and production cross sections were deduced. See also (2015Mo17) for transverse momentum (P_T) distribution and width (σ_T) analysis.

2012Kw02: Several light neutron-rich nuclides, produced by projectile fragmentation of an ⁴⁰Ar beam at E=140 MeV/nucleon, bombarded one of three targets, 668 mg/cm² ⁹Be, 775 mg/cm² ^{nat}Ni, and 1086 mg/cm² ¹⁸¹Ta at the National Superconducting Cyclotron Laboratory (NSCL). Fragments were momentum analyzed using the A1900 separator and identified at the final focus using time-of-flight and a telescope consisting of five Si ∆E detectors. The fragmentation cross sections, parallel momentum transfers, and parallel momentum distribution widths were measured and compared to the theoretical predictions.

²⁰N Levels

E(level)

⁹Be(⁴⁸Ca,²⁰N) **1981St23**

1981St23: Production yields for fragmentation of 213 GeV/nucleon ⁴⁸Ca projectiles on a berylium target were measured at the Bevalac using a 0° magnetic spectrometer. The neutron-rich fragments were focused on a stack of Lexan plastic track detectors; analysis of the tracks provided the range, charge and magnetic deflection of the produced isotopes. A charge resolution of 0.2 was obtained along with a mass resolution of approximately ≤0.2 u.

The analysis showed clear indications of 20 N. The cross section of roughly 19 μ b was deduced.

²⁰N Levels

E(level)

 ${}^{20}_{7}N_{13}-8$

C(²⁰N,X) 1998Bo02,1996Ch24

1998Bo02: A secondary beam of $E(^{20}N)=950$ MeV/nucleon ions, produced at the GSI/FRS, impinged on a carbon target. Interaction cross sections, σ_i , and charge-changing cross section, σ_{cc} were measured; r.m.s. matter radii, r_m and upper limits for r.m.s. proton radii, r_p^{max} were deduced. Evidence for the existence of a neutron skin in ^{20}N is presented.

 σ_i =1121 mb 17, σ_{cc} =774 mb 65, r_m =2.77 fm 4, r_p^{max} =2.39 fm 20.

1996Ch24: A secondary ²⁰N beam, produced at the GSI Fragment Separator FRS, impinged on carbon targets with thickness 7.5 g/cm² and 3.7 g/cm². Interaction cross sections, σ_i were measured with accuracies of $\approx 1\%$ and r.m.s. matter radii, r_m were deduced.

 σ_i =1121 mb 17; the values of rm \approx 2.80 fm 4 were obtained with various model assumptions.

2001Oz03: A secondary beam of $E(^{20}N)\approx950$ MeV/nucleon ions, produced at the GSI/FRS, impinged on a carbon target. Interaction cross sections, σ_i were measured and r.m.s. matter radii, r_m were deduced using Glauber-model, few-body system calculations (GMFB).

 r_m =2.82 fm 5.

See also (1995ChZV, 1997Ki22, 1999Kn04, 2000Ch20, 2001La06, 2001Oz04, 2002Me12, 2003Bh06, 2011Al11, 2017Ah08, 2018Fo17).

²⁰N Levels

E(level)

C(²¹N,²⁰N) 2000Sa47,2004Sa14

2000Sa47,2004Sa14: Secondary $E(^{21}N)=43$ MeV/nucleon beams , produced from ^{40}Ar fragmentation at GANIL, impinged on a 170 mg/cm² C target. The beam energy spread was $\Delta E/E=1\%$ (2% in 2000Sa47). The one-neutron removal cross sections and core fragment longitudinal and transverse momentum distributions were measured using the SPEG spectrometer.

 σ_{-1n} =98 mb 13 was measured; this compares the value $\sigma_{-1n}^{\text{Glauber}}$ =101 mb calculated using a Glauber model. The longitudinal momentum distribution width FWHM^{cm}_{pz}=162 MeV/c 4, transverse momentum width FWHM^{cm}_{px}=217 MeV/c 16 (2004Sa14), and J^{π}=2⁻ for the ground state were also deduced.

²⁰N Levels

E(level)	J^{π}
0	2-

 ${}^{20}_{7}N_{13}$ -10

$Si(^{20}N,X)$ 2006Kh08

2006Kh08: A ²⁰N secondary beam was produced by fragmentation of a 60.3 MeV/nucleon ⁴⁸Ca beam using the GANIL/SISSI beam facility. The beams were analyzed using the α spectrometer and delivered to the SPEG focal plane, where they impinged on a telescope stack of 4 cooled (-10° C) silicon detectors that were surrounded by a 4π array of 14 NaI γ -detectors. The energy dependent cross sections and the mean radius were measured.

 σ (37.71 MeV/nucleon)=2.02 b 10.

 $\sigma(43.15$ MeV/nucleon)=2.142 b 19.

 r_0^2 (mean radius)=1.247 fm² 11.

See earlier work in (1991Vi04).

²⁰N Levels

$^{20}C \beta^{-} decay$ **2003Yo02**

Parent: ²⁰C: E=0; $J^{\pi}=0^+$; $T_{1/2}=16.3$ ms +40-35; $Q(\beta^-)=1574\times10^1$ 24; % β^- decay=100.0

²⁰C-T_{1/2}: weighted average of (1989Le16,1990Mu06,2003Yo02 and P.L. Reeder et al., Int. Conf. on Nucl. Data for Science and Technology, May 9-13, 1994, Gatlinburg, Tennessee).

 20 C-Q(β^{-}) from (2017Wa10).

2003Yo02: ²⁰C ions were produced at the RIKEN/RIPS facility and implanted in a plastic scintillator detector. An array of 13 liquid scintillator detectors surrounded the implantation target. Following implantation, β and β+n coincidence counting were carried out for 100 MS (to permit decay of daughter & grandaughter activity). Standard pulse shape analysis was used to identify high-energy neutrons, while for 50 keV≤E_{eq}≤200 keV the time of flight information was used to separate neutrons and γ rays. Analysis of the 1n- and 2n- coincidence events yielded values of P_{1n}= 65 +19-18 and P_{2n}<18.6 which implies %β-0n≈35 20. No details on the neutron emission energies was determined. T_{1/2}(²⁰C)=21.8 ms +150-74 was also measured. See also (1989LeZM, 1989MuZU, 1990LeZR).

²⁰N Levels

E(level)	\mathbf{J}^{π}	T _{1/2}		Comments	
0 0+x	(2-)	134.4 ms <i>37</i>	x>2157.32 keV.		
				β^- radiations	

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft
(8×10 ³ [‡] 8)	0+x	65 20	
$(1.574 \times 10^4 \ 24)$	0	35 20	4.8 4

[†] Absolute intensity per 100 decays.

[‡] Estimated for a range of levels.

²¹N(p,pn) **2018Di01**

2018Di01: An E(²¹N)=417 MeV/nucleon secondary beam, from the FRS (FRagment Separator) at GSI facility, impinged on either a 922 mg/cm² CH₂ or a 935 mg/cm² C target located at the R³B-LAND setup. The 4π Crystal Ball array surrounded the targets and was used to measure γ -rays, while the ALADIN dipole magnet was used to deflect different mass and charge reaction products. Neutrons were momentum analyzed using the LAND, a Large Area Neutron Detector array, whilst the heavy fragments were tracked by two scintillators and a position sensitive time-of-flight wall; recoil protons were analyzed using two position sensitive drift chambers and a time-of-flight wall.

The ²¹N 1n-removal cross section σ_{raw} =7.55 mb 61 was measured along with the transverse momentum distribution

 $P_T(r.m.s.)=102$ MeV/c 8. Level energies, J^{π} and spectroscopic factors C^2S were also deduced based on shell-model calculations. See also (2018Go21).

²⁰N Levels

E(level) [†]	$J^{\pi \dagger}$	C^2S^{\dagger}
0	2^{-}	1.97
600	0^{-}	0.16
900	3-	2.98
1100	1-	0.49

[†] From shell model calculations and comparison with the momentum distributions.

Ni(⁴⁰Ar,²⁰N) 2012Kw02

2012Kw02: Several light neutron-rich nuclides, produced by projectile fragmentation of an ⁴⁰Ar beam at E=140 MeV/nucleon, bombarded one of three targets, 668 mg/cm² ⁹Be, 775 mg/cm² ^{nat}Ni, and 1086 mg/cm² ¹⁸¹Ta at the National Superconducting Cyclotron Laboratory (NSCL). Fragments were momentum analyzed using the A1900 separator and identified at the final focus using time-of-flight and a telescope consisting of five Si ΔE detectors. The fragmentation cross sections, parallel momentum transfers, and parallel momentum distribution widths were measured and compared to the theoretical predictions.

²⁰N Levels

E(level)

⁴⁸Ca(¹⁸O,²⁰N) **1989Or03**

1989Or03: Beams of $E(^{18}O)\approx 115$ MeV, provided by the ANU tandem accelerator, bombarded 97% enriched ^{48}Ca targets (85 μ g/cm² or 60 μ g/cm²) deposited on carbon backings. The reaction products were momentum analyzed by an Enge split-pole spectrometer and detected by a gas-filled multi-element focal plane detector. The spectrometer data was analyzed using a variety of different techniques, including tme-of-flight through the spectrometer.

The mass excess $\Delta M=22.63$ MeV 6, deduced from the measured Q-value Q=-25.87 MeV 2, is in disagreement with other reported values.

²⁰N Levels

E(level)

¹⁸¹Ta(⁴⁰Ar,²⁰N) **1986Gi10,1987Gi05**

1986Gi10: The authors measured the masses of several nuclides, produced in the fragmentation of 44 MeV/nucleon 40 Ar ions on a 160 mg/cm² ^{nat}Ta target at GANIL, by measuring their time-of-flight over a 116 meter flight path that allowed them to achieve an accuracy down to a few 10⁻⁵. The nuclides were detected and identified in the SPEG spectrometer focal plane.

The 20 N mass excess Δ M=22.20 MeV 36 was deduced.

1987Gi05: The authors measured the masses of several nuclides, produced in the fragmentation of 60 MeV/nucleon ⁴⁰Ar ions on a 350 mg/cm² ^{nat}Ta target at GANIL, by measuring their time-of-flight over a roughly 80 meter flight path. The nuclides were detected and identified in the SPEG spectrometer focal plane. A mass resolution near 5×10^{-4} was achieved. The ²⁰N mass excess ΔM =21.62 MeV *14* was deduced.

2012Kw02: Several light neutron-rich nuclides, produced by projectile fragmentation of an ⁴⁰Ar beam at E=140 MeV/nucleon, bombarded one of three targets, 668 mg/cm² ⁹Be, 775 mg/cm² ^{nat}Ni, and 1086 mg/cm² ¹⁸¹Ta at the National Superconducting Cyclotron Laboratory (NSCL). Fragments were momentum analyzed using the A1900 separator and identified at the final focus using time-of-flight and a telescope consisting of five Si ΔE detectors. The fragmentation cross sections, parallel momentum transfers, and parallel momentum distribution widths were measured and compared to the theoretical predictions.

²⁰N Levels

E(level)

¹⁸¹Ta(⁴⁸Ca,²⁰N) 1991Or01

1991Or01: The masses of 39 nuclides were measured using driect time-of-flight and Δ E-E techniques by bombarding a 330 mg/cm^2 thick tantalum target with a beam of E(⁴⁸Ca)=55 MeV/nucleon ions produced by the GANIL cyclotrons. The nuclides were detected and identified in the SPEG spectrometer with a mass resolution of 3×10^{-4} .

The 20 N mass excess Δ M=21.79 MeV 7 was deduced.

²⁰N Levels

¹⁸¹Ta(⁸⁶Kr,²⁰N) 1988Mu08

- 1988Mu08: ²⁰N ions from the fragmentation of a 45 MeV/nucleon ⁴⁸Ca beam on a ¹⁸¹Ta target at GANIL were filtered by the LISE spectrometer and implanted in a Si telescope. The telescope was surrounded by a thin scintillator to detect β -rays and a segmented NE102A 4π neutron array with an energy threshold of 350 keV. Following implantation of ²⁰N in the telescope the cyclotron frequecy was scrambled and the decay event was measured.
- A β -delayed neutron emission probability of P_n=53% +11-7 was deduced. T_{1/2}=100 ms +30-20 was also measured. See also (1987BaZI,1988BaYZ,1988MuZY).

²⁰N Levels

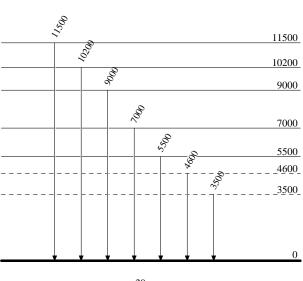
²⁰⁸Pb(²⁰N,²⁰Nγ):coulex 2016Ro13

- 2016Ro13: The Coulomb dissociation cross section of 20 N was studied at the GSI LAND/R3B facility using a secondary beam produced by fragmenting an 490 MeV/nucleon 40 Ar beam. The 20 N beam impinged on a 0.176 mm 4 thick natural lead target for the Coulomb Excitation measurements, while measurements on a 5.08 mm thick carbon target were used to estimate the nuclear breakup contributions. Reaction γ -rays were detected using the 162 NaI Crystal Ball array; neutrons from Coulomb breakup reactions were detected in the LAND neutron wall array, and the core ejectiles were deflected in the ALADIN magnet and detected and identified in a two-dimension position sensitive plastic scintillator ΔE wall.
- The ²⁰N excitation energies were determined via the invariant mass method by analyzing the momenta of the neutron and ¹⁹N residual and then adding the γ -ray energy. The excitation spectrum, based on the dissociation reactions, begins around the neutron breakup threshold (\approx 1.8 MeV) and then shows several structures between E_x=5 to 14 MeV, that are associated with excited states. Additional structures are observed above E_x \approx 14 MeV, but they may be consistent with background. Coincidences with the decay γ rays from the ¹⁹N*(1141 keV) first excited state were also analyzed. The experimental resolution is not discussed.

²⁰N Levels

$E(level)^{\dagger}$
0
3500?‡
4600?
5500 [‡]
7000‡
9000 [‡]
10200
11500

[†] From Coulomb dissociation to ¹⁹Ng.s.


^{\ddagger} Also observed in decays to ¹⁹N*(1141 keV).

$\gamma(^{20}N)$

Eγ	E_i (level)	E_f
3500	3500?	0
4600	4600?	0
5500	5500	0
7000	7000	0
9000	9000	0
10200	10200	0
11500	11500	0

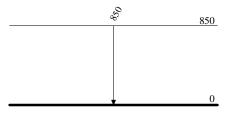
²⁰⁸Pb(²⁰N,²⁰Nγ):coulex 2016Ro13

Level Scheme

 ${}^{20}_{7}\mathrm{N}_{13}$

208 Pb(21 N, 20 N γ) **2016Ro13**

- 2016Ro13: The Coulomb dissociation of ²¹N was studied at the GSI LAND/R3B facility using a secondary beam produced by fragmenting an 490 MeV/nucleon ⁴⁰Ar beam. The ²¹N beam impinged on a 0.176 mm 4 thick natural lead target for the Coulomb Excitation measurements, while measurements on a 5.08 mm thick carbon target were used to estimate the nuclear breakup contributions. Reaction γ -rays were detected using the 162 NaI Crystal Ball array; neutrons from Coulomb breakup reactions were detected in the LAND neutron wall array, and the core ejectiles were deflected in the ALADIN magnet and detected and identified in a two-dimension position sensitive plastic scintillator ΔE wall.
- Analysis of the γ -ray data from the Crystal Ball indicated the ²¹N levels populated in the Coulomb excitation reactions neutron decay to ²⁰N*(0,850,1300) states. The γ -ray spectrum measured in coincidence with n+²⁰N shows a dominant peak with $E_{\gamma} \approx 850$ keV and a much smaller peak around $E_{\gamma} \approx 1300$ keV. The authors attribute most of the cross section to the 850 keV level, and they did not attempt to deconvolute the two observed peaks.
- The Coulomb dissociation cross section of ²¹N integrated over 0-20 MeV excitation energy for the total reaction was measured as $\sigma(^{21}N, \text{total})=75 \text{ mb } 4$; $\sigma(^{21}N, ^{20}N_{g.s.})=31 \text{ mb } 16$; $\sigma(^{21}N, ^{20}N*(850+1300 \text{ keV}))=47 \text{ mb } 8$; this requires a new math. The quoted uncertainties are statistical only since the systematic uncertainties from the identification of the incoming particles, from the single neutron detection efficiency of LAND, from the Crystal Ball efficiency and from the measurement of the areal density of the target were negligible compared to the statistical uncertainty.


²⁰N Levels

E(level)	Comments
0	
850	E(level): The authors stated that due to the limited resolution of the gamma calorimeter, the first and the second excited states could not be separated.
1300	E(level): The authors attribute most of the cross section to the 850-level, and they did not attempt to deconvolute the two observed peaks.
	γ ⁽²⁰ N)

Eγ	E_i (level)	E_f
850	850	0

208 Pb(21 N, 20 N γ) 2016Ro13

Level Scheme

 ${}^{20}_{7}\mathrm{N}_{13}$

²³²Th(p,²⁰N) 1988Wo09

1986Vi09,1988Wo09: Mass measurements of several neutron-rich light nuclei were carried out using an improved fitting technique for deducing nuclear mass values from measurements of time-of-flight (ToF) through the LANL/TOFI spectrometer; the ToF through the spectrometer depends on the mass-to-charge ratio and is independent of ion velocity.

The rare isotope species were produced by proton spallation reactions on a Th target. Typical flight times of 500 ns, with timing uncertainties near 180 ps yielded typical mass-to-charge resolutions of 3.6×10^{-4} from analysis of multiple runs that involved multiple charge states.

A ²⁰N mass excess of 21.78 MeV 12 was deduced in (1988Wo09), which compares with 21.64 MeV 26 which was previously deduced in (1986Vi09).

See also (1988ViZP,1993WoZZ).

²⁰N Levels

²³²Th(¹⁸O,²⁰N) 1969Ar13

1969Ar13: The ²⁰N nucleus was first identified in the transfer reaction products resulting from E(¹⁸O)=122 MeV bombardment of a 5 mg/cm² metalic ²³²Th foil at Dubna. The reaction products were momentum analyzed in a magnetic spectrometer and then focused on a ΔE -E Si detector telescope, which provided particle identification. See also (1970ArZY,2012Th01).

²⁰N Levels

²³²Th(²²Ne,²⁰N) 1977Ar06

1977Ar06: The transfer reaction products resulting from E(²²Ne)=172 MeV bombardment of a 2.5 mg/cm² metalic ²³²Th foil were measured at Dubna. The reaction products were momentum analyzed in a magnetic spectrometer positioned at θ =12° and 40° and then focused on a ΔE -E Si detector telescope, which provided particle identification.

²⁰N Levels

U(p,²⁰N) 1970Bu22,1986Pi09

1970Bu22: The particle stability of ²⁰N was confirmed at the Bevatron by analysis of the spallation products emitted in the 5.5 GeV proton bombardment of a ^{nat.}U target. The reaction products were detected using a set of Si detectors that were placed at θ =90° with respect to the incident beam. Two detectors, which provided ΔE and E signals were located at distances of 14.5 cm and 25.7 cm from the target. Particle identification was unambiguously determined by evaluating ΔE , E and the time-of-flight between the detectors.

1986Pi09: Spallation products from 800 MeV proton bombardment of a uranium target at LAMPF were detected using a series of detectors that provided ΔE , E and time-of-flight information. The products were analyzed to obtain A and Z identification, and mass excesses were deduced for a few carbon, nitrogen, oxygen, florine and neon isotopes.

The 20 N mass excess Δ M=21.9 MeV 57 was obtained.

²⁰N Levels

E(level)

REFERENCES FOR A=20

1969Ar13	A.G.Artukh, G.F.Gridnev, V.L.Mikheev, V.V.Volkov - Nucl.Phys. A137, 348(1969). New Isotopes ²² O, ²⁰ N and ¹⁸ C Produced in Transfer Reactionswith Heavy ions.
1970ArZY	CONF Leysin Vol1 P52, CERN 70-30.
1970Bu22	G.W.Butler, A.M.Poskanzer, D.A.Landis - Nucl.Instrum.Methods 89, 189 (1970).
19701212	Identification of Nuclear Fragments by a Combined Time-of-Flight, ΔE -E Technique.
1977Ar06	A.G.Artukh, G.F.Gridnev, V.L.Mikheev, V.V.Volkov - Nucl.Phys. A283, 350 (1977).
	Some Regularities in the Production of Isotopes with $4 \le Z \le 9$ in the Interaction of ²² Ne with ²³² Th.
1981St23	J.D.Stevenson, P.B.Price - Phys.Rev. C24, 2102 (1981).
	Production of the Neutron-Rich Nuclides ^{20}C and ^{27}F by Fragmentation of 213 MeV/nucleon ^{48}Ca .
1986Gi10	A.Gillibert, L.Bianchi, A.Cunsolo, B.Fernandez et al Phys.Lett. 176B, 317 (1986).
	Mass Measurement of Light Neutron-Rich Fragmentation Products.
1986Pi09	C.Pillai, L.W.Swenson, D.J.Vieira, G.W.Butler et al Radiat.Eff. 96, 41 (1986).
	Direct Mass Measurements in the Light Neutron-Rich Region using a Combined Energy and Time-of-Flight Technique.
1986Vi09	D.J.Vieira, J.M.Wouters, K.Vaziri, R.H.Kraus et al Phys.Rev.Lett. 57, 3253 (1986).
	Direct Mass Measurements of Neutron-Rich Light Nuclei near $N = 20$.
1987BaZI	D.Bazin, R.Anne, D.Guerreau, D.Guillemaud-Mueller et al Contrib.Proc. 5th Int.Conf.Nuclei Far from Stability,
	Rosseau Lake, Canada, K7 (1987). The Production Mechanisms of Nuclei Far from Stability at Ganil Energies and their Application to New β -Neutron Emit-
1987DuZU	<i>ters.</i> J.P.Dufour, R.Del Moral, F.Hubert, D.Jean et al Contrib.Proc. 5th Int.Conf.Nuclei Far from Stability, Rosseau Lake,
17072020	Canada, D1 (1987).
	Abstract for the 5th International Conference on Nuclei Far from Stability Spectroscopic Measurements with a New Method:
	The projectile-fragments isotopic separation.
1987Gi05	A.Gillibert, W.Mittig, L.Bianchi, A.Cunsolo et al Phys.Lett. 192B, 39 (1987).
10000 1/7	New Mass Measurements Far From Stability.
1988BaYZ	D.Bazin, R.Anne, D.Guerreau, D.Guillemaud-Mueller et al Proc. 5th Int.Conf.Nuclei Far from Stability, Rosseau
	Lake, Canada 1987, Ed., I.S.Towner, p.722 (1988). On the Production Mechanisms of Nuclei Far from Stability at GANIL Energies and Their Application to New β -Delayed
1988DuZT	Neutron Emitters. J.P.Dufour, R.Del Moral, F.Hubert, D.Jean et al Proc. 5th Int.Conf.Nuclei Far from Stability, Rosseau Lake, Canada
	1987, Ed., I.S.Towner, p.344 (1988).
10000 6 00	Spectroscopic Measurements with a New Method: The projectile-fragments isotopic separation.
1988Mu08	A.C.Mueller, D.Bazin, W.D.Schmidt-Ott, R.Anne et al Z.Phys. A330, 63 (1988).
10001 737	β -Delayed Neutron Emission of ¹⁵ B, ¹⁸ C, ¹⁹ , ²⁰ N, ³⁴ , ³⁵ Al and ³⁹ P.
1988MuZY	A.C.Mueller, D.Bazin, W.D.Schmidt-Ott, R.Anne et al Univ.Paris, Inst.Phys.Nucl., 1987 Ann.Rept., p.E7 (1988).
1988PoZS	New Light Beta-Delayed Neutron Emitters. N.A.F.M.Poppelier, J.H.de Vries, A.A.Wolters, P.W.M.Glaudemans - Proc. 5th Int.Conf.Nuclei Far from Stability,
17001 02.5	Rosseau Lake, Canada 1987, Ed., I.S.Towner, p.334 (1988).
	A Shell-Model Study of Light Exotic Nuclei.
1988ViZP	D.J.Vieira, J.M.Wouters, and the TOFI Collaboration - Proc. 5th Int.Conf.Nuclei Far from Stability, Rousseau Lake,
	Canada 1987, Ed., I.S.Towner, p.1 (1988).
	Direct Mass Measurements of Light Neutron-Rich Nuclei using Fast Recoil Spectrometers.
1988Wo09	J.M.Wouters, R.H.Kraus, Jr., D.J.Vieira et al Z.Phys. A331, 229 (1988).
10001 16	Direct Mass Measurements of the Neutron-Rich Light Isotopes of Lithium through Fluorine.
1989Le16	M.Lewitowicz, Yu.E.Penionzhkevich, A.G.Artukh, A.M.Kalinin et al Nucl.Phys. A496, 477 (1989).
10201 - 714	β -Delayed Neutron Emission of the Isotopes ${}^{20}C, {}^{40}, {}^{41}, {}^{42}P, {}^{43}, {}^{44}S.$
1989LeZM	M.Lewitowicz, Yu.E.Penionzhkevich, A.G.Artukh, A.M.Kalinin et al JINR-E7-89-72 (1989).
1080MuZT	β-Delayed Neutron Emission of the Isotopes ²⁰ C, ⁴⁰ , ⁴¹ , ⁴² P, ⁴³ , ⁴⁴ S. A.C.Mueller, D.Guillemaud-Mueller, J.C.Jacmart, E.Kashy et al IPNO-DRE-89-50 (1989).
1989MuZT	<i>Measurement and QRPA-Calculation of the</i> β - <i>Delayed Neutron Emission of</i> ²¹ , ²² <i>N and</i> ²³ , ²⁴ <i>O</i> .
1989MuZU	A.C.Mueller, M.Lewitowicz, R.Anne, A.G.Artukh et al Univ.Paris, Inst.Phys.Nucl., 1988 Ann.Rept., p.25 (1989).
170710120	Etude de l'Emission de Neutrons Retardes par des Isotopes Legers tresRiches en Neutrons.
1989Or03	N.A.Orr, W.N.Catford, L.K.Fifield, M.A.C.Hotchkis et al Nucl.Phys. A491, 443 (1989).
	Observations of ${}^{20}N$ via the Heavy-Ion Transfer Reaction ${}^{48}Ca({}^{18}O, {}^{20}N){}^{46}Sc.$
1989VoZM	V.V.Volkov - Treatise on Heavy-Ion Science, Vol8, p.101, Plenum Press, New York (1989).
	Production of Nuclei Far from Stability.
1990LeZR	M.Levitovich, Yu.E.Penionzhkevich, A.G.Artyukh, A.M.Kalinin et al Program and Thesis, Proc.40th
	Ann.Conf.Nucl.Spectrosc.Struct.At.Nuclei, Leningrad, p.47 (1990).
	Emission of Neutrons following β -Decay of Neutron-Rich Isotopes ${}^{20}C, {}^{40}, {}^{41}, {}^{42}P$ and ${}^{43}, {}^{44}S$.
1990Mu06	A.C.Mueller, D.Guillemaud-Mueller, J.C.Jacmart, E.Kashy et al Nucl.Phys. A513, 1 (1990).
	Measurement and QRPA Calculation of the β -Delayed Neutron Emission of ²¹ , ²² N and ²³ , ²⁴ O.
1990St08	A.Staudt, E.Bender, K.Muto, H.V.Klapdor-Kleingrothaus - At.Data Nucl.Data Tables 44, 79 (1990).
10010-01	Second-Generation Microscopic Predictions of Beta-Decay Half-Lives of Neutron-Rich Nuclei.
1991Or01	N.A.Orr, W.Mittig, L.K.Fifield, M.Lewitowicz et al Phys.Lett. 258B, 29 (1991).

REFERENCES FOR A=20(CONTINUED)

	New Mass Measurements of Neutron-Rich Nuclei Near $N = 20$.
1991Re02	P.L.Reeder, R.A.Warner, W.K.Hensley, D.J.Vieira, J.M.Wouters - Phys.Rev. C44, 1435 (1991).
19911002	Half-Lives and Delayed Neutron Emission Probabilities of Neutron-RichLi-Al Nuclides.
1991Vi04	A.C.C.Villari, W.Mittig, E.Plagnol, Y.Schutz et al Phys.Lett. 268B, 345 (1991).
1771 104	Measurements of Reaction Cross Sections for Neutron-Rich Exotic Nuclei by a New Direct Method.
1992Wa22	E.K.Warburton, B.A.Brown - Phys.Rev. C46, 923 (1992).
199211422	Effective Interactions for the Op1s0d Nuclear Shell-Model Space.
1993Pa14	S.K.Patra - Nucl.Phys. A559, 173 (1993).
17751 411	Relativistic Mean Field Study of Light Nuclei.
1993Po11	N.A.F.M.Poppelier, A.A.Wolters, P.W.M.Glaudemans - Z.Phys. A346, 11 (1993).
17751 011	Properties of Exotic Light Nuclei.
1993ReZX	P.L.Reeder, H.S.Miley, W.K.Hensley, R.A.Warner et al Proc.6th Intern.Conf.on Nuclei Far from Stability + 9th In-
	tern.Conf.on Atomic Masses and Fundamental Constants, Bernkastel-Kues, Germany, 19-24 July, 1992, R.Neugart,
	A.Wohr, Eds., p.623 (1993).
	Average Energy of Delayed Neutron Spectra: A = 9-20.
1993WoZZ	J.M.Wouters, X.L.Tu, X.G.Zhou, D.J.Vieira et al Proc.6th Intern.Conf.on Nuclei Far from Stability + 9th In-
	tern.Conf.on Atomic Masses and Fundamental Constants, Bernkastel-Kues, Germany, 19-24 July, 1992, R.Neugart,
	A.Wohr, Eds., p.25 (1993).
	The Weight of the Matter: Mass measurements of exotic neutron-rich nuclei.
1994KiZU	YK.Kim - Utah State Univ. Logan, Utah (1994).
	Measurement of the half-life, delayed neutron emission probability, delayed neutron average energy, and delayed charged
100501701	particle energy spectrum for very neutron-rich helium through sodium nuclides.
1995ChZV	L.Chulkov, G.Kraus, O.Bochkarev, P.Egelhof et al Proc.Intern.Conf on Exotic Nuclei and Atomic Masses, Arles,
	France, June 19-23, 1995, p.287 (1995). Interaction Cross Sections and Radii A = 20 Isobars.
1995ReZZ	P.L.Reeder, Y.Kim, W.K.Hensley, H.S.Miley et al Proc.Intern.Conf on Exotic Nuclei and Atomic Masses, Arles,
1995KeLL	France, June 19-23, 1995, p.587 (1995).
	Beta Decay Half-Lives and Delayed Particle Emission from TOFI Measurements.
1996Ch24	L.Chulkov, G.Kraus, O.Bochkarev, P.Egelhof et al Nucl.Phys. A603, 219 (1996).
	Interaction Cross Sections and Matter Radii of $A = 20$ Isobars.
1997Ba54	X.Bai, J.Hu - Phys.Rev. C56, 1410 (1997).
	Microscopic Study of the Ground State Properties of Light Nuclei.
1997Ki22	H.Kitagawa, N.Tajima, H.Sagawa - Z.Phys. A358, 381 (1997).
	Reaction Cross Sections and Radii of $A = 17$ and $A = 20$ Isobars.
1998Bo02	O.V.Bochkarev, L.V.Chulkov, P.Egelhof, H.Geissel et al Eur.Phys.J. A 1, 15 (1998).
	Evidence for a Neutron Skin in ^{20}N .
1999Kn04	O.M.Knyazkov, I.N.Kukhtina, S.A.Fayans - Fiz.Elem.Chastits At.Yadra 30, 870 (1999); Phys.Part.Nucl. 30, 369 (1999).
	Interaction Cross Sections and Structure of Light Exotic Nuclei.
2000Ch20	L.V.Chulkov, O.V.Bochkarev, D.Cortina-Gil, H.Geissel et al Nucl.Phys. A674, 330 (2000).
	Total Charge-Changing Cross Sections for Neutron-Rich Light Nuclei.
2000Oz01	A.Ozawa, O.Bochkarev, L.Chulkov, D.Cortina et al Nucl.Phys. A673, 411 (2000).
	Production Cross-Sections of Light Neutron-Rich Nuclei from ⁴⁰ Ar Fragmentation at About 1 GeV/nucleon.
2000Sa47	E.Sauvan, F.Carstoiu, N.A.Orr, J.C.Angelique et al Phys.Lett. 491B, 1 (2000).
	One-Neutron Removal Reactions on Neutron-Rich psd-Shell Nuclei.
2000Zh42	SG.Zhou, J.Meng, S.Yamaji, SC.Yang - Chin.Phys.Lett. 17, 717 (2000).
	Deformed Relativistic Hartree Theory in Coordinate Space and in Harmonic Oscillator Basis.
2001La06	G.A.Lalazissis, D.Vretenar, P.Ring - Phys.Rev. C63, 034305 (2001).
	Relativistic Hartree-Bogoliubov Description of Sizes and Shapes of $A = 20$ Isobars.
2001Oz03	A.Ozawa, O.Bochkarev, L.Chulkov, D.Cortina et al Nucl.Phys. A691, 599 (2001).
	Measurements of Interaction Cross Sections for Light Neutron-Rich Nuclei at Relativistic Energies and Determination of
20010-04	Effective Matter Radii.
2001Oz04	A.Özawa, T.Suzuki, I.Tanihata - Nucl.Phys. A693, 32 (2001).
2002Ka73	Nuclear Size and Related Topics. R.Kalpakchieva, Yu.E.Penionzhkevich - Fiz.Elem.Chastits At.Yadra 33, 1247 (2002); Physics of Part.and Nuclei 33, 629
2002 K a/5	(2002). (2002).
	(2002). Very Neutron-Rich Isotopes of Elements with $6 \le Z \le 10$.
2002Me12	J.Meng, SG.Zhou, I.Tanihata - Phys.Lett. 532B, 209 (2002).
2002111012	The Relativistic Continuum Hartree-Bogoliubov Description of Charge-Changing Cross Section for C,N,O and F Isotopes.
2003Bh06	A.Bhagwat, Y.K.Gambhir - Int.J.Mod.Phys. E12, 725 (2003).
20022100	Isospin Dependence of Ground State Properties of $A = 20$ Isobars.
2003Yo02	K.Yoneda, N.Aoi, H.Iwasaki, H.Sakurai et al Phys.Rev. C 67, 014316 (2003).
	β -decay half-lives and β -delayed neutron multiplicities of the neutron drip-line nuclei ¹⁹ B, ²² C, and ²³ N.
2004La24	G.A.Lalazissis, D.Vretenar, P.Ring - Eur.Phys.J. A 22, 37 (2004).
	Relativistic Hartree-Bogoliubov description of deformed light nuclei.

REFERENCES FOR A=20(CONTINUED)

2004Ne16	V.O.Nesterov - Ukr.J.Phys. 49, 225 (2004). Application of the quasiclassical approximation for the analysis of properties of light atomic nuclei with high excess of
2004Sa14	neutrons. E.Sauvan, F.Carstoiu, N.A.Orr, J.S.Winfield et al Phys.Rev. C 69, 044603 (2004). One-neutron removal reactions on light neutron-rich nuclei.
200612100	
2006Kh08	A.Khouaja, A.C.C.Villari, M.Benjelloun, D.Hirata et al Nucl.Phys. A780, 1 (2006). Reaction cross-section and reduced strong absorption radius measurements of neutron-rich nuclei in the vicinity of closed
	shells $N = 20$ and $N = 28$.
2006Ko02	V.B.Kopeliovich, A.M.Shunderuk, G.K.Matushko - Phys.Atomic Nuclei 69, 120 (2006). Mass Splittings of Nuclear Isotopes in Chiral Soliton Approach.
200601-77	
2006OkZZ	T.Okumura, T.Nakamura, Y.Satou, N.Fukuda et al RIKEN Accelerator Progress Report 2005, p.52 (2006). In-beam γ -ray spectroscopy of ¹⁹ N and ²⁰ N.
2006Su12	C.S.Sumithrarachchi, D.W.Anthony, P.A.Lofy, D.J.Morrissey - Phys.Rev. C 74, 024322 (2006).
20005012	β -delayed neutron decay of ¹⁹ N and ²⁰ N.
$2007 N_{\odot} 12$	M.Notani, H.Sakurai, N.Aoi, H.Iwasaki et al Phys.Rev. C 76, 044605 (2007).
2007No13	
20090-77	Projectile fragmentation reactions and production of nuclei near the neutron drip line.
2008ReZZ	P.L.Reeder - Priv.Com. (2008).
2008So09	D.Sohler, M.Stanoiu, Zs.Dombradi, F.Azaiez et al Phys.Rev. C 77, 044303 (2008).
	In-beam γ -ray spectroscopy of the neutron-rich nitrogen isotopes $^{19-22}N$.
2008SoZT	D.Sohler, M.Stanoiu, Zs.Dombradi, F.Azaiez et al ATOMKI 2008 Ann.Rept., p.21 (2008).
	In-beam γ -ray spectroscopy of the neutron-rich $^{20,22}N$.
2010El05	Z.Elekes, Zs.Vajta, Zs.Dombradi, T.Aiba et al Phys.Rev. C 82, 027305 (2010).
	Nuclear structure study of $^{19,21}N$ nuclei by γ spectroscopy.
2011Al11	G.D.Alkhazov, I.S.Novikov, Yu.M.Shabelski - Int.J.Mod.Phys. E20, 583 (2011).
	Nuclear radii of unstable nuclei.
2012Kw02	E.Kwan, D.J.Morrissey, D.A.Davies, M.Steiner et al Phys.Rev. C 86, 014612 (2012).
	Systematic studies of light neutron-rich nuclei produced via the fragmentation of ⁴⁰ Ar.
2012Th01	M.Thoennessen - At.Data Nucl.Data Tables 98, 43 (2012).
	Discovery of isotopes with $Z \le 10$.
2012Yu07	C.Yuan, T.Suzuki, T.Otsuka, F.Xu, N.Tsunoda - Phys.Rev. C 85, 064324 (2012).
	Shell-model study of boron, carbon, nitrogen, and oxygen isotopes with a monopole-based universal interaction.
2015Mo17	S.Momota, I.Tanihata, A.Ozawa, M.Notani et al Phys.Rev. C 92, 024608 (2015).
20131017	Velocity-dependent transverse momentum distribution of fragments produced from ${}^{40}Ar + {}^{9}Be$ at 95 MeV/nucleon.
2015Sh21	M.K.Sharma, R.N.Panda, M.K.Sharma, S.K.Patra - Chin.Phys.C 39, 064102 (2015).
201351121	Nuclear structure study of some bubble nuclei in the light mass region using mean field formalism.
2016Ma06	HL.Ma, BG.Dong, YL.Yan, HQ.Zhang et al Phys.Rev. C 93, 014317 (2016).
201010101000	
$2016D_{2}12$	<i>Pygmy and giant dipole resonances in the nitrogen isotopes.</i> M Boder – Phys Rev. C 02, 065907 (2016)
2016Ro13	M.Roder - Phys.Rev. C 93, 065807 (2016).
001 (71 05	Coulomb dissociation of ${}^{20,21}N$.
2016Zh05	YM.Zhang - J.Phys.(London) G43, 045104 (2016).
00174100	Gamow-Teller strength distributions for neutron-rich nitrogen, oxygenand fluorine isotopes.
2017Ah08	S.Ahmad, A.A.Usmani, Z.A.Khan - Phys.Rev. C 96, 064602 (2017).
001701 10	Matter radii of light proton-rich and neutron-rich nuclear isotopes.
2017Wa10	M.Wang, G.Audi, F.G.Kondev, W.J.Huang et al Chin.Phys.C 41, 030003 (2017).
	The AME2016 atomic mass evaluation (II). Tables, graphs and references.
2018At01	L.Atar, R3B Collaboration - Phys.Rev.Lett. 120, 052501 (2018).
	Quasifree (p,2p) Reactions on Oxygen Isotopes: Observation of Isospin Independence of the Reduced Single-Particle
00100:01	Strength.
2018Di01	P.Diaz Fernandez, for the R3B Collaboration - Phys.Rev. C 97, 024311 (2018).
	Quasifree (p,pN) scattering of light neutron-rich nuclei near $N=14$.
2018Fo04	H.T.Fortune - Phys.Rev. C 97, 034301 (2018).
	Mirror energy differences of $2s_{1/2}$, $1d_{5/2}$ and $1f_{7/2}$ states.
2018Fo17	H.T.Fortune - Phys.Rev. C 98, 024307 (2018).
	Matter radii of ^{16–23} N.
2018Go21	M.Gomez-Ramos, A.M.Moro - Phys.Lett. B 785, 511 (2018).
	Binding-energy independence of reduced spectroscopic strengths derived from (p,2p) and (p,pn) reactions with nitrogen
	and oxygen isotopes.