Adopted Levels 2018Le18

 $Q(\beta^{-})=3.190\times10^{4}$ 44; $S(n)=-1.56\times10^{3}$ 15 2017Wa10,2018Le18 $Q(\beta^{-}),S(n)$: From ²⁰B_{g.s.}=E_{res}(n+¹⁹B)=1.56 MeV 15, which implies $\Delta M(^{20}B)=69.40$ MeV 38 (2018Le18).

Predictions on the mass (2006Ko02, 2009Pa46, 2012Yu07, 2017Wa10) and excited states (1992Wa22) of ²⁰B are given in the literature. Notably, (2017Wa10) had predicted ΔM =68.45 MeV 80.

²⁰B Levels

Cross Reference (XREF) Flags

$^{12}C(^{22}N,^{19}Bn)$ A

E(level) [‡]	$J^{\pi \dagger}$	Г	$E_{rel.}(n+^{19}B)$ (MeV)	XREF	Comments
0	(1-,2-)	<500 keV	1.56 15	A	%n=100 E(level): A fit with a single resonance at $E(n+^{19}B)=2.44$ MeV 9 and $\Gamma=1.2$ MeV 4 is also compared with the excitation spectrum; the three resonance fit is prefered.
0.94×10 ³ 17		0.9 keV 3	2.50 9	Α	%n≈100
3.30×10 ³ 30	$(0^{-}, 3^{-})$	<500 keV	4.86 25	A	%n≈100

[†] From shell model systematics.

^{\ddagger} E_{g.s.} from E_{res}(¹⁹C+n)=1.56 MeV 15.

¹²C(²²N,¹⁹Bn) **2018Le18**

- In the case of ²⁰B population, a beam of $E_{effective}=225$ MeV/nucleon (target midpoint) ²²N ions, from the RIKEN/RIBF facility, impinged on a 1.8 g/cm² carbon slate that was located at the target position of the SAMURAI spectrometer. The ¹⁹B reaction products were momentum analyzed using the SAMURAI focal plane, while the momentum of coincident neutrons was determined using the 120 module NEBULA plastic scintillator array. A prevalent peak near $E(n+^{19}B)\approx 2.5$ MeV was observed in the relative energy spectrum, which was determined by analysis of invariant mass spectrum; note: the absence of ¹⁹B excited states simplifies the analysis. No similar peaks were observed in n+¹⁹B pairs resulting from 1p-removal reactions from ²²C.
- A straightforward analysis of the relative energy spectrum is consistent with a peak at $E(n+{}^{19}B)=2.44 \text{ MeV } 9$ with $\Gamma=1.2 \text{ MeV } 4$; however, shell model expectations suggest a different plausable explanation of the data that also provide a reasonable fit of the spectrum. (2018Le18) argues that since single proton removal from ${}^{22}N$ almost exclusively populates ${}^{21}C_{g.s.}(J^{\pi}=1/2^+)$, then the two-proton removal should favor population of a $J^{\pi}=1^-,2^-$ doublet (i.e. valence neutron coupled to a $0p_{3/2}$ proton hole). The (n+ ${}^{19}B$) relative energy spectrum is well fitted by assuming a doublet near 2.5 MeV rather than one single peak; in this case, the prominence of a third peak near $E(n+{}^{19}B)=5$ MeV becomes a relevant issue. Resonances with $J^{\pi}=0^-$ and/or 3^- could be expected in the $E(n+{}^{19}B)=5$ MeV region. In summary, the analysis favors three resonances at $E_{res}=1.56$, 2.50 and 4.86 MeV.

²⁰B Levels

E(level) [‡]	$J^{\pi^{\dagger}}$	Γ	$E_{rel.}(n+ {}^{19}B) (MeV)$	Comments
0	$(1^{-},2^{-})$	<500 keV	1.56 15	%n=100
0.94×10 ³ 17	$(1^{-},2^{-})$	0.9 keV 3	2.50 9	%n≈100
3.30×10 ³ 30	$(0^{-}, 3^{-})$	<500 keV	4.86 25	%n≈100

[†] From shell model systematics.

^{\ddagger} E_{g.s.} from E_{res}(¹⁹C+n)=1.56 MeV 15.

REFERENCES FOR A=20

- 1992Wa22 E.K.Warburton, B.A.Brown Phys.Rev. C46, 923 (1992).
- Effective Interactions for the 0p1s0d Nuclear Shell-Model Space.
- 2006Ko02 V.B.Kopeliovich, A.M.Shunderuk, G.K.Matushko Phys.Atomic Nuclei 69, 120 (2006).
- Mass Splittings of Nuclear Isotopes in Chiral Soliton Approach.
- 2009Pa46 S.K.Patra, R.N.Panda, P.Arumugam, R.K.Gupta Phys.Rev. C 80, 064602 (2009).
- Nuclear reaction cross sections of exotic nuclei in the Glauber model for relativistic mean field densities.
- 2012Yu07 C.Yuan, T.Suzuki, T.Otsuka, F.Xu, N.Tsunoda Phys.Rev. C 85, 064324 (2012).
- Shell-model study of boron, carbon, nitrogen, and oxygen isotopes with a monopole-based universal interaction.
 2017Wa10 M.Wang, G.Audi, F.G.Kondev, W.J.Huang et al. Chin.Phys.C 41, 030003 (2017).
- The AME2016 atomic mass evaluation (II). Tables, graphs and references.
- 2018Le18 S.Leblond, F.M.Marques, J.Gibelin, N.A.Orr et al. Phys.Rev.Lett. 121, 262502 (2018). *First Observation of* ²⁰*B and* ²¹*B*.