${}^{20}_{12}\text{Mg}_8-1$

Adopted Levels, Gammas

 $S(n)=22420 50; S(p)=2741 11; Q(\alpha)=-8934 21 2017Wa10$

The β^+ decay of 20 Mg populates 20 Na*(984) for 69.7 % 12 of the decays (1995Pi03). The remaining 30.3% of decays populate 20 Na levels that proton decay to states in 19 Ne.

The A=20 T=2 mass multiplet is analyzed via the IMME in (1974Ce05, 1974Ro17, 1976Mi01, 1976Tr03, 1979Mo02, 1981Ay01, 1984An18, 2007Ga38, 2012Fo13, 2014Ga20).

For theoretical analysis of the level properties see:

Shell Model: 1980Wi18, 1987Po01, 1990Br26, 1997Ot01, 1999Si13, 2012Po15, 2014To04, 2014Yu02, 2015La10, 2016Ba59. 2017Dr03;

Hartree-Fock-Bogoliubov: 1996Gr21, 1997Te19, 2000St04, 2001La06, 2008Sc02, 2012Li11, 2014Ga13;

Cluster model: 1996Ch04, 1998De43, 1999Sh32, 2002Gu10, 2005Ma98, 2006Ma17, 2007Ma54;

Mean Field: 1996Re03, 1996Re10, 1997Ot01, 1997Pa38, 1998La02, 2003Bh06, 2003Jh01, 2005Ch71, 2006Sa29, 2008Sc02, 2011Ro50;

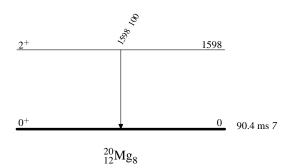
Other: 1978Gu10, 1984Ha14, 2001Pi11, 2002Mi14, 2002Ro32, 2002Sc48, 2006Zh19, 2007Wa30, 2010Zh45, 2011Eb04, 2011Gu03, 2011Ya01, 2013Bh09, 2013Eb02, 2013Ho01, 2013Sc14, 2015Si12, 2015Wu07, 2016Fo20, 2016Ja03, 2016Ro17, 2018Fo04.

²⁰Mg Levels

Cross Reference (XREF) Flags

		$ \begin{array}{c} \mathbf{B} & {}^{3}\mathrm{He} \\ \mathbf{C} & {}^{9}\mathrm{Be} \\ \mathbf{D} & {}^{9}\mathrm{Be} \end{array} $	²⁰ Mg,d) (²⁰ Ne, ²⁰ Mg) (²² Mg, ²⁰ Mgγ) (²⁴ Mg, ²⁰ Mg) (²⁸ Si, ²⁰ Mg)		
E(level)	J^{π}	T _{1/2}	XREF		Comments
0	0+	90.4 ms 7	ABCDEFGHI JF	KLMN	$%β^+p=30.3 \ 12 \ (1995Pi03)$ $T_{1/2}$: From weighted average of the following values. $T_{1/2}=85 \ ms \ 15 \ (1964Fl03) \ from \ Ni(^{20}Mg,^{20}Mg),$ $T_{1/2}=95 \ ms \ +80-50 \ (1979Mo02,1981Ay01) \ from$ $^{20}Ne(^{3}He,3n),$ $T_{1/2}=82 \ ms \ 4 \ (1992Go10) \ from \ Ni(^{36}Ar,^{20}Mg),$ $T_{1/2}=114 \ ms \ 17 \ (1992Ku24) \ from \ ^{9}Be(^{24}Mg,^{20}Mg),$ $T_{1/2}=95 \ ms \ 3 \ (1995Pi03) \ from \ Ni(^{24}Mg,^{20}Mg),$ $T_{1/2}=91.4 \ ms \ 10 \ (2016Lu13) \ from \ Si(p,^{20}Mg), \ and.$ $T_{1/2}=90.0 \ ms \ 6 \ (2017Su05) \ from \ ^{9}Be(^{28}Si,^{20}Mg).$ $T_{1/2}$: The results of 1964Fl03, 1979Mo02 and 1992Ku24 are found to have little impact on the average.
1598 10	2+		A C	N	T=2 J^{π} : From ²⁰ Mg angular distribution in ²⁰⁸ Pb(²⁰ Mg, ²⁰ Mg').
3.70×10 ³ 20	(2+,4+)	0.47 MeV 6	A		E(level): From $E_x=3.70^{+2}_{-20}$ MeV. J^{π} : From Shell Model expectations of $J^{\pi}=4^+_1$ and 2^+_2 states in this region.
5.37×10 ³ 2			A		

Adopted Levels, Gammas (continued)


$\gamma(^{20}Mg)$

E_i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_f^{π}
1598	2^{+}	1598 10	100	0	0^{+}

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

 ${}^{20}_{12}\text{Mg}_8-3$

²H(²⁰Mg,d) 2019Ra06

2019Ra06: XUNDL dataset compiled by TUNL, 2019.

Radioactive ²⁰Mg ions were produced in the bombardment of a SiC target by 480 MeV protons at TRIUMF; the ²⁰Mg nucleons were collected and reaccelerated to 8.5 MeV/nucleon using the ISAC-II Linac before finally impinging on a windowless solid deuterium target that was formed on a 4.5 μ m thick cryogrenically cooled silver target.

The incident ²⁰Mg ions were identified using an ionization chamber positioned upstream of the target, while scattered deutrons and residual beam ions were detected using position sensitive annular Δ E-E arrays that covered θ =30.1°-56.2° and θ =1.9°-6.1°, respectively. The ²⁰Mg excitation energies were deduced from kinematic analysis of the scattered deutrons. The observed spectrum was corrected for reaction yields associated with the Au backing target and with breakup into the four-body ¹⁸Ne+*p*+*p*+*d* phase space.

Evidence for four states is observed, including previously unreported groups at $E_x \approx 3.7$ MeV and 5.37 MeV. The angular distribution of ${}^{20}Mg(1.65 \text{ MeV})$ confirms $J^{\pi}=2^+$ and indicates the quadrupole deformation parameter $\beta_n=0.46$ 21. The analysis of the 3.7 MeV group is centered on discussion related to predicted $J^{\pi}=4^+_1$ and 2^+_2 states that are expected near this region. The angular distribution is not consistent with L=2 or L=4, which may suggest this group represents a $J^{\pi}=2^+_2+4^+_1$ doublet. The angular distribution of the $E_x \approx 5.37$ MeV group is not analyzed.

E(level)	\mathbf{J}^{π}	Γ (MeV)	Comments
0	0^{+}		
1.65×10 ³ 10	2+		E(level): From $E_x = 1.65^{+2}_{-10}$ MeV.
2			$\beta_n = 0.46 \ 21 \ (2019 \text{Ra06}).$
$3.70 \times 10^3 \ 20$	$(2^+, 4^+)$	0.47 MeV 6	E(level): From $E_x = 3.70^{+2}_{-20}$ MeV.
5.37×10 ³ 2			J^{π} : From Shell Model expectations of $J^{\pi}=4^+_1$ and 2^+_2 states in this region.

³He(²⁰Ne,²⁰Mg) 2012Wa15

- The authors measured protons from ${}^{20}Mg \beta$ -delayed proton decay with the aim of adding understanding to the known ${}^{20}Na^*(2647)$ resonance and its participation in the astrophysically important ¹⁹Ne(p,γ) reaction.
- A beam of ²⁰Mg ions, produced by ³He(²⁰Ne,²⁰Mg) reactions at the Texas A&M MARS facility, was implanted at the mid-thickness of a 45 μ m segmented Si strip detector (24×24 strips). The detector was sandwiched between two thicker Si detectors. Events within the strip detector were rejected if either of the thicker detectors was correlated in time. Hence the array was sensitive to the low-energy light particles from decay in the strip detector.
- The emphasis of the measurement was a search for evidence of ${}^{20}Na^*(2647)$ decay to ${}^{19}Ne_{g.s.}$ with $E_p=434$ keV, as a result the full dataset is not analyzed.

²⁰Mg Levels

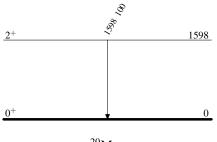
 $\frac{\mathrm{E(level)}}{\mathrm{0}}$

⁹Be(²²Mg,²⁰Mgγ) 2007Ga38

2007Ga38: Two-neutron removal from ²²Mg was studied.

A beam of ²²Mg, produced by fragmenting a ³⁶Ar beam on a thick ⁹Be target, impinged in a 188 mg/cm² ⁹Be foil at the S800 target position. The ²⁰Mg reaction products were detected in the focal plane of the spectrometer, while associated gamma-rays were detected using sixteen segmented HPGe detectors from the SeGa array that were positioned either at 37° or 90° with respect to the incident beam.

An E γ = 1598 *10* transition was observed, which is associated with the first 2⁺ state in ²⁰Mg. The Isobaric Mass Multiplet Equation (IMME) is discussed for the A=20 T=2 and Jpi=0⁺ and 2⁺ states.


		²⁰ Mg Levels
E(level)	J^{π}	Comments
0	0^{+}	
1598 10	2^{+}	T=2
		E(level): mirror state of first 2^+ state at 1674 in 20 O.
		γ ⁽²⁰ Mg)

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}
1598	2^{+}	1598 10	100	0	0^{+}

⁹Be(²²Mg,²⁰Mgγ) 2007Ga38

Level Scheme

Intensities: % photon branching from each level

 $^{20}_{12}Mg_8$

⁹Be(²⁴Mg,²⁰Mg) 1992Ku07,1992Ku24

1992Ku07,1992Ku24: States in ²⁰Na were studied by analyzing the β^+ decay of ²⁰Mg. A beam of ²⁰Mg ions was produced by fragmenting a 100 MeV/nucleon ²⁴Mg beam in a thick Be target. The ²⁰Mg beam was magnetically purified and stopped in the center of a stack of Si detectors. Each time a ²⁰Mg implantation was detected the beam was stopped for a 200 ms period so the decay could be measured.

Decay to various ²⁰Na states was observed with a lifetime $T_{1/2}=114$ ms *17*. 85% of detected events were connected with ²⁰Na decay, which implies $\beta\beta^+p=15\%$.

2015Gl03: A beam of ²⁰Mg ions was produced by fragmenting a 170 MeV/nucleon ²⁴Mg beam on a ⁹Be target at the A1900/NSCL fragment separator. In this study, the mass of the lowest T=2 state of ²⁰Na was measured in the $J\pi$ =0⁺ to 0⁺ superallowed β decay of ²⁰Mg. The beam was implanted in a 25 mm thick plastic scintillator that was surrounded by 16 elements of the SeGA germanium detector array. The β - γ coincident events were analyzed. Their results validate the IMME without the need for additional terms.

2017Wr02: XUNDL dataset compiled by TUNL, 2017.

A beam of ²⁰Mg ions was produced by fragmenting a ²⁴Mg beam on a ⁹Be target using the NSCL/A1900 fragment separator. The beam was implanted ≈ 10 mm deep into a 25 mm thick plastic scintillator that was surrounded by the SeGA germanium array. The SeGA was configured with two coaxial rings of eight γ -ray detectors. The β - γ coincidences were analyzed. Using the $\Gamma_{\gamma 0}/\Gamma$ =(80 *15*)% branching ratio, the β -p feeding of (0.0156 *38*)% was deduced for populating ¹⁹Ne(4034); the ²⁰Na levels feeding ¹⁹Ne*(4034) are not determined.

Finally, the authors suggest a new experimental configutation that would measure β -p- α coincidences and would have a sensitivity for improving on the $\Gamma_{\alpha}/\Gamma \leq 5 \times 10^{-5}$ limit with a 10% accuracy.

2018GI01: XUNDL dataset compiled by TUNL, 2018.

A cocktail beam including a ²⁰Mg ion component, produced at the MSU/A1900 fragment separator, was implanted into a 26.7 mm thick plastic scintillator that was surrounded by the SeGA array, which was configured as two rings of eight HPGe detectors. The β - γ coincidence events were analyzed with an exclusive focus on primary transitions from ²⁰Na*(2647).

E(level)	T _{1/2}		Comments
0	114 ms 17	T _{1/2} : From (1992Ku07).	

⁹Be(²⁸Si,²⁰Mg) 2016Li45,2017Su05

2016LI45,2017SU05: XUNDL dataset compiled by TUNL, 2017.

- A beam of $\approx 0.59^{-20}$ Mg/s was produced by fragmenting a 75 MeV/A ²⁸Si beam on a 1.5 mm thick ⁹Be target at the Heavy Ion Research Facility of Lanzhou. The beam was magnetically purified before being implanted into a telescope of position sensitive Si detectors that measured the decay energies. A set of five clover segmented HPGe surrounded the telescope to detect the β -delayed γ -ray emissions.
- The analysis was limited to events within the first 450 ms after implantation of a ²⁰Mg ion. About 10 peaks in the decay energy spectrum were easily attributed to β -delayed proton groups. The decay paths and branching ratios were interpreted using p+ γ coincidences for γ -rays from ¹⁹Ne*(238,275,1508,1536). The ²⁰Mg half-life, T=90.0 ms *6*, was deduced from analysis of the two strongest delayed proton groups E_p=(768,1589) keV.

²⁰Mg Levels

E(level) $T_{1/2}$

Comments

7

¹²C(²⁰Mg,²⁰Mg) 1996Ch24,1998Su07

1996Ch24,1997Su04,1998Su07: The ineraction cross section of A=20 nuclides on a ¹²C target was measured at E≈950 MeV/nucleon. The beams were produced by fragmenting 1050 MeV/nucleon ³⁶Ar and ⁴⁰Ar beams on thick ^{nat}Be targets. The interaction cross sections were determined by measuring the transmission of beam particles through the GSI/FRS fragment separator with a reaction target placed at the F2 midstage of the device.

A Glauber model analysis of the ²⁰Mg σ_{int} =1150 mb *16* cross section suggests $R_{r.m.s.}^{matter}$ =2.88 fm *4* or 2.91 fm *5*, depending on the theoretical assumptions (1998Su07). The charge changing cross sections to Na, Ne, F, O, N and C isotopes are found as σ =5 mb 8, 123 mb 9, 29 mb 9, 127 mb 7, 46 mb 5 and 146 mb 7, respectively (1996Ch24). The overall analysis suggests $R_{r.m.s.}^{matter}$ =2.90 fm 6 with a thin proton skin with thickness=0.50 fm 28.

See theoretical analysis in (1997Ki22,1997Kn04,1997Su04,2001Oz04,2011A111, 2017Ah08,2019Ra09).

²⁰Mg Levels

E(level)	Comments
0	A Glauber model analysis of interaction cross sections for 950 MeV/nucleon A=20 isotopes suggests ²⁰ Mg has a

A Glauber model analysis of interaction cross sections for 950 MeV/nucleon A=20 isotopes suggests ²⁰Mg has a $R_{r.m.s.}^{matter}$ =2.90 fm 6 and a thin proton skin with thickness=0.50 fm 28.

²⁰Ne(³He,3n) 1979Mo02,1981Ay01

1979Mo02,1980MOZM,1981Ay01: Decay of the ²⁰Mg nucleus was studied by producing ²⁰Mg nuclei using the the ²⁰Ne(³He,3n) reaction. Decay from ²⁰Mg to ²⁰Na*(6570), followed by proton decay to ¹⁹Ne*(0, 238) was observed and used to determine the mass excess of the first T=2 member of the A=20 multiplet in ²⁰Na. The corresponding β^+ delayed proton groups were found to have energies of E_p=4.16 MeV 5 and 3.95 MeV 6. Coefficients of the IMME were analyzed.

The decay half-life $T_{1/2}=95 \text{ ms} + 80-50 \text{ was}$ deduced.

E(level)	T _{1/2}
0	95 ms +80-50

²⁴Mg(α,⁸He) 1974Ro17

- 1974Ro17: The mass of ²⁰Mg was measured by characterizing the ²⁴Mg(α ,⁸He) reaction at E(α)=156 MeV. The ⁸He ejectiles were momentum analyzed using a low dispersion double focusing magnetic analyzer consisting of a dipole followed by a quadrupole doublet. At $\theta_{lab}=2^{\circ}$ ⁸He corresponding to ²⁰Mg production were observed with $\sigma \approx 7$ nb/sr. The mass excess deduced was 17.74 MeV 21, with most uncertainty attributed to target thickness and other systematic issues. An IMME comparison of the A=20 T=2 (isospin) multiplet is given. Measurements providing improved ⁸He mass values, such as (1974Ce05), had an impact on the ²⁰Mg mass and improved the IMME comparison.
- 1976Tr03: The mass of ²⁰Mg was measured at $E(\alpha)=126.9$ MeV using an ENGE spectrometer a $\theta_{lab}=5^{\circ}$. The ⁸He recoils were observed with $\sigma \approx 3$ nb/sr. The mass excess 17.57 MeV *3* was deduced, and A=20 T=2 multiplet states are compared.

²⁰Mg Levels

E(level)

0

²⁷Al(²⁰Ne,²⁰Mg) 1964Ma44

1964MA44: Al, Ni and Cu targets were bombarded with E=80 to 200 MeV ²⁰Ne beams with the aim of producing ²⁰Na activity, via p-n exchange reactions. The decay radiations and associated lifetimes of the produced activities were measured and analyzed. In the case of 20 Ne of the 27 Al target, the apparent lifetimes the strongest 20 Na radiations was observed to be longer than expected; the author assumed that 20 Mg was being formed, which then decayed to 20 Na and caused the apparent increase in 20 Na lifetime. The lifetime $T_{1/2}=620$ ms 60 was deduced from the analysis. This compares very poorly with the present value of T \approx 90 ms.

A private communication with (1974Ro17) indicates the evidence for ²⁰Mg production was traced to a spurious instrumental effect.

E(level)	T _{1/2}
0?	620 ms 60

Si(p,²⁰Mg) 2014Ga20

2014Ga20: The mass of ²⁰Mg was measured using a Penning trap. Beams of ^{20,21}Mg ions were produced via 480 MeV proton spallation on a SiC target and separately transported to the TRIUMF/TITAN system. The cyclotron frequency was determined relative to a ²³Na reference. The mass excess of 17477.7 keV *18* was deduced, which compares relatively poorly with the value given in AME2012 (17559 keV 27). In addition, the IMME parameters were discussed.

2016Lu13: XUNDL dataset compiled by TUNL, 2017.

- A pulsed beam of 30 keV 20 Mg ions was produced at the CERN/ISOLDE facility using standard spallation techniques. The beam was magnetically purified, for mass separation, and implanted in a 24.5 μ g/cm² carbon foil. The foil was surrounded by an array of four position sensitive Δ E-E Si detector telescopes that were placed at $\theta \approx \pm 45^{\circ}$ and $\pm 135^{\circ}$ in the horizontal plane. The 5 cm \times 5 cm Δ E detectors each covered about 5.2% of 4π . A thick position sensitive E detector covered the region below the implantation foil while the target apparatus occupied the space above. In addition, a set of four clover segmented HPGe detectors were positioned downstream of the target, to measure decay γ rays.
- The decay paths and branching intensities are determined from analysis of the p+ γ coincidences for proton decays to 19 Ne*(0,235,275,1508,1536). The 20 Na energies are deduced using the measured γ ray and proton energies and the known S_p=2190.1 keV *11*. The 20 Mg half-life, T=91.4 ms *10*, was deduced from analysis of the delayed proton events.

E(level)	T _{1/2}	Comments
0	91.4 ms 10	The cyclotron frequency was determined relative to a 23 Na reference, and the mass excess of 17477.7 keV <i>18</i> was deduced.
		$T_{1/2}$: From (2016Lu13).

Ni(²⁰Ne,²⁰Mg) 1964Fl03

1964FL03: An $E_p=5$ MeV β^+ delayed proton emitter was observed following $E(^{20}Ne)=140$ MeV bombardment of a 10 μ m ^{nat}Ni target. Analysis of the $T_{1/2}=85$ ms *15* lifetime suggested this could be the first observation of ^{20}Mg . The nuclei ^{17}Ne and $^{20,21}Mg$ were listed as potential candidates of nuclei that could produce such radiations; the observed lifetime is in good acreement with the presently accepted ^{20}Mg value.

E(level)	T _{1/2}
0	85 ms 15

Ni(²⁴Mg,²⁰Mg) 1995Pi03

1995Pi05: States in ²⁰Na were studied by analyzing the β^+ decay of ²⁰Mg. A beam of ²⁰Mg ions was produced by fragmenting a 95 MeV/nucleon ²⁴Mg beam in ^{nat.}Ni target. The ²⁰Mg beam was purified in the LISE3 spectrometer and implanted near the middle of a 300 μ m thick Si Strip detector. The strip detector was surrounded by two 500 μ m segmented Si β -ray detectors and three 70% HPGe detectors. Hence the delayed proton energy in the implantation detector could be correlated with β particles and delayed γ -rays. The coincidence data were analyzed to deduce the decay branches. The $\%\beta^+p=30.3 \% 12$ was deduced. The half-life of ²⁰Mg was determined by analyzing the rate of two delayed protons, $E_p=802$ and 1675 keV. $T_{1/2}=95$ ms 3 is deduced and compared with prior results; the measurement (1992Go10) is suggested as having systematic errors.

²⁰Mg Levels

 $\frac{\text{E(level)}}{0} = \frac{\text{T}_{1/2}}{95 \text{ ms } 3} = \frac{\beta^2}{\beta^2} \frac{1}{\beta^2} \frac{$

Comments

Ni(³⁶Ar,²⁰Mg) 1992Go10

1992Go10: The decay of ²⁰Mg was measured in a study aimed at resolving details of the ²⁰Na*(2645) state, which would decay by \approx 450 keV proton emission. The ²⁰Mg ions were produced by fragmenting an 80 MeV/nucleon ³⁶Ar beam on a ^{nat}Ni target; the beam was then magnetically purified and implanted in a 50 μ m Si detector that was part of a Si detector telescope constructed to be sensitive to low-energy β -delayed proton decays. Implantation of a ²⁰Mg ion in the telescope resulted in the beam being halted so the decay could be studied. By analyzing the rate of β -delayed α particles from the ²⁰Na daughter, one finds the β -delayed proton rate of (100-74(7))=26 % 7, by comparing with the total number of implanted ²⁰Mg.

The 20 Mg lifetime was measured as T_{1/2}=82 ms 4.

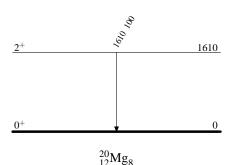
E(level)	T _{1/2}
0	82 ms 4

²⁰⁸Pb(²⁰Mg,²⁰Mg') 2008Iw04

2008Iw04: The Coulomb excitation of ²⁰Mg was studied. A beam of 58 MeV/nucleon ²⁰Mg ions, produced by fragmentation of a 135 MeV/nucleon ²⁴Mg beam on a Ni target, impinged on a 226 μ g/cm² target. A set of PPACs determined the incident angle and event-by-event position on target, while the scattered ²⁰Mg ions were detected in an array of position sensitive Δ E-E Si strip detectors. An array of 68 NaI(Tl) scintillators surrounded the target.

A de-excitation γ -ray transition corresponding to $E_{\gamma}=1.61$ MeV 6 was observed in the Doppler corrected NaI energy spectrum. The angular distribution of associated ²⁰Mg scattered particles is consistent with *l*=2. There was no evidence of any other transitions populated in the inelastic scattering. The cross sections were measured on both Pb and ^{nat}C targets so the nuclear and Coulomb components could be analyzed.

²⁰Mg Levels


E(level)	\mathbf{J}^{π}	L	σ (mb)	Comments
0 1610 <i>60</i>	$\frac{0^{+}}{2^{+}}$	2	105 10	B(E2) \uparrow =0.0177 32 J ^{π} : From $\sigma(\theta)$ distribution and DWBA analysis.
				$\beta_2=0.44$ 4. Proton matrix element (M _p)=13.3 fm ² 12; M _p /M _n =2.51 25. σ (mb): The cross sections on Pb and ^{nat} C targets were measured as σ (Pb)=105 mb 10 and σ (^{nat} C)=20 mb 2.

$\gamma(^{20}{\rm Mg})$

E_i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_f^{π}
1610	2^{+}	1610 60	100	0	0^+

²⁰⁸Pb(²⁰Mg,²⁰Mg') 2008Iw04

Level Scheme
Intensities: % photon branching from each level

REFERENCES FOR A=20

1964Fl03	G.N.Flerov, V.A.Karnaukhov, G.M.Ter-Akopyan, L.A.Petrov, V.G.Subbotin - Nucl.Phys. 60, 129(1964). The Proton Decay of Radioactive Nuclei.
1964Ma44	R.D.Macfarlane, A.Siivola - Nucl.Phys. 59, 168(1964).
170111411	Isobaric Spin Non-Conservation in the Delayed Alpha Decay of Na^{20} .
1974Ce05	J.Cerny, N.A.Jelley, D.L.Hendrie, C.F.Maguire et al Phys.Rev. C10, 2654 (1974).
	A More Accurate Mass for ⁸ He.
1974Ro17	R.G.H.Robertson, S.Martin, W.R.Falk, D.Ingham, A.Djaloeis - Phys.Rev.Lett. 32, 1207 (1974).
	Highly Proton-Rich $T(z) = -2$ Nuclides: ⁸ C and ²⁰ Mg.
1976Mi01	G.F.Millington, R.M.Hutcheon, J.R.Leslie, W.McLatchie - Phys.Rev. C13, 879 (1976).
	Energy of the Lowest $T=2$ State in ^{20}F .
1976Tr03	R.E.Tribble, J.D.Cossairt, R.A.Kenefick - Phys.Lett. 61B, 353 (1976).
	The Mass of ${}^{20}Mg$: A Test of the Isobaric Multiplet Mass Equation in $A = 20$.
1978Gu10	K.Gul - J.Phys.Soc.Jpn. 44, 353 (1978).
	Mass Excesses of Some Proton Rich Light Nuclides.
1979Mo02	D.M.Moltz, J.Aysto, M.D.Cable, R.D.von Dincklage et al Phys.Rev.Lett. 42, 43 (1979).
	Completion of the Mass-20 Isospin Quintet by Employing a Helium-Jet-Fed on-Line Mass Separator.
1980MoZM	D.M.Moltz - Diss.Abst.Int. 41B, 192 (1980).
100011710	Development of the Helium-Jet Fed On-Line Mass Separator Rama and itsApplication to Studies of $T(Z) = -2$ Nuclei.
1980Wi18	B.H.Wildenthal, W.Chung - Phys.Rev. C22, 2260 (1980).
1081 4-01	Collapse of the Conventional Shell-model Ordering in the Very-Neutron-Rich Isotopes of Na and Mg.
1981Ay01	J.Aysto, M.D.Cable, R.F.Parry, J.M.Wouters et al Phys.Rev. C23, 879 (1981). Decays of the $T(z) = -2$ Nuclei ${}^{20}Mg$, ${}^{24}Si$, and ${}^{36}Ca$.
1984An18	M.S.Antony, A.Pape - Phys.Rev. C30, 1286 (1984).
1704AII10	Isobaric Mass Systematics for $A \le 60$.
1984Ha14	P.Halse, J.P.Elliott, J.A.Evans - Nucl.Phys. A417, 301 (1984).
170 11111	An Application of the Interacting Boson Model to the First Half of the sd Shell (1). Even-Even Nuclei.
1987Po01	A.Poves, J.Retamosa - Phys.Lett. 184B, 311 (1987).
	The Onset of Deformation at the $N = 20$ Neutron Shell Closure far from Stability.
1990Br26	B.A.Brown - Phys.Rev.Lett. 65, 2753 (1990).
	Isospin-Forbidden β -Delayed Proton Emission.
1992Go10	J.Gorres, M.Wiescher, K.Scheller, D.J.Morrissey et al Phys.Rev. C46, R833 (1992).
	β -Delayed Proton Decay of ²⁰ Mg and Its Astrophysical Implications.
1992Ku07	S.Kubono, N.Ikeda, Y.Funatsu, M.H.Tanaka et al Phys.Rev. C46, 361 (1992).
100000	Decay Property of ²⁰ Na for the Onset Mechanism of the Rapid-ProtonProcess.
1992Ku24	S.Kubono, Y.Funatsu, N.Ikekda, M.H.Tanaka et al Nucl.Instrum.Methods Phys.Res. B70, 583 (1992).
1995Pi03	Proton Decay Measurement with RIPS for Astrophysical Interest. A.Piechaczek, M.F.Mohar, R.Anne, V.Borrel et al Nucl.Phys. A584, 509 (1995).
1995105	Beta-Decay of ²⁰ Mg.
1995Pi05	R.Piepenbring, K.V.Protasov, B.Silvestre-Brac - Nucl.Phys. A586, 396 (1995).
17751105	Multiphonon States in Even-Even Spherical Nuclei I. Calculation of the Overlap Matrix.
1996Ch04	L.Chulkov, E.Roeckl, G.Kraus - Z.Phys. A353, 351 (1996).
	Analysis of Coulomb Displacement Energies and Its Relation to the Proton Halo Structure of Nuclei.
1996Ch24	L.Chulkov, G.Kraus, O.Bochkarev, P.Egelhof et al Nucl.Phys. A603, 219 (1996).
	Interaction Cross Sections and Matter Radii of $A = 20$ Isobars.
1996Gr21	F.Grummer, B.Q.Chen, Z.Y.Ma, S.Krewald - Phys.Lett. 387B, 673 (1996).
100.00	Bulk Properties of Light Deformed Nuclei Derived from a Medium-Modified Meson-Exchange Interaction.
1996Re03	Z.Ren, W.Mittig, B.Chen, Z.Ma, G.Auger - Z.Phys. A353, 363 (1996).
100 (7) 10	Relativistic Mean-Field Study of Light Proton-Rich Nuclei 18 Ne, 20 Mg and 22 Si.
1996Re10	Z.Ren, Z.Y.Zhu, Y.H.Cai, G.Xu - Phys.Lett. 380B, 241 (1996).
1997Ki22	Relativistic Mean-Field Study of Mg Isotopes.
1997 122	H.Kitagawa, N.Tajima, H.Sagawa - Z.Phys. A358, 381 (1997). Reaction Cross Sections and Radii of A = 17 and A = 20 Isobars.
1997Kn04	P.E.Knowles, G.A.Beer, G.R.Mason, T.A.Porcelli et al Phys.Rev. A56, 1970 (1997).
1997111101	Muon Catalyzed Fusion in 3-K Solid Deuterium.
1997Ot01	T.Otsuka - Nucl.Phys. A616, 406c (1997).
	Mean-Field and Shell-Model Approaches to Deformation of Unstable Nucli.
1997Pa38	S.K.Patra, R.K.Gupta, W.Greiner - Int.J.Mod.Phys. E6, 641 (1997).
	Relativistic Mean-Field Theory and the Structural Properties of Ne, Mg, Si, S, Ar and Ca Nuclei from Proton- to Neutron-Drip
1997Su04	<i>Lines.</i> T.Suzuki, H.Geissel, O.Bochkarev, L.Chulkov et al Nucl.Phys. A616, 286c (1997).
17775404	Matter Radii of Na and Mg Isotopes.
1997Te19	J.Terasaki, H.Flocard, P.H.Heenen, P.Bonche - Acta Phys.Hung.N.S. 6, 201 (1997).
	Deformation of Nuclei Close to the Two-Neutron Drip Line in Mg Region.

REFERENCES FOR A=20(CONTINUED)

1998De43	P.Descouvement - Phys.Lett. 437B, 7 (1998).
1998La02	<i>Microscopic Three-Cluster Study of</i> ²⁰ <i>O</i> , ²⁰ <i>Mg and</i> ¹⁹ <i>N</i> , ¹⁹ <i>Mg Exotic Nuclei</i> . G.A.Lalazissis, A.R.Farhan, M.M.Sharma - Nucl.Phys. A628, 221 (1998).
177702402	Light Nuclei Near Neutron and Proton Drip Lines in Relativistic Mean-Field Theory.
1998Su07	T.Suzuki, H.Geissel, O.Bochkarev, L.Chulkov et al Nucl.Phys. A630, 661 (1998).
1999Sh32	Nuclear Radii of Na and Mg Isotopes. R.Sherr, H.T.Fortune, B.A.Brown - Eur.Phys.J. A 5, 371 (1999).
	No Tetra-Proton Cluster in ^{20}Mg .
1999Si13	T.Siiskonen, P.O.Lipas, J.Rikovska - Phys.Rev. C60, 034312 (1999).
2000St04	Shell-Model and Hartree-Fock Calculations for Even-Mass O, Ne, and MgNuclei. M.V.Stoitsov, J.Dobaczewski, P.Ring, S.Pittel - Phys.Rev. C61, 034311 (2000).
20005104	Quadrupole Deformations of Neutron-Drip-Line Nuclei Studied within the Skyrme Hartree-Fock-Bogoliubov Approach.
2001La06	G.A.Lalazissis, D.Vretenar, P.Ring - Phys.Rev. C63, 034305 (2001).
2001Oz04	<i>Relativistic Hartree-Bogoliubov Description of Sizes and Shapes of A = 20 Isobars.</i> A.Ozawa, T.Suzuki, I.Tanihata - Nucl.Phys. A693, 32 (2001).
20010204	Nuclear Size and Related Topics.
2001Pi11	S.Pittel, M.V.Stoitsov - Yad.Fiz. 64, No 6, 1130 (2001); Phys.Atomic Nuclei 64, 1055 (2001).
2002Cu10	An Improved Single-Particle Basis for Nuclear Structure Studies Far from Stability.
2002Gu10	R.K.Gupta, S.Kumar, M.Balasubramaniam, G.Munzenberg, W.Scheid - J.Phys.(London) G28, 699 (2002). <i>The Cluster-Core Model for the Halo Structure of Light Nuclei at the Drip Lines.</i>
2002Mi14	P.Mitra, G.Gangopadhyay, B.Malakar - Phys.Rev. C65, 034329 (2002).
20020 22	Deformation Constrained Calculation for Light Nuclei in Generalized Hybrid Derivative Coupling Model.
2002Ro32	R.Rodriguez-Guzman, J.L.Egido, L.M.Robledo - Nucl.Phys. A709, 201 (2002). Correlations Beyond the Mean Field in Magnesium Isotopes: Angular momentum projection and configuration mixing.
2002Sc48	S.Schramm - Phys.Rev. C 66, 064310 (2002).
200201.07	Deformed nuclei in a chiral model.
2003Bh06	A.Bhagwat, Y.K.Gambhir - Int.J.Mod.Phys. E12, 725 (2003). Isospin Dependence of Ground State Properties of A = 20 Isobars.
2003Jh01	T.K.Jha, M.S.Mehta, S.K.Patra, B.K.Raj, R.K.Gupta - Pramana 61, 517 (2003).
	A relativistic mean-field study of magic numbers in light nuclei fromneutron to proton drip-lines.
2005Ch71	JG.Chen, XZ.Cai, TT.Wang, YuG.Ma et al Chinese Physics 14, 2444 (2005). Investigation on the deformation of Ne and Mg isotope chains within relativistic mean-field model.
2005Ma98	H.Masui, T.Myo, K.Kato, K.Ikeda - Eur.Phys.J. A 25, Supplement 1, 505 (2005).
	Study of drip-line nuclei with a core plus multi-valence nucleon model.
2006Ma17	H.Masui, K.Kato, K.Ikeda - Phys.Rev. C 73, 034318 (2006).
2006Sa29	Study of oxygen isotopes and N=8 isotones with an extended cluster-orbital shell model. P.Saviankou, F.Grummer, E.Epelbaum, S.Krewald, UG.Meissner - Phys.Atomic Nuclei 69, 1119 (2006).
	Effective Field Theory Approach to Nuclear Matter.
2006Zh19	Q.Zhi, Z.Ren - Phys.Lett. B 638, 166 (2006).
2007Ga38	Systematic calculations on the ground state properties of Mg isotopesby the macroscopic-microscopic model. A.Gade, P.Adrich, D.Bazin, M.D.Bowen et al Phys.Rev. C 76, 024317 (2007).
	Spectroscopy of 20 Mg: The isobaric mass multiplet equation for the 2^+ states of the $A = 20$, $T = 2$ quintet and distant mirror
2007Ma54	nuclei. H.Masui, K.Kato, K.Ikdea - Nucl.Phys. A790, 303c (2007).
2007111034	Study of weakly bound nuclei with an extended cluster-orbital shell model.
2007Wa30	Z.Wang, Z.Ren - Nucl.Phys. A794, 47 (2007).
2008Iw04	Study of the isotonic shifts of charge form factor for the light proton-rich nuclei. N.Iwasa, T.Motobayashi, S.Bishop, Z.Elekes et al Phys.Rev. C 78, 024306 (2008); Publishers's Note Phys.Rev. C 78,
20001004	029902 (2008).
	Large proton contribution to the 2^+ excitation in ^{20}Mg studied by intermediate energy inelastic scattering.
2008Sc02	N.Schunck, J.L.Egido - Phys.Rev. C 77, 011301 (2008). Continuum and symmetry-conserving effects in drip-line nuclei using finite-range forces.
2010Zh45	P.W.Zhao, Z.P.Li, J.M.Yao, J.Meng - Phys.Rev. C 82, 054319 (2010).
	New parametrization for the nuclear covariant energy density functional with a point-coupling interaction.
2011Al11	G.D.Alkhazov, I.S.Novikov, Yu.M.Shabelski - Int.J.Mod.Phys. E20, 583 (2011). Nuclear radii of unstable nuclei.
2011Eb04	S.Ebata, T.Nakatsukasa, K.Yabana - J.Phys.:Conf.Ser. 312, 092023 (2011).
	Linear response calculation using the canonical-basis TDHFB with a schematic pairing functional.
2011Gu03	YQ.Guo, J.Song - Chin.Phys.C 35, 158 (2011).
2011Ro50	Quantitative conditions for the formation of p-wave neutron halos. X.Roca-Maza, X.Vinas, M.Centelles, P.Ring, P.Schuck - Phys.Rev. C 84, 054309 (2011); Erratum Phys.Rev. C 93,
	069905 (2016).
	Relativistic mean-field interaction with density-dependent meson-nucleon vertices based on microscopical calculations.

REFERENCES FOR A=20(CONTINUED)

2011Ya01	J.M.Yao, H.Mei, H.Chen, J.Meng et al Phys.Rev. C 83, 014308 (2011). Configuration mixing of angular-momentum-projected triaxial relativistic mean-field wave functions. II. Microscopic anal-
2012Fo13	ysis of low-lying states in magnesium isotopes. H.T.Fortune, R.Sherr, B.A.Brown - Phys.Rev. C 85, 054304 (2012).
2012Li11	Lowest 2^+ , $T=2$ states in ${}^{20}Mg$ and ${}^{20}F$. L.Li, J.Meng, P.Ring, EG.Zhao, SG.Zhou - Phys.Rev. C 85, 024312 (2012).
2012Po15	Deformed relativistic Hartree-Bogoliubov theory in continuum. A.Poves, E.Caurier, F.Nowacki, K.Sieja - Phys.Scr. T150, 014030 (2012).
2012Wa15	<i>The nuclear shell model toward the drip lines.</i> J.P.Wallace, P.J.Woods, G.Lotay, A.Alharbi et al Phys.Lett. B 712, 59 (2012). β -Delayed proton-decay study of ²⁰ Mg and its implications for the ¹⁹ Ne(p, γ) ²⁰ Na breakout reaction in X-ray bursts.
2013Bh09	M.Bhuyan - Int.J.Mod.Phys. E22, 1350068 (2013). The oxygen core inside the magnesium isotopes.
2013Eb02	A.A.Ebrahim - Phys.Atomic Nuclei 76, 435 (2013). Folding Model Analysis of Pion Elastic and Inelastic Scattering from ⁶ Li and ¹² C.
2013Ho01	J.D.Holt, J.Menendez, A.Schwenk - Phys.Rev.Lett. 110, 022502 (2013). Three-Body Forces and Proton-Rich Nuclei.
2013Sc14	A.Schwenk - J.Phys.:Conf.Ser. 445, 012009 (2013). Three-nucleon forces and nuclei at the extremes.
2014Ga13	M.K.Gaidarov, P.Sarriguren, A.N.Antonov, E.Moya de Guerra - Phys.Rev. C 89, 064301 (2014). Ground-state properties and symmetry energy of neutron-rich and neutron-deficient Mg isotopes.
2014Ga20	A.T.Gallant, M.Brodeur, C.Andreoiu, A.Bader et al Phys.Rev.Lett. 113, 082501 (2014). Breakdown of the Isobaric Multiplet Mass Equation for the A=20 and 21Multiplets.
2014To04	G.K.Tobin, M.C.Ferriss, K.D.Launey, T.Dytrych et al Phys.Rev. C 89, 034312 (2014). Symplectic no-core shell-model approach to intermediate-mass nuclei.
2014Yu02	C.Yuan, C.Qi, F.Xu, T.Suzuki, T.Otsuka - Phys.Rev. C 89, 044327 (2014). Mirror energy difference and the structure of loosely bound proton-rich nuclei around $A = 20$.
2015Gl03	B.E.Glassman, D.Perez-Loureiro, C.Wrede, J.Allen et al Phys.Rev. C 92, 042501 (2015). <i>Revalidation of the isobaric multiplet mass equation for the A=20 quintet.</i>
2015La10	K.D.Launey, J.P.Draayer, T.Dytrych, GH.Sun, SH.Dong - Int.J.Mod.Phys. E24, 1530005 (2015). Approximate symmetries in atomic nuclei from a large-scale shell-model perspective.
2015Si12	A.Signoracci, T.Duguet, G.Hagen, G.R.Jansen - Phys.Rev. C 91, 064320 (2015). <i>Ab initio Bogoliubov coupled cluster theory for open-shell nuclei</i> .
2015Wu07	XY.Wu, XR.Zhou - Phys.Rev. C 92, 054321 (2015). <i>Global performance of multireference density functional theory for low-lying states in sd-shell nuclei</i> .
2016Ba59	HB.Bai, ZH.Zhang, XW.Li - Chin.Phys.C 40, 114101 (2016). Investigation of the Mg isotopes using the shell-model-like approach in relativistic mean field theory.
2016Fo20	H.T.Fortune - Phys.Rev. C 94, 044305 (2016). <i>Masses of</i> ^{17,18,19,20} <i>Mg</i> .
2016Ja03	 G.R.Jansen, M.D.Schuster, A.Signoracci, G.Hagen, P.Navratil - Phys.Rev. C 94, 011301 (2016). Open sd-shell nuclei from first principles. C.Lin, X.Xu, J.Wang, L.Sun et al Yuan.Wul.Ping. 33, 160 (2016); Nucl.Phys.Rev. 33, 160 (2016).
2016Li45 2016Lu13	Proton and Two-proton Emissions from Proton-rich Nuclei with $10 \le Z \le 20$. M.V.Lund, and the IDS Collaboration - Eur.Phys.J. A 52, 304 (2016).
2016Ro17	Beta-delayed proton emission from ^{20}Mg . T.R.Rodriguez - Eur.Phys.J. A 52, 190 (2016).
2017Ah08	Precise description of nuclear spectra with Gogny energy density functional methods. S.Ahmad, A.A.Usmani, Z.A.Khan - Phys.Rev. C 96, 064602 (2017).
2017Dr03	Matter radii of light proton-rich and neutron-rich nuclear isotopes. A.C.Dreyfuss, K.D.Launey, T.Dytrych, J.P.Draayer et al Phys.Rev. C 95, 044312 (2017).
2017Su05	Understanding emergent collectivity and clustering in nuclei from a symmetry-based no-core shell-model perspective. L.J.Sun, X.X.Xu, D.Q.Fang, C.J.Lin et al Phys.Rev. C 95, 014314 (2017).
2017Wa10	β -decay study of the $T_z = -2$ proton-rich nucleus ${}^{20}Mg$. M.Wang, G.Audi, F.G.Kondev, W.J.Huang et al Chin.Phys.C 41, 030003 (2017).
2017Wr02	<i>The AME2016 atomic mass evaluation (II). Tables, graphs and references.</i> C.Wrede, B.E.Glassman, D.Perez-Loureiro, J.M.Allen et al Phys.Rev. C 96, 032801 (2017).
2018Fo04	New portal to the ${}^{15}O(\alpha, \gamma){}^{19}Ne$ resonance triggering CNO-cycle breakout. H.T.Fortune - Phys.Rev. C 97, 034301 (2018).
2018Gl01	<i>Mirror energy differences of</i> $2s_{1/2}$, $1d_{5/2}$ and $1f_{7/2}$ states. B.E.Glassman, D.Perez-Loureiro, C.Wrede, J.Allen et al Phys.Lett. B 778, 397 (2018).
2019Ra06	β -delayed γ decay of ${}^{20}Mg$ and the ${}_{19}Ne(p, \gamma){}^{20}Na$ breakoutreaction in Type I X-ray bursts. J.S.Randhawa, R.Kanungo, M.Holl, J.D.Holt et al Phys.Rev. C 99, 021301 (2019).

REFERENCES FOR A=20(CONTINUED)

Observation of excited states in ²⁰Mg sheds light on nuclear forces and shell evolution.
 2019Ra09 M.Rashdan, Sh.Sewailem - Phys.Rev. C 99, 034604 (2019).
 Effects of in-medium NN cross section and density distribution on thereaction cross sections of Ne, Mg, and O isotopes with ¹²C at 1 GeV.