Adopted Levels, Gammas

Q(β⁻)=13896 *19*; S(n)=2828 *24*; S(p)=15208 *25* 2021Wa16 Prior reviews: 1972Aj02, 1978Aj05, 1983Aj01, 1987Aj02, 1995Ti07.

Shell Model analysis of ¹⁸N:

The ground state spin of ¹⁸N is $J^{\pi}=1^{-}$ (1982Ol01) while a simple shell-model analysis predicts $J^{\pi}=2^{-}$. Detailed discussion is given (1983Sh44, 1984Ba24, 2012Yu07, 2018Ji07).

See other relevant theoretical analysis in:

1988PoZS, 1993Pa14, 1993Po11, 1997Ba54, 2000Zh42, 2004La24, 2004Ne16, 2004Su23, 2005Fo13, 2006Ko02, 2016Ma06, 2018Fo04, 2018Fo17, 2019Fo08.

Other relevant reaction studies:

1981SuZS, 1987Su06: Systematic measurement of μ^- capture rates.

1983As01, 1984As05: ¹⁸O(π^-,π^0). Studied isospin dependence of single-charge-exchange reactions for (π^{\pm},π^0) reactions at LAMPF. See also (1980Ge09, 1982ArZT).

1998Mu17: Theoretical analysis on μ capture rates on light nuclei.

1999He33: Theoretical analysis of astrophysically relevant neutron capture in unstable nitrogen nuclei.

2019Zh29: Calculated μ^- spalation yields on Ar leading to ¹⁸N, which is a source of background in the DUNE neutrino detector.

¹⁸N Levels

Cross Reference (XREF) Flags

		A B C D E F G H I	¹⁸ C β ⁻ decay ¹⁹ C β ⁻ n decay ² H(¹⁷ N,p) ⁹ Be(¹¹ B,2pγ) ⁹ Be, ¹² C(¹⁸ N,X) ⁹ Be(¹⁸ O,p2α) ⁹ Be(¹⁸ O, ¹⁸ N):moment ⁹ Be(¹⁹ N, ¹⁸ N) ⁹ Be(²² Ne, ¹⁸ N)	J K L M N O P Q R	${}^{9}\text{Be}({}^{40}\text{Ar}, {}^{18}\text{N})$ ${}^{12}\text{C}({}^{22}\text{Ne}, {}^{18}\text{N})$ ${}^{14}\text{C}({}^{7}\text{Li}, {}^{3}\text{He})$ ${}^{14}\text{C}({}^{18}\text{O}, {}^{18}\text{N})$ ${}^{18}\text{O}(\pi^{-}, \gamma)$ ${}^{18}\text{O}(n, p)$ ${}^{18}\text{O}(d, {}^{2}\text{He})$ ${}^{18}\text{O}(t, {}^{3}\text{He})$ ${}^{18}\text{O}({}^{7}\text{Li}, {}^{7}\text{Be})$	T U V W	 ¹⁸O(¹¹B,¹¹C) ¹⁸O(¹⁸O,¹⁸N) ²⁸Si(p,¹⁸N):spallation ¹⁸¹Ta(¹⁸O,¹⁸Nγ) ¹⁸¹Ta(²²Ne,¹⁸N) ²³²Th(p,¹⁸N) ²³²Th(¹⁸O,¹⁸N),(²²Ne,¹⁸N)
E(level) 0.0	$\frac{J^{\pi}}{1^{-}}$	T _{1/2} 619 ms 2	XREF AB DEFGHIJKLMNOPQR TU	JVWXY	T=2 μ=0.3273 4 (20 Q=0.0123 12 (J ^π : From ¹⁸ N μ T _{1/2} : From (20 635 ms 40 a 0.63 s 2 (199 (1982O101) a μ: From β-NM 13 (1998Ogt Q: From (1999) an update of	009De 1999(3 ⁻ dec 005Lic ond 60 94Sc0 and 0. R (20 04) an Og03 (2014	

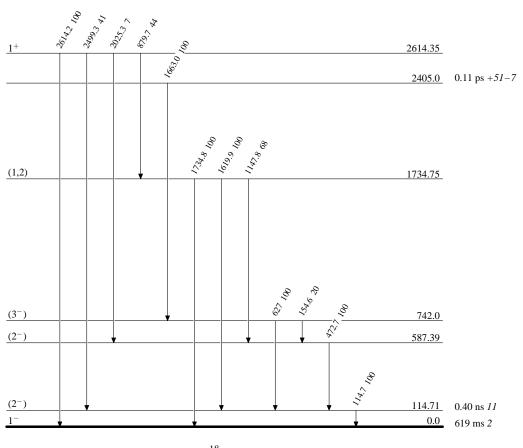
¹⁸N Levels (continued)

E(level)	\mathbf{J}^{π}	T _{1/2}			XRE	F		Comments
114.71 [†] <i>10</i>	(2 ⁻) [‡]	0.40 ns 11	ABCD	Н		PR	V	%IT=100
								$T_{1/2}$: From (2008Wi05).
587.39 [†] 20	$(2^{-})^{\ddagger}$		AB D	Н	LM	S	ΓV	%IT=100
742.0 [†] 4	$(3^{-})^{\ddagger}$		CD	Н	L	R	v	%IT=100
1170 20	(1-)		С		N			%IT=100
								E(level), J^{π} : From ² H(¹⁷ N,p) (2013Ho21).
1734.75 [†] <i>19</i>	$(1,2)^{\#}$		Α					%IT=100
								J^{π} : From ¹⁸ C β^{-} decay (1991Pr03).
2210			С			R		%IT=100
2405.0 [†] 9		0.11 ps +51-7				R	V	%IT=100
		1						T _{1/2} : From τ =0.16 ⁺⁷⁴ ₋₁₀ ps and E _{γ} =1663.0 keV 8 (2020Zi03).
2614.35 [†] 21	1+#							
2614.35 21	1		A					%IT=100
0.0.1030.0								J^{π} : From ¹⁸ C β^- decay (1991Pr03).
2.9×10^3 ? 2					N			E(level): From ${}^{18}O(\pi^-,\gamma)$.
6.9×10^3 ? 2					N			E(level): From ${}^{18}O(\pi^-,\gamma)$.
8.5×10^3 ? 2					N			E(level): From ${}^{18}O(\pi^-,\gamma)$.
10.1×10^3 ? 2					N			E(level): From ¹⁸ O(π^-, γ).

[†] From least squares fit to (E_x : E_γ), (115: 114.7 *I*), (587: 472.7 2), (742: 154.6 3, 627 *I*), (1735: 1147.8 4, 1619.9 3, 1734.8 4), (2405: 1663.0 8), (2614: 879.7 2, 2025.3 8, 2499.3 4, 2614.2 4) from averages of γ energies given in ¹⁸C β^- (1991Pr03), ⁹Be(¹¹B,2p γ) (2008Wi05) and ¹⁸¹Ta(¹⁸O,¹⁸N γ) (2020Zi03).

[±] Suggested by theory (1984Ba24). See also (1982Ol01,1991Pr03).

[#] See (1993Ch06).


$\gamma(^{18}N)$

E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Comments
114.71	(2^{-})	114.7 <i>1</i>	100	0.0 1-	B(M1)(W.u.)=0.036 10
587.39	(2^{-})	472.7 2	100 16	114.71 (2-)	
742.0	(3 ⁻)	154.6 <i>3</i>	20	587.39 (2-)	
		627 1	100	114.71 (2 ⁻)	I_{γ} : From (2008Wi05).
1734.75	(1,2)	1147.8 <i>4</i>	68 20	587.39 (2-)	
		1619.9 <i>3</i>	100 25	114.71 (2 ⁻)	
		1734.8 <i>4</i>	100 25	0.0 1-	I_{γ} : A discrepancy exists between the (1991Pr03) Table 1 and Table 3 γ -ray intensities for $E_x=1734$ keV; we use values from Table 1. This choice is necessary to reproduce their relative β^- feedings to $^{18}N*(1734,2614)$.
2405.0		1663.0 8	100	742.0 (3 ⁻)	I_{γ} : From (2020Zi03).
2614.35	1^{+}	879.7 2	44 4	1734.75 (1,2)	
		2025.3 8	75	587.39 (2-)	
		2499.3 <i>4</i>	41 9	114.71 (2 ⁻)	
		2614.2 4	100 11	0.0 1-	

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

 ${}^{18}_{7}\mathrm{N}_{11}$

¹⁸C β⁻ decay **1991Pr03**

Parent: ¹⁸C: E=0; $J^{\pi}=0^+$; $T_{1/2}=92$ ms 2; $Q(\beta^-)=11810 \ 40$; % β^- decay=100.0

¹⁸C-T_{1/2}: From (1995Sc03).

¹⁸C-Q(β^{-}): From (2021Wa16).

Decay to neutron-bound levels:

- 1991Pr03: A beam of ¹⁸C, produced using the GANIL/LISE facility, was implanted into a plastic scintillator. Activity was collected for 300 ms followed by an equal time of decay counting. A 40% relative efficience HPGe detector was placed near the stopper, and decay events were recorded for β and β - γ coincidence events. The authors aimed to resolve the β -0n and β -1n decay branches. In the article, the decay of ¹⁸C and ¹⁸N were measured under identical experimental conditions; then the ratio of the intensity of the ¹⁸O E_{γ}=1982 keV transition, which is strongly populated in ¹⁸N decay, was analyzed to determine the sum of ¹⁸C decay branches to bound ¹⁸N states. $\beta\beta$ -0n=81 5 was deduced. This implies $\beta\beta$ -1n=19 5.
- A total of 9 γ -ray ¹⁸N transitions were identified along with others associated with ¹⁷N and ¹⁸O. The γ -ray intensities are presented in two formats: first- they are given as relative intensities normalized to the strongest line (Table 1), the E_{γ}=2614 keV transition; second- intensities are given for a 100% branching sum out of each level (Table 3).
- The authors discussed the likelihood of γ -ray summing effects as a potential source of systematic uncertainty; this is because a single HPGe detector was used and it was placed close to the decay stopper foil. Secondly, they discussed an inconsistency of their data where a higher intensity feeds the $E_x=115$ keV level than is observed exiting the level. Authors suggest this inconsistency may be attributed to the state having a long lifetime causing a significan fraction ($\approx 1/2$) to fall outside the DAQ coincidence window.
- The evaluator finds significant problems with the intensity balance for the $E_x=115$ and 572 keV level γ rays; the $E_x=115$ keV level lifetime is about a ns (2008Wi05). For the analysis, the decay intensities are set equal to the feeding intensities for these two states. Furthermore there is a discrepancy in the decay branching ratios of ¹⁸N*(1734) state given in Table 1 vs. Table 3. We take the Table 1 values, since they should require less interpretation to obtain, and since they are required to arrive at their deduced relative β^- branching ratios.
- In spite of the experimental uncertainties, (1991Pr03) is the only ¹⁸C β^- decay study that provides γ -ray spectroscopy information on ¹⁸N levels. In their analysis, the authors suggest a negligible first-forbidden branch to ¹⁸N_{g.s.}, and so they normalize their measured relative branching ratios with β^- 0n=81 5 to obtain the absolute decay intensities.
- The following table is from (1991Pr03). It gives the measured energies and relative intensities of γ -rays assigned to the β^- decay of ¹⁸C. The two entries marked with ¹⁷N involve beta delayed neutron emission.

E_{γ}	I_{γ}	E_{γ}	I_{γ} .
114.9 2	32 1	1734.8 4	25 5.
471.7 2	15 2	2025.3 8	75.
879.7 2	44 4	2499.3 4	41 9.
1147.8 4	17 5	2614.2 4	100 11
1619.9 <i>3</i>	25 5.		
$^{17}N(E_{\gamma}=1374.0\ 10)$	24 5.		
$^{17}N(E_{\gamma}=1849.9 \ 4)$	11 5.		

Decay to neutron-unbound levels:

- 1991Pr03: As mentioned above, $\%\beta^{-1}n=19$ 5 was deduced by comparing the measured γ -ray yields from ¹⁸C and ¹⁸N decay reactions.
- 1988Mu08,1989Le16: ¹⁸C ions from fragmentation of ⁸⁶Kr (1988Mu08) and ⁴⁸Ca (1989Le16) on a ¹⁸¹Ta target at GANIL were selected using the LISE spectrometer and implanted into a Si detector. The telescope was surrounded by a thin plastic scintillator β counter and segmented 4π NE102A scintillator neutron array. Neutron energy thresholds of 440 keV and 350 keV were utilized in (1988Mu08) and (1989Le16), respectively. Delayed neutron emission probabilities of P_n=(25.0 45)% and (50 10)% were deduced, respectively.
- 1991Re02: ¹⁸C spallation products from 800 MeV proton bombardment of a ²³²Th target were transported to the TOFI spectrometer at LAMPF. The ions were implanted in a Si detector. The β -delayed neutrons were detected in a polyethylene moderated ³He counter; half-lives and β -delayed neutron probabilities were deduced from analysis of the number of implanted ions (per beam pulse) and the rate of β -delayed neutrons detected in the zero-threshold counter. The β -delayed neutron probability =(43.3 65)% was deduced along with T_{1/2}=94 ms 27.

New data was collected using the experimental configuration of (1991Re02), and the collective results were analyzed. In (1994ReZZ) P_n =(30.2 17)% and $T_{1/2}$ =92.9 ms 53 are given. In later unpublished works (1995ReZZ,2008ReZZ), P_n =(31.5 15)% and $T_{1/2}$ =92 ms 5 are indicated. Other analyses of these data are found in (1993ReZX,1994KiZU).

¹⁸C β^- decay **1991Pr03** (continued)

1995Sc03: A ¹⁸C beam from the NSCL/A1200 was stopped in a plastic scintillator implantaion detector that was surrounded by an array of 15 plastic scintillator neutron detectors. The beam was collected in the stopping detector for 206 ms followed by a 222 ms beam-off counting period. Neutron events are recorded for β signals in the implantation detector in coincidence with neutron signals in the 99.7 cm flight path neutron array. Neutron energies were determined via time-of-flight; the array was configured with a low-energy threshold of \approx 750 keV. Background activity from ¹⁸N and ¹⁷N, the ¹⁸C decay daughters, was separable from the ¹⁸C decays.

Seven neutron groups are evident in the energy spectrum; however, the lack of n- γ coincidence data and unknown spectroscopy of ¹⁸N levels above the neutron binding precludes assignment of the neutron groups to ¹⁸N levels. This is further accented by the known participation of ¹⁷N*(1374,1850) levels in the β -n reaction as reported in (1991Pr03). The intensity of β -n neutron events reported in (1995Sc03) is (21.4 44)%. The neutrons can go to ¹⁷N*(0,1374,1849), which implies ¹⁸N excitation energies listed below.

E _n (MeV)	Branching Ratio (%)	$S_n + E(n + {}^{17}N_{g.s.})$	$S_n + E(n + {}^{17}N^*(1374))$	$S_n + E(n + {}^{17}N^*(1849)).$
0.88 2	13.1 13	3.76 MeV 2	5.13 MeV 2	5.61 MeV 2.
1.55 2	3.65 41	4.47 MeV 2	5.84 MeV 2	6.32 MeV 2.
1.91 2	0.87 16	4.85 MeV 2	6.22 MeV 2	6.70 MeV 2.
2.47 2	0.76 13	5.44 MeV 2	6.81 MeV 2	7.29 MeV 2.
2.78 2	0.96 14	5.77 MeV 2	7.14 MeV 2	7.62 MeV 2.
3.25 3	1.24 15	6.27 MeV 3	7.64 MeV 2	8.12 MeV 2.
4.59 4	0.86 12	7.68 MeV 4	9.05 MeV 2	9.53 MeV 2.

Comments:

The $P_n = (31.5 \ 15)\% = \%\beta^- \ln$ value from (2008ReZZ) is reluctantly accepted. The evaluator notes that amongst the Kim/Reeder articles and conference reports, a wide range of values are presented. Measurements listed above using neutron arrays having finite neutron-energy thresholds found discrete neutron groups adding to $\approx 20\%$ of the decay intensities; however, because the moderated ³He counter used by Reeder is sensitive to all energy neutrons, this approach should provide the most reliable P_n value.

Taking $\%\beta^{-1}n=(31.5 \ 15)$, the relative intensities of γ transitions reported in (1991Pr03) are normalized to give $\%\beta^{-0}n=(68.5 \ 15)$. In (1991Pr03), the feeding into ¹⁸N*(115,572) states is greater than the decay out of the states, which required adjustments to the intensity balance.

See theoretical discussion on β decay in (1993Ch06); also see (2016Ta07).

¹⁸N Levels

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	Comments
0.0	1-	619 ms 2	T=2
			T _{1/2} : From (2005Li60).
114.71 10	(2^{-})		
587.39 20	(2^{-})		
1734.75 19	(1,2)		
2614.35 21	1+		

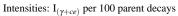
[†] From Adopted Levels.

β^{-} radiations

E(decay)	E(level)	Ιβ ^{-†‡}	Log ft
$(9.20 \times 10^3 \ 4)$	2614.35	61 5	4.16 4
$(1.008 \times 10^4 4)$	1734.75	73	5.29 19

[†] (31.5 15)% of the β^- transitions feed levels that decay by neutron emission, so $\Sigma I \beta^- = (68.5 \ 15)\%$ for the β^- branches included here.

[‡] Absolute intensity per 100 decays.


				$^{18}C\beta$	- decay 1991Pr03 (continued)
					γ ⁽¹⁸ N)	
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$		Comments
114.7 <i>1</i>	90 13	114.71	(2^{-})	0.0 1-	%Iy=28.7 <i>30</i>	
472.7 2	24 7	587.39	(2^{-})	$114.71 (2^{-})$	$\%I\gamma = 7.6\ 23$	
879.7 2	44 <i>4</i>	2614.35	1+	1734.75 (1,2)	$%I\gamma = 14.0 \ 17$	
1147.8 4	17 5	1734.75	(1,2)	587.39 (2-)	$\%I\gamma = 5.4 \ 17$	
1619.9 <i>3</i>	25 5	1734.75	(1,2)	114.71 (2 ⁻)	$%I\gamma = 8.0 \ 17$	
1734.8 4	25 5	1734.75	(1,2)	0.0 1-	$\%I\gamma = 8.0~16$	
2025.3 8	75	2614.35	1^{+}	587.39 (2 ⁻)	$%I\gamma = 2.2 \ 16$	
2499.3 4	41 9	2614.35	1^{+}	114.71 (2-)	$\%I\gamma = 13.1 \ 31$	
2614.2 4	100 11	2614.35	1^{+}	$0.0 \ 1^{-}$	%I _y =31.9 29	

[†] From Adopted Levels and Gammas.

 ‡ For absolute intensity per 100 decays, multiply by 0.319 27.

¹⁸C β^- decay 1991Pr03

Decay Scheme

Legend $\begin{array}{c|c} \bullet & I_{\gamma} < & 2\% \times I_{\gamma}^{max} \\ \bullet & I_{\gamma} < & 10\% \times I_{\gamma}^{max} \\ \bullet & I_{\gamma} > & 10\% \times I_{\gamma}^{max} \end{array}$ 0 92 ms 2 Q_β-=11810 40 $\%\beta^{-}=100.0$ ${}^{18}_{6}C_{12}$ $I\beta^ \log ft$ 61 4.16 2614.35 0.8 8.0 0.8 8.0 0.8 0.61 1/47.8 5.4 (1,2) 7 5.29 1734.75 ر: جزير جه ا (2^{-}) 587.39 + 114,20 $\frac{(2^{-})}{1^{-}}$ <u>114.71</u> 0.0 619 ms 2

 $^{18}_{7}\mathrm{N}_{11}$

 $^{19}C\beta^{-}n \text{ decay}$ **1995Oz02**

Parent: ¹⁹C: E=0; $T_{1/2}$ =45.5 ms 40; $Q(\beta^{-}n)$ =11.23×10³ 10; % $\beta^{-}n$ decay=47 3

¹⁹C-T_{1/2}: From (1995Oz02).

¹⁹C-Q(β^{-} n): From (2021Wa16).

1988Du09: A beam of ¹⁹C ions, produced in the GANIL/LISE spectrometer was implanted into a 7 mm thick plastic scintillator that was surrounded by a 500 liter gadolinium doped 4π liquid scintillator neutron detector array. The lower-level threshold was essentially zero because of the Gd(n, γ) sensitivity. Analysis of the data indicated P_{0n}=(46 3)%, P_{1n}=(47 3)% and P_{2n}=(7 3)%. See also (1988DuZT,1988DUZZ).

1995Oz02: A beam of ¹⁹C ions was produced by fragmenting a ²²Ne beam on a ⁹Be target at RIKEN. The beam was magnetically separated, degraded to lower energies, and finally stopped in a plastic scintillator that was sandwiched between four other scintillator detectors. A valid β -decay event required a coincidence between three ajacent detectors. Three neutron walls surrounded the implantation target and covered about 1.4 sr. The decay neutron energy was deduced by the time of flight between the implantation detector and the neutron wall detectors. The ToF was calibrated by studying the decay of ¹⁷N which has three visible known neutron groups. A set of two NaI detectors also faced the target for use measuring γ -ray singles events and n- γ coincidence events.

The measured neutron spectrum shows several decay groups. A significant ${}^{17}B$ component was present in the beam, and its decay radiations presented a background that was analyzed and subtracted. The final analysis of the neutron energy spectrum revealed five neutron groups that are attributed to β delayed neutron decay of ${}^{19}C$ to ${}^{18}N^*$ states, or of its its daughter ${}^{19}N$ to ${}^{18}O$ states.

Throughout the experiment, ions were implanted for a 100 ms period followed by a 200 ms counting period; analysis of the time dependence for the neutron groups permitted assignment of four groups to decay of ¹⁹C ($T_{1/2} \approx 50$ ms) and one group to decay of ¹⁹N ($T_{1/2} \approx 320$ ms).

Four neutron groups at $E_n=0.46$, 1.01, 1.50 and 2.08 are observed; poor statistics prohibited full analysis of the $E_n=2.08$ MeV group. Since n- γ correlations were used to characterize the decay paths, the results are presented by normalizing to $\%\beta^- \ln=(47 \ 3)\%$ from (1988Du09).

See also (1994OzZY,1995OzZY).

¹⁸N Levels

E(level) [†]	$J^{\pi \dagger}$	T _{1/2} †
0.0	1-	619 ms 2
114.71 10	(2^{-})	0.40 ns 11
587.39 20	(2^{-})	

[†] From Adopted Levels.

$\gamma(^{18}N)$

Eγ	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}
114.7	47.	114.71	(2^{-})	0.0	1-
472.7	14.3	587.39	(2 ⁻)	114.71	(2 ⁻)

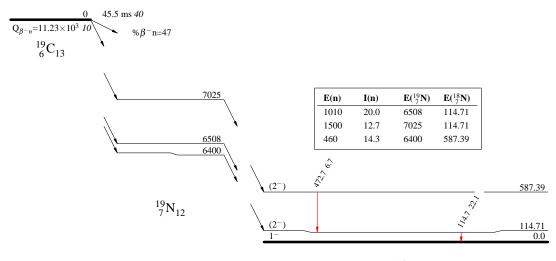
[†] Absolute intensity per 100 decays.

Delayed Neutrons (18N)

E(n)	E(¹⁸ N)	I(n) ^{†‡}	E(¹⁹ N)	Comments
		14.3 20 20.0 16 12.7 15	6400 6508 7025	E_n =460 keV 10 implies $E_x(^{19}N)$ =6400 keV 27. E_n =1010 keV 10 implies $E_x(^{19}N)$ =6508 keV 27. E_n =1500 keV 20 implies $E_x(^{19}N)$ =7025 keV 33.

Continued on next page (footnotes at end of table)

 ${}^{19}\mathbf{C}\,\beta^-\mathbf{n}$ decay 1995Oz02 (continued)


Delayed Neutrons (¹⁸N) (continued)

[†] Normalized to (47 *3*)%; see (1988Du09). [‡] Absolute intensity per 100 decays.

¹⁹C β^{-} n decay 1995Oz02

Decay Scheme

 γ Intensities: I_{γ} per 100 parent decays I(n) Intensities: I(n) per 100 parent decays

 $^{18}_{7}\mathrm{N}_{11}$

 ${}^{18}_{7}\mathrm{N}_{11}$ -10

²H(¹⁷N,p) 2013Ho21

2013Ho21: XUNDL dataset compiled by TUNL (2013).

A beam of $E(^{17}N)=13.6$ MeV/nucleon ions, produced via proton removal from ¹⁸O beam at the ATLAS In-Flight Facility, impinged on either 140 or 220 μ g/cm² deuterated polyethylene targets. Protons ejected from the target were detected upstream of the target using the HELIOS detector to reconstruct the event kinematics. Detection of the forward moving ¹⁸N/¹⁷N reaction product helped reduce backgrounds and remove contributions from beam contaminants.

The proton kinematics were analyzed to deduce the reaction Q values and excitation energies for populated groups. The energy resolution (FWHM) was \approx 275 keV. Three groups corresponding to E_x=0.12, 0.74 and 1.17 MeV are observed below the neutron separation energy. The proton angular distributions are analyzed via PTOLEMY/DWBA analysis. The group at E_x=1.17 MeV is reasonably fitted using *l*=0, though the resulting spectroscopic factor is not reasonable; hence the group is suggested as either a single J^{\pi}=1⁻ state or a J^{\pi}=1⁻, 0⁻ doublet. An excess of strength is observed near E_x=2.2 MeV, which may correspond to previously known levels at E_x≈2.21 and 2.42 MeV (1983Pu01).

The spectroscopic strengths and spectroscopic factors are deduced for the observed levels and limits of S \leq 0.07 and \leq 0.05 are set for unobserved states at E_x=0, 0.59 MeV, respectively.

¹⁸N Levels

E(level)	J^{π}	L	s†	Comments
120 10	2-	2	0.67 3	
740 10	3-	2	0.69 <i>3</i>	
1170 20	(1^{-})	0	0.96 19	The authors indicate $J^{\pi} = (1^{-})$ in the summary; though in the discussion and in Table I they
				suggest a possible doublet with $J^{\pi} = (0^{-} \text{ and } 1^{-})$ and S=0.72 14, assuming equivalent values
				of S for 0^- and 1^- states .

 $\approx 2.2 \times 10^{3}$?

[†] Absolute uncertainties in the normalized values estimated as 30%.

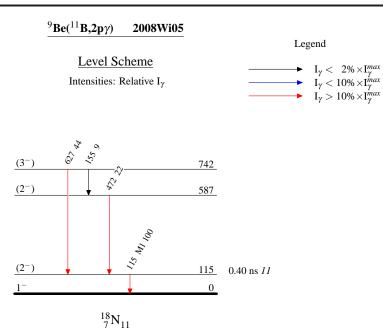
9 Be(11 B,2p γ) 2008Wi05

2008Wi05: XUNDL compiled by McMaster (2008).

Elements of the STARS-LIBERACE array were used at Berkeley to identify the ¹⁸N events produced in ⁹Be+¹¹B reactions and to measure the associated γ rays. Measured E_{γ}, I_{γ}, γ (2p) coin, level lifetimes.

In the first of two configurations, an $E(^{11}B)=50$ MeV beam, provided by the 88-Inch cyclotron, impinged on a 2.6 mg/cm² ⁹Be that was surrounded by five HPGe clover detectors distributed at $\theta=40^{\circ}$, 90° and 140°. An annular position sensitive ΔE -E detector was positioned 3 cm downstream of the target and was used to detect the residual 2 protons associated with ¹⁸N events. A thin lead foil covered the ΔE detector and stopped heavier particle ejectiles. γ -ray transitions between known states at ¹⁸N*(0,115,587,742) are unambiguously identified along with their intensities.

The second configuration was similar to the first, except a thinner 1.35 mg/cm² target was used and a ^{nat}Pb stopper foil was used to measure the lifetime of the first excited state using the recoil-distance method. Events from ¹⁶N transitions are also observed and used for internal calibration. The lifetime τ =582 ps *165* is reported. Results are compared with shell-model calculations. See also (2008WiZT).


¹⁸N Levels

E(level)	J^{π}	T _{1/2}	Comments
0	1-	0.40 11	Configuration: 47% $\pi(p_{1/2}) \otimes \nu(d_{5/2})^3$; 36% $\pi(p_{1/2}) \otimes \nu[(d_{5/2})^2(s_{1/2})]$.
115	(2 ⁻)	0.40 ns 11	T _{1/2} : From recoil-distance method (2008Wi05). Configuration: 68% $\pi(p_{1/2}) \otimes \nu(d_{5/2})^3$; 16% $\pi(p_{1/2}) \otimes \nu[(d_{5/2})(s_{1/2})^2]$.
587	(2 ⁻)		Configuration: 48% $\pi(p_{1/2}) \otimes \nu(d_{5/2})^3$; 34% $\pi(p_{1/2}) \otimes \nu[(d_{5/2})^2(s_{1/2})]$.
742	(3-)		Configuration: 69% $\pi(p_{1/2}) \otimes \nu(d_{5/2})^3$; 17% $\pi(p_{1/2}) \otimes \nu[(d_{5/2})(s_{1/2})^2]$.

$\gamma(^{18}N)$

E_{γ}^{\dagger}	Iγ	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult.	Comments
115 <i>1</i>	100	115	(2 ⁻)	0 1-	M1	B(M1)(W.u.)=0.036 10 Mult.: From RUL, E2 component is ruled out.
155 <i>1</i>	9	742	(3 ⁻)	587 (2-)		
472 <i>1</i>	22	587	(2^{-})	115 (2 ⁻)		
627 <i>1</i>	44	742	(3 ⁻)	115 (2 ⁻)		

[†] The authors state 1 keV resolution.

⁹Be(¹⁸O,p2α) 1982Ol01

- 1982Ol01: ${}^{9}\text{Be}({}^{18}\text{O},\text{p}2\alpha)$ was used to produce ${}^{18}\text{N}$ at the entrance window of a cylindrical 1.5 cm by 13 cm 1.7 atm helium-filled gas cell at BNL. The ${}^{18}\text{N}$ was stopped in the gas and transferred to a counting area where decays to ${}^{18}\text{O}$ were observed. Branching ratios to ${}^{18}\text{O}$ states were determined. Analysis, including the assumption of 15% decay to non- γ -emitting states, determines J^{\pi}=1⁻ for ${}^{18}\text{N}_{g.s.}$. Additionally, T_{1/2}=624 ms *12* was determined.
- 2003Fr32: ⁹Be(¹⁸O,p2 α) at 80 MeV/nucleon was used to produce ¹⁸N at the NSCL/A1200. The ¹⁸N ions were implanted into a stack of four Δ E- Δ E- Δ E- Δ E- Δ E-detectors; most ions stopped in the the first three detectors. A 120% efficiency HPGe detector at θ =90° measured the β -delayed γ emissions from ¹⁸N decay to ¹⁸O. The K1200 cyclotron *rf* was dephased for a second with a two second periodicity so that implanted ions were identified and counted on an event-by-event basis in the first second, and the decay radiations were measured in the final second. A redundant set of amplifiers readout the Si detectors in the counting period, permitting a measurement of β -delayed α particles. The branching ratio to γ -emitting states in ¹⁸O* was determined as 76.7% 72(stat.) 55(sys.); the branch to ¹⁸O_{g.s.} is estimated as 2.6% (1982O101).
- Further discussion on $\beta^{-\alpha}$ (12.2 6)% from (1989Zh04) and β^{-n} (12.0 13)% from (1994ReZZ: update of 2001Re03) is given. The authors indicate their value is consistent with these results.

¹⁸N Levels

E(level) [†]	$J^{\pi \dagger}$	T _{1/2} †
0	1-	624 ms 12

[†] From (1982Ol01).

 ${}^{18}_{7}N_{11}$ -14

⁹Be,¹²C(¹⁸N,X) 2001Oz03,2019Ba11

Includes ⁹Be, ¹²C, ²⁸Si, ¹⁹⁷Au targets.

2001Oz03: The interaction cross section of ${}^{12}C({}^{18}N,X)$ was measured at 1020 MeV/nucleon using the GSI/FRS. σ_I =1046 mb 8 for ${}^{18}N$ was deduced. The matter radius $R_{r.m.s.}$ =2.65 fm 2 was deduced. See also (2001Oz04).

2002Li40: A beam of 33 MeV/nucleon ¹⁸N ions from the Lanzhou/RIBLL was fragmented on either a ⁹Be or ¹⁹⁷Au target. The reaction products were identified using a set of fourteen ΔE - ΔE -E Si telescopes that covered θ =2.1°-10°; coincident neutrons were also measured using a set of sixteen NE110 plastic scintillator detectors. The fragment isotopic yields were obtained in the analysis and compared with a relativistic mean field calculation of the ¹⁸N nucleon density distribution.

2006Kh08: The reaction cross section of ¹⁸N ions on ²⁸Si was measured at GANIL by impinging a 53.2 MeV/nucleon ¹⁸N beam, produced using the SISSI solenoids, into a Δ E- Δ E-E-VETO telescope that was placed at the focal plane of the SPEG spectrometer. The cross section σ_R =2104 mb 32 was measured.

2019Ba11: The charge-changing cross sections of nitrogen nuclei were measured at GSI to determine the systematic variations of the charge distributions. Beams of ≈775-940 MeV/nucleon ¹⁴⁻²²N ions were seperately produced in the FRS and impinged on a 4.01 g/cm² carbon target. MUSIC ionization chambers identified beam particles before and after the target on an event-by-event basis. The charge-changing cross sections were determined and analyzed using a Glauber model. The rms point proton and matter radii for ¹⁸N deduced in the measurement are R^p_{rms}=2.53 fm *3* and R^m_{rms}=2.68 fm *2*.

See related discussion in (2002Me12,2017Ah08).

¹⁸N Levels

E(level)	Comments
0	$R_{r.m.s.}^{m}$ =2.65 fm 2 (2001Oz03), see also R_{rms}^{p} =2.53 fm 3 and R_{rms}^{m} =2.68 fm 2 (2019Ba11).

⁹Be(¹⁸O,¹⁸N):moment 2009De34

2009De34: XUNDL dataset compiled by TUNL (2009).

 β -NMR measurement.

A 74.3 MeV/nucleon ¹⁸O primary beam bombarded a ⁹Be target at GANIL producing ¹⁸N ions via single charge-exchange reactions. The ¹⁸O beam incident on the ⁹Be target was tuned and optimized so than an off-axis component of the fragment beam was accempted into the LISE spectrometer (i.e. $\theta_{lab} \neq 0^{\circ}$). The resulting spin-polarized beam was implanted into a room temperature MgO crystal held in a static $B_0=0.39971$ T magnetic field. Using standard β -NMR techniques, the asymmetry of emitted β particled was measured using a pair of Δ E-E plastic scintillators, and the μ =0.3273 μ _N 4 was determined.

¹⁸N Levels

Comments

 $\frac{\mathrm{E(level)}}{\mathrm{0}}$ $\frac{J^{\pi}}{1^{-}}$

μ=0.3273 4 (2009De34) μ: β-NMR method, g(¹⁸N)=0.3273 4, sign is not determined in this measurement. J^{π} : From Adopted Levels. A long lived isomer in ¹⁸N could influence these measurements (1999Og03).

¹⁸₇N₁₁-16

⁹Be(¹⁹N,¹⁸N) 2012Ro22

2012Ro22: XUNDL dataset compiled by TUNL (2012).

The authors produced beams of ¹⁹N by fragmenting a 700 MeV/nucleon ⁴⁰Ar beam on a thick ⁹Be target and magnetically filtering the products in the first half of the FRS at GSI. The secondary beam particles were easily identified at the intermediate focal plane by their energy loss and time of flight in a set of standard detectors.

The beams impinged on a 1.72 g/cm² Be target and underwent further reactions, including one-neutron knockout reactions. Analysis of the FRS final focal plane detectors, coupled with measurements from the MINIBALL γ -ray spectrometer which was located at the 1.72 g/cm² target permitted identification of ¹⁸N levels populated in the 1n knockout reactions.

¹⁸N Levels

E(level)	$J^{\pi \dagger}$	σ (mb)	Comments
0^{\ddagger}	1-	41 10	Cross section value deduced by the compilers from total cross section of 65 mb 10.
115‡	(2^{-})		
587	(2 ⁻)	62	σ (mb): <6 mb 2.
			This level is populated in BR<0.09 2 of 1n-knockout reactions at E/nucleon \approx 700 MeV.
728 40	(3 ⁻)	15 2	σ (mb): >15 mb 2.
			This level is populated in BR>0.23 1 of 1n-knockout reactions at E/nucleon \approx 700 MeV. If this is the only level populated then BR<0.32 4.

[†] From Adopted Levels.

[‡] Branching ratio (BR) of 0.64 assigned by compilers to 0+115 levels, assuming a maximum branching=0.36 for 587+728 levels. (2012Ro22) do not mention the population of g.s. and 115 levels.

9 **Be**(22 **Ne**, 18 **N**)

- 1994Sc01: ¹⁸N produced in the fragmentation of ²²Ne on a ⁹Be target at the NSCL/A1200 were identified via Δ E-E and implanted into a thin plastic scintillator. The scintallator was at the center of a large-area neutron array comprised of 15 curved plastic bars that covered 14.3% of 4π . Activity was collected for 2.14 s before a 2.01 s counting period. β -delayed neutron yields were measured along with the neutron energy spectrum. Neutron energies were determined by the time-of-flight between a β -particle in the implantation scintillator and a neutron in the array, which was 100.9 cm away. Decay to several ¹⁷O levels was observed. $\%\beta$ -n=2.2 4 was determined for production of high-energy neutrons above the 1 MeV threshold. T_{1/2}=630 ms 20 was determined. See also (1993ShZW).
- 1997Ne01,1997Co15,1998Ne04: ¹⁸N ions, produced by fragmenting a ²²Ne beam on a ⁹Be target using the LISE3 spectrometer, were implanted into a 8 K cooled Mg crystal that was oriented with β =6° and held within a variable magnetic field. Analysis of the asymmetry of the β radiation with field strength over the range 0-2000 Gauss indicated a 14.4% spin alignment.
- 1999Ne01: Following up on (1997Ne01), a β -level mixing NMR technique (β -LMR) was developed and utilized to determine μ =0.135 μ _N 15. They also obtained the ratio of the quadrupole interaction frequency to the magnetic moment and determined Q=+27 mb 4. Results are discussed and compared with shell model calculations.
- 2005Li60: A thick Be target was bombarded by a 68.8 MeV/nucleon ²²Ne beam to produce ¹⁸N ions that were selected and stopped in a thin plastic scintillation detector. Two different plastic scintillator arrays (neutron walls) were used to detect delayed neutrons with coverage of 30% and 2.2% of 4π sr for high energy and low energy, respectively. The neutron detection efficiecies were calibrated with the known ¹⁷N β^- n decay neutron spectrum. A set of 3 HPGe detectors were positioned around the target to measure γ -ray emissions.
- Beam was collected in the target for cycles of 2.0 s activation periods followed by 2.0 s counting periods. The result $T_{1/2}$ =619 ms 2 was obtained from analysis of the β -ray decay curve observed in the thin plastic catcher foil; a small 5% ²⁰O ($T_{1/2}$ =13.5 s) component was the main active beam contaminant. An exclusive gate on the on the strongest neutron peak at E_n = 0.58 MeV yielded the value $T_{1/2}$ =610 ms 23.
- Analysis of the ToF spectrum indicates decays of 11 neutron emitting states in ¹⁸O. The total observed BR is 6.98% *146* for fast neutrons.

2007Lo05: A Be target was bombarded by a 68.8 MeV/nucleon ²²Ne beam to produce ¹⁸N ions that were selected and stopped in a thin plastic scintillation detector. A neutron sphere composed of eight identical plastic scintillator counters was used to detect delayed neutrons; each segment covered 3.75% of 4π sr. A calibration using ¹⁷N provided the neutron detection efficiency up to E_n=1.73 MeV. In this measurement, the emphasis was on fast neutrons. Nine neutron groups were observed, eight are in good agreement with those reported by (2005Li60). The total observed β -delayed BR is 7.03% *146*.

Three $T_{1/2}$ values were obtained by analyzing the β -time spectra corresponding to the strongest three neutron peaks, 625 ms 30, 635 ms 40 and 609 ms 60.

^{18}N	Levels
----------	--------

E(level)	T _{1/2}	Comments
0	619 ms 2	 μ=(-)0.135 15 (1999Ne01) Q=+0.027 4 (1999Ne01) T_{1/2}: Half-lives of 630 ms 20 (1994Sc01), 619 ms 2 (2005Li05), and 625 ms 30, 635 ms 40 and 609 ms 60 (2007Lo05) were determined in this reaction. %β⁻n: Analysis of fast neutrons measured by (2005Li60) and (2007Lo05) indicates consistency with %β⁻n≥7%.

⁹**Be**(⁴⁰**Ar**,¹⁸**N**)

- 2000Oz01: A beam of ⁴⁰Ar at E \approx 1 GeV/nucleon impinged on a Be target (4.0 g/cm²) at the GSI/FRS facility. The ¹⁹B fragments of interest were identified using the B_{ρ} settings along with scintillators to measured Δ E and time-of-flight. The ¹⁸N production cross section was measured as roughly \approx 3.95×10⁻¹⁴ b.
- 2007No13: Production of ¹⁸N via projectile fragmentation was studied at the RIKEN Accelerator Research Facility using ⁴⁰Ar beams at E=90, 94 MeV/nucleon that impinged on either a 95 mg/cm² thick ⁹Be target or a 17 mg/cm² thick ^{nat}Ta target. The beams were momentum analyzed using the RIPS doubly achromatic spectrometer before being identified using two surface-barrier silicon counters and a plastic scintillator to identify products via ΔE and time-of-flight (TOF) at the focal plane. The fragment momentum distribution and production cross sections were deduced. See also (2015Mo17) for transverse momentum (P_T) distribution and width (σ_T) analysis.
- 2012Kw02: Several light neutron-rich nuclides, produced by projectile fragmentation of an ⁴⁰Ar beam at E=140 MeV/nucleon, bombarded one of three targets, 668 mg/cm² ⁹Be, 775 mg/cm² ^{nat}Ni, and 1086 mg/cm² ¹⁸¹Ta at the National Superconducting Cyclotron Laboratory (NSCL). Fragments were momentum analyzed using the A1900 separator and identified at the final focus using time-of-flight and a telescope consisting of five Si ΔE detectors. The fragmentation cross sections, parallel momentum transfers, and parallel momentum distribution widths were measured and compared to the theoretical predictions.

¹⁸N Levels

E(level)

0

¹²C(²²Ne,¹⁸N) **1998Og04,1999Og03**

1998Co37: ¹⁸N ions, produced by fragmenting a ²²Ne beam on a ¹²C target, were selected using the LISE3 spectrometer and implanted into a a 40 K cooled Mg crystal oriented along β =1.5°. Using the Level Mixing Resonance method to interpret the variation asymmetry of β radiation with field strength 0-2000 Gauss indicated a the value eQ=3.2 e-fm² 3.

1998Og04,1998OgZY;: ¹⁸N ions were produced at RIKEN by fragmenting a 110 MeV/nucleon ²²Ne beam on a ¹²C target and selecting ¹⁸N using the RIPS fragment separator. Optimum settings indicated 2.2% polarization at θ =3.5° ¹⁸N emission angle. The beam was implanted into a Pt stopper foil that was held at 30 K. Using standard β -NMR techniques, μ =0.3279 μ _N *17* was determined. A similar scan using a single crystal Mg stopper resulted in a determination of the quadrupole coupling constant *eqQ/h*=73.2 kHz *18*. A prelinary value Q=12.1 mb *12* was determined by comparison with Q(¹²N) and related field gradients. See also (2000AsZZ).

1999Og03,1999OgZV: In an expansion of results presented in (1998Og04), further experimental details are given. The decay rate was determined from analysis of the β -ray time spectrum. T_{1/2}=620 ms *14* was obtained. In this work, the field gradients determined for ¹²N and ¹⁴N and their Q values were considered resulting in Q=12.3 mb *12*. Results are compared with perviously reported values and shell model predictions.

¹⁸N Levels

E(level)	J^{π}	T _{1/2}	Comments
0	1-	620 ms <i>14</i>	μ =0.3279 <i>13</i> (1998Og04) Q=12.3 <i>12</i> (1999Og03) J ^{π} : From Adopted Levels. T _{1/2} : From (1999Og03).

¹⁴C(⁷Li,³He) **1980KrZX**

1980KrZX: The ¹⁴C(⁷Li,³He) reaction was measured using E(⁷Li)=32, 42, 48 MeV beams at Strasbourg using a Δ E- Δ E-E telescope to detect ³He reaction products at θ =32°. Evidence for three states is observed; they are presumably ¹⁸N*(0,0.53,0.83 MeV) with Δ M=13.29 MeV 6 for the ground state. Shell model predictions for the lowest six states are given. Subsequent measurements indicate the lowest state observed is a doublet.

¹⁸N Levels

E(level)[‡]

Comments

0[†] E(level): ΔM=13.29 MeV 6. 530 60 830 60

[†] The ground state was later resolved as a doublet in ¹⁸O(⁷Li,⁷Be) (1983Pu01).

[‡] Energies deduced in this work are unreliable because of the low-lying doublet.

¹⁴C(¹⁸O,¹⁸N) **1980Na14**

1980Na14: The ¹⁴C(¹⁸O,¹⁸N) reaction was measured using a E(¹⁸O)=92.2 MeV beam from the Orsay Tandem. The ¹⁸N reaction products were momentum analyzed using 180° double-focusing magnetic spectrograph having $\Delta E \approx 200$ keV (FWHM). The ground state was observed with ΔM =13217 keV 40 along with an excited state at 575 keV. The ground state is later resolved as a doublet. See also (1979BeZL,1980BeYR).

¹⁸N Levels

E(level)[‡]

Comments

 0^{\dagger} E(level): Δ M=13217 keV 40. 575 25

 † The ground state was later resolved as a doublet in $^{18}\text{O}(^7\text{Li}, ^7\text{Be})$ (1983Pu01).

[‡] Energies deduced in this work are unreliable because of the low-lying doublet.

¹⁸**O**(π^-,γ) **1982Gm02**

- 1978St27: Population of ¹⁸N_{g.s.} and a state at \approx 7 MeV are reported in measurements using the SIN (Schweizerisches Inst. fuer Nuklearforschung) pion spectrometer. See also Alder et al., AIP Conference Proceedings 33, 628 (1976). Other related work is published in (1979St08).
- 1982Gm02: The SIN spectrometer data are further analyzed and show evidence for states up to 10.1 MeV. The ground and E_x =6.9 MeV states are most strongly populated.

¹⁸N Levels

E(level)

 $0 \\ 1.3 \times 10^{3} 2 \\ 2.9 \times 10^{3} 2 \\ 6.0 \\ 10^{3} 2$

 $6.9 \times 10^3 2$ $8.5 \times 10^3 2$

 $10.1 \times 10^3 2$

¹⁸O(n,p) **1964Ch19**

- 1964Ch19: ¹⁸O(n,p) was first measured using the Palo Alto Lockheed Missiles and Space Company Van de Graaff accelerator. The results confirmed the particle stability of ¹⁸N.
- A beam of ≈ 19 MeV neutrons, produced via the T(d,n) reaction, irradiated a 97% ¹⁸O enriched water sample for a second before it was transfered to a counting area where combinations of β - γ - γ coincidence events were collected for about five seconds using a pair of NaI γ -ray detectors and a plastic scintillator β -ray detector. Measurements with a ¹⁶O water sample were also collected so observations could be compared with the well-understood reaction to ¹⁶N. The β -spectrum was measured and a strong feeding of ¹⁸O*(4.45 MeV) was observed.
- The β endpoint was investigated using γ - β coincidences; the ¹⁸N-¹⁸O mass difference was found as 13.9 MeV 4, implying ΔM =13.1 MeV 4. There is no evidence for a strong decay branch to ¹⁸O_{g.s.}. T_{1/2}=0.63 s 3 was deduced from the γ -gated β -ray decay curve. The ground state spin was constrained as J=(0,1,2)⁻ from analysis of log*ft*.
- 2001KaZY: The ¹⁸O(n,p) cross section was measured at E_n =14.94 MeV using activation techniques at the JAERI D-T neutron source. σ =1.15 mb *17*.

¹⁸N Levels

E(level)	T _{1/2}	Comments
0^{\dagger}	0.63 s 3	E(level): $\Delta M=13.1$ MeV 4. T _{1/2} : From (1964Ch19).

[†] The ground state was later resolved as a doublet in ¹⁸O(⁷Li,⁷Be) (1983Pu01).

¹⁸O(d,²He) **1978DeYP**

1978DeYP: ¹⁸O(d,²He \rightarrow 2p). Using a ¹⁸O gas target and E_d=50 and 55 MeV beams from the 88-inch, the ¹⁸O(d,²He) energy spectrum was determined from analysis of the residual 2p particles from ²He breakup. Evidence for three levels is presented based on a strong central peak with broad shoulders on either side. These are labeled preliminarily as ¹⁸N*(0,0.28,0.45 MeV) with ΔM =-13.04 MeV *10* corresponding to the ground state. The evaluator suggests that the strong central peak corresponds to the presently accepted 115 keV state. See also (1979DeZO).

¹⁸N Levels

E(level)[†]

Comments

 0?
 E(level): ΔM =-13.04 MeV 10.

 0.28×10³ 10
 0.45×10³? 10

[†] Energies deduced in this work are unreliable.

¹⁸O(t,³He) **1969St07**

1969St07: ¹⁸O(t,³He). E_t=22 MeV. Population of the ¹⁸N ground state was observed at the Los Alamos tandem facility. A 22 MeV triton beam entered a gas chamber filled with 99.3% ¹⁸O gas enriched oxygen. Reaction products were measured using a Δ E-E telescope that was moved to cover θ =16.5°, 20° and 25°. The 2.2 μ m thick Havar foil exit window of the target cell limited the sensitivity of the measurement so that only the ground state group was observed with Q=-14038 keV *30*; this corresponds to Δ M=13274 keV *30*.

¹⁸N Levels

E(level)

Comments

 0^{\dagger} E(level): $\Delta M=13274$ keV 30.

^{\dagger} The ground state was later resolved as a doublet in ¹⁸O(⁷Li, ⁷Be) (1983Pu01).

¹⁸O(⁷Li,⁷Be) **1983Pu01**

1983Pu01: The ¹⁸O(⁷Li,⁷Be) reaction was measured using the Australian National University Pelletron accelerator. A beam of ⁷Li ions impinged on a 140 μ g/cm² 99.2% enriched NiO¹⁸ target and reactions products were momentum analyzed using an Enge spectrometer at θ =4.5°, 8.5°, 10° and 15°. The lowest peak is resolved as a doublet where the ground state is found with Δ M=13116 keV 20. Additional peaks shown in the spectrum correspond to E_x=121 keV 10 and 747 keV 10. Additional groups associated with ¹⁸N, not shown in the article, are found at E_x=2.21 and 2.42 MeV.

¹⁸N Levels

E(level)	Comments
0	E(level): ΔM =13116 keV 20. E(level): The strength of this state is 7% of the strength of the 121 keV state
121 10	E(level): The strength of this state is 7% of the strength of the 121 keV state.
$747 \ 10$ 2.21×10 ³	
2.42×10^{3}	

¹⁸O(¹¹B,¹¹C) **1983Pu01**

1983Pu01: The article mainly discussed a ¹⁸O(⁷Li,⁷Be) measurement at Australian National University Pelletron accelerator. A note added in proof indicates new data on ¹⁸O(¹¹B,¹¹C) that shows ¹⁸N has a state at 0.58 MeV and none at 1.01 MeV. This result is relevant to discussion given in (1983Pu01) related to the shell model analysis found in (1982Ol01). No further results appear on ¹⁸O(¹¹B,¹¹C).

¹⁸N Levels

E(level)

580

¹⁸O(¹⁸O,¹⁸N) **1981NaZQ**

1981NaZQ: The ¹⁸O(¹⁸O,¹⁸N) reaction was measured using a E(¹⁸O)=100 MeV beam from the Orsay Tandem. The ¹⁸N reaction products were momentum analyzed using 180° double-focusing magnetic spectrograph at θ =4°-8°. The ground state was observed with Δ M=13207 keV 35 along with an excited state at 575 keV. See also (1981BeYZ).

¹⁸N Levels

E(level) [‡]	Comments
0 [†] 575 25	E(level): $\Delta M = 13207$ keV 35.

[†] The ground state was later resolved as a doublet in ${}^{18}O({}^{7}\text{Li}, {}^{7}\text{Be})$ (1983Pu01).

 \ddagger Energies deduced in this work are unreliable because of the low-lying doublet.

²⁸Si(p,¹⁸N):spallation 1993Bu21,2007Bu01

1993Bu21,2007Bu01: ²⁸Si(p,¹⁸N): A thick target of NaAlSiO₄ was bombarded by a 500 MeV proton beam to produce ¹⁸N ions that were selected by the TISOL separator at TRIUMF. The resulting ¹⁸N¹⁶O molecular beam was implanted in a 10 μ g/cm² carbon foil. After a 1.0 s collection time, the catcher foil was rotated to a position between two Si surface barrier detectors. T_{1/2}=620 ms 8 was measured for the activity.

The observed α -spectrum was calibrated at the E_{α} =1.081 and 1.409 MeV peaks (from ¹⁸O*(7616,8038)) and analyzed with the R-matrix approach. The full range of the α -particle spectrum was roughly double that of (1989Zh04) and additional α -groups were observed at higher energies. In the analysis the branching ratios are normalized to 12.2% from (1989Zh04).

¹⁸N Levels

E(level)	T _{1/2}	Comments
0	620 ms 8	Deduced discrete $\beta^{-\alpha}$ decay branches and normalized to $\%\beta^{-\alpha}=12.2$ from (1989Zh04). T _{1/2} : From (2007Bu01).

 ${}^{18}_{7}N_{11}$ -30

181 Ta(18 O, 18 N γ) 2020Zi03

2020Zi03: XUNDL dataset compiled at TUNL (2020).

The authors investigated the level structure of 18 N and measured the lifetime of the $E_x=2404$ keV state in 18 N via DSAM techniques.

A beam of 126 MeV ¹⁸O ions from the GANIL cyclotrons impinged on a 6.64 mg/cm² ¹⁸¹Ta target. The ¹⁸N ions that scattered at θ =45° (±6°) were momentum analyzed using the VAMOS++ ion tracking system. A collection of γ -ray detectors from the AGATA and PARIS arrays plus two large-volume LaBr₃ detectors provided a high granularity for γ -ray energy and angle measurement. The γ -ray detectors were aligned along the VAMOS++ axis at $\theta_{rel.}$ =115°-175° (AGATA) and $\theta_{rel.}$ =90° (PARIS+LaBr₃). The γ rays detected in coincidence with ¹⁸N ions in the VAMOS++ spectrometer were analyzed.

The authors developed a Monte Carlo analysis of the Doppler shift attenuation spectrum that accounts for population (and subsequent deexcitation) of levels via low-momentum transfer and deep-inelastic reaction processes. The accuracy of the method relies on the precise angle determination between the scattered projectile and the Doppler-shifted γ ray.

2020Zi01: Extension of analysis presented in (2020Zi03) except the γ -ray spectrum is shown over a broader range. Additional unplace transitions are discussed corresponding to E_{γ} =1720, 2073, 2301 keV.

See analysis of the ${}^{18}O+{}^{181}Ta$ fragmentation process in (2010Mi08).

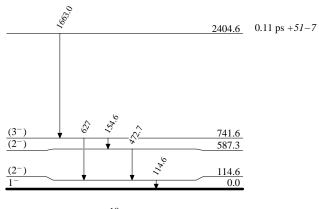
¹⁸N Levels

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	Comments
0.0	1-		
114.6	(2^{-})		
587.3	(2^{-})		
741.6	(3-)		
2404.6		0.11 ps +51-7	$T_{1/2}$: From $\tau = 0.16^{+74}_{-10}$ ps and $E_{\gamma} = 1663.0$ keV 8 (2020Zi03).

[†] From (2020Zi03) Figure 5.

 $\gamma(^{18}N)$

E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Comments
114.6 <i>1</i>	114.6	(2^{-})	0.0 1-	
154.6 <i>3</i>	741.6	(3 ⁻)	587.3 (2-)	
472.7 2	587.3	(2^{-})	114.6 (2 ⁻)	E_{γ} : From ¹⁸ C β^{-} (1991Pr03).
627 <i>1</i>	741.6	(3 ⁻)	114.6 (2 ⁻)	E_{γ} : From ⁹ Be(¹¹ B,2p γ) (2008Wi05).
^x 1566 [‡] 1				
1663.0 8	2404.6		741.6 (3-)	E_{γ} : From (2020Zi03); see also 1662.3 keV 3 in (2020Zi01).
^x 1720 [‡]				·
^x 2073.4 8				
^x 2300.9 8				


[†] From (2020Zi03) except where indicated.

[‡] Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

181 Ta(18 O, 18 N γ) 2020Zi03

Level Scheme

 $^{18}_{7}\mathrm{N}_{11}$

¹⁸¹Ta(²²Ne,¹⁸N) **1989Zh04**

- 1989Zh04: A thick Ta target was bombarded by a 35 MeV/nucleon ²²Ne beam to produce ¹⁸N ions that were selected by the Reaction Products Mass Separator (RPMS) at the NSCL/MSU. The ¹⁸N ions were implanted into a telescope comprised of five Si detectors that was situated in the focal plane of the RPMS. An implantation period of 1.2 s was used for collecting activity; this was followed by a 1.3 s counting period. The β -decay products were detected with essentially 100% efficiency. The apparatus was calibrated using β -delayed α -particle emissions groups from ¹¹Be and ⁸Li nuclei.
- Two strong groups are observed in the α -particle spectrum, resulting from decays of the ¹⁸O*(7616,8038) states with J^π=1⁻₃ and 1⁻₄, respectively. A broad peak near 3 MeV (E_x=9 MeV, $\Gamma_{\alpha} \approx 500$ keV) is also observed but the origin was unclear. (1987Aj02) suggests there may be 6 unresolved α -particle emitting groups in this region. The β -decay branching ratios to ¹⁸O*(7616,8038) are found as 6.8% 5 and 1.8% 2 assuming Γ_{α}/Γ =1.0 for these states. The branching ratio \geq (3.6 2)% was deduced for the broad structure. A total β -delayed α -decay branching ratio of (12.2 6)% is deduced.

¹⁸N Levels

E(level)

0

 $\%\beta^{-}\alpha = 12.2 \ 6 \ (1989\text{Zh04})$

Comments

²³²Th(p,¹⁸N) **1991Re02**

1991Re02: Spallation products from 800 MeV proton bombardment of a ²³²Th target were captured by a transport line with a mass-to-charge filter and transfered to the TOFI spectrometer at LAMPF. The beam line was separately tuned to transport a number of different nuclides. The ions were implanted in a Si detector, and identification by standard techniques was implemented. The β-delayed neutrons were detected in a polyethylene moderated ³He counter; half-lives and β-delayed neutron probabilities were deduced from analysis of the number of implanted ions (per beam pulse) and the rate of β-delayed neutrons detected in the zero-threshold counter. The β-delayed neutron probability =14.3% 20 was deduced along with T_{1/2}=790 ms 210; an additional proceedings result of P_n=12.0% 13 (U. Koster et al., AIP Conf. Proc. 455 (1998) p. 989) is mentioned in the text.
A reanalysis of the (1991Re02) data, with additional data was published in (1994ReZZ). The reanalysis indicates P_n=(12.0 13)%

and $T_{1/2}$ =658 ms 44. Other reanalyses of these data are found in (1993ReZX,1994KiZU,1995ReZZ,2008ReZZ).

¹⁸N Levels

 $\frac{\text{E(level)}}{0} \quad \frac{\text{T}_{1/2}}{\text{658 ms}}$

Comments

658 ms 44 $\frac{\beta^{-}n=12.0 \ 13 \ (1994 \text{ReZZ})}{\text{T}_{1/2}: \text{ From } (1994 \text{ReZZ})}$.

232 Th(18 O, 18 N),(22 Ne, 18 N) 1969Ar13

- 1969Ar13: The authors analyzed the transfer reaction products resulting from $E(^{18}O)=122$ MeV bombardment of a 5 mg/cm² metallic ²³²Th foil at Dubna. The reaction products were momentum analyzed in a magnetic spectrometer and then focused on a Δ E-E Si detector telescope, which provided particle identification. ¹⁸N was identified.
- 1977Ar06: The transfer reaction products resulting from $E(^{22}Ne)=172$ MeV bombardment of a 2.5 mg/cm² metallic ²³²Th foil were measured at Dubna. The reaction products were momentum analyzed in a magnetic spectrometer positioned at θ =12° and 40° and then focused on a ΔE -E Si detector telescope, which provided particle identification. ¹⁸N was identified.

¹⁸N Levels

 $\frac{\mathrm{E(level)}}{\mathrm{0}}$

REFERENCES FOR A=18

1964Ch19	L.F.Chase, Jr., H.A.Grench, R.E.McDonald, F.J.Vaughn - Phys. Rev. Letters 13, 665 (1964).
1969Ar13	New Isotope of Nitrogen: N ¹⁸ . A.G.Artukh, G.F.Gridnev, V.L.Mikheev, V.V.Volkov - Nucl.Phys. A137, 348(1969).
1969St07	<i>New Isotopes</i> ^{22}O , ^{20}N and ^{18}C <i>Produced in Transfer Reactionswith Heavy ions.</i> R.H.Stokes, P.G.Young - Phys.Rev. 178, 1789 (1969). ^{18}N and ^{22}F <i>Ground States</i> , ^{22}F <i>Excited States, and</i> $T = 2$ <i>Analogs in</i> ^{22}Ne .
1972Aj02	F.Ajzenberg-Selove - Nucl.Phys. A190, 1 (1972); Erratum Nucl.Phys. A227, 244 (1974). Energy Levels of Light Nuclei A = 18-20.
1977Ar06	A.G.Artukh, G.F.Gridnev, V.L.Mikheev, V.V.Volkov - Nucl.Phys. A283, 350 (1977). Some Regularities in the Production of Isotopes with $4 \le Z \le 9$ in the Interaction of ²² Ne with ²³² Th.
1978Aj05	F.Ajzenberg-Selove - Nucl.Phys. A300, 13 (1978). Energy Levels of Light Nuclei $A = 18$.
1978DeYP	REPT LBL-8151,P9,de Meijer.
1978St27	G.Strassner, P.Truol, J.C.Alder, B.Gabioud et al Helv.Phys.Acta 51, 513 (1978). Anregung von Spin-Isospin-Moden der Dipol-Riesenresonanzen in ¹⁶ N und ¹⁸ N mittels strahlendem Einfang von negativen
1979BeZL	<i>Pionen in</i> ¹⁶ <i>O und</i> ¹⁸ <i>O</i> . M.Bernas, C.Detraz, D.Guillemaud, E.Kashy et al Univ Paris, Inst.Phys.Nucl., Ann.Rept., pN23 (1979).
1979DeZO	Masse et Etats Excites de ¹⁴ B et ¹⁸ N. R.J.de Meijer, D.P.Stahel, A.N.Bice, R.Jahn, J.Cerny - KVI 1978 Ann.Rept, p.28 (1979). Observation of ¹⁸ N via the ¹⁸ O(d_i^2 He) ¹⁸ N Reaction.
1979St08	G.Strassner, P.Truol, J.C.Alder, B.Gabioud et al Phys.Rev. C20, 248 (1979).
	Excitation of E1 and M2 Resonances via (π^-, γ) Reactions on ¹⁶ , ¹⁸ O.
1980BeYR	REPT IPN 1980 Annual,PN31,Bernas.
1980Ge09	W.J.Gerace, M.M.Sternheim, K.Yoo, D.A.Sparrow - Phys.Rev. C22, 2497 (1980).
1980KrZX	<i>Limitations of Pion Charge Excharge Calculations using Isospin Identities.</i> L.Kraus, I.Linck, A.Poves, J.C.Sens - Proc.Int.Conf.on Nucl.Phys., Berkeley, p.135 (1980). (⁷ Li, ³ He) reaction on the carbon isotopes; ¹⁸ N Mass.
1980Na14	F.Naulin, C.Detraz, M.Bernas, D.Guillemaud et al J.Phys.(Paris), Lett. 41, L-79 (1980).
1981BeYZ	Mass Excess and Excited States of ${}^{14}B$ and ${}^{18}N$ from the (${}^{14}C, {}^{14}B$) and (${}^{18}O, {}^{18}N$) Reactions. M.Bernas, J.De Boer, C.Detraz, D.Guillemaud et al Univ.Paris, Inst.Phys.Nucl., Ann.Rept., p.N20 (1981).
1981NaZQ	Etude des Noyaux Legers Riches en Neutrons par Reaction Nucleaire a deux Corps. F.Naulin, C.Detraz, M.Roy-Stephan, M.Bernas et al Proc.Int.Conf.Nuclei Far from Stability, Helsingor, Denmark, Vol.2, p.376 (1981); CERN-81-09 (1981).
1981SuZS	A Study of Light Neutron-Rich Nuclei by Two-Body Nuclear Reactions. T.Suzuki - Diss.Absr.In. 42B, 2427 (1981).
1982ArZT	A Systematic Study of Muon Capture. A.Arell, D.Ashery, H.W.Bauer, M.D.Cooper et al ANL-82-74, p.13 (1982).
10000	Inclusive Reaction Cross Sections for ${}^{18,16}O(\pi^{\pm},\pi^{0})$.
1982Gm02	M.Gmitro, HR.Kissener, P.Truol, R.A.Eramzhyan - Fiz.Elem.Chastits At.Yadra 13, 1230 (1982); Sov.J.Part.Nucl. 13, 513 (1982). Basic Mechanisms of Radiative Capture of Pions.
1982O101	J.W.Olness, E.K.Warburton, D.E.Alburger, C.J.Lister, D.J.Millener - Nucl.Phys. A373, 13 (1982). The Beta Decay of ^{18}N and $T = 2$ States of Mass 18.
1983Aj01	F.Ajzenberg-Selove - Nucl.Phys. A392, 1 (1983); Errata Nucl.Phys. A413, 168 (1984). Energy Levels of Light Nuclei A = 18-20.
1983As01	D.Ashery, D.F.Geesaman, R.J.Holt, H.E.Jackson et al Phys.Rev.Lett. 50, 482 (1983). Isospin Effects in Pion Single-Charge-Exchange Reactions.
1983Pu01	G.D.Putt, L.K.Fifield, M.A.C.Hotchkis, T.R.Ophel, D.C.Weisser - Nucl.Phys. A399, 190 (1983). <i>The Mass of</i> ¹⁸ N.
1983Sh44	R.K.Sheline - Aust.J.Phys. 36, 825 (1983).
1984As05	The Spectroscopy of ${}_{8}^{19}O_{11}$ and the ${}_{7}^{18}N_{11}$ Ground State. D.Ashery, D.F.Geesaman, R.J.Holt, H.E.Jackson et al Phys.Rev. C30, 946 (1984).
1984Ba24	Inclusive Pion Single-Charge-Exchange Reactions. F.C.Barker - Aust.J.Phys. 37, 17 (1984).
1987Aj02	<i>Low-Lying Negative-Parity Levels of</i> ¹⁷ <i>N and</i> ¹⁸ <i>N.</i> F.Ajzenberg-Selove - Nucl.Phys. A475, 1 (1987).
1987Su06	Energy Levels of Light Nuclei A = 18-20. T.Suzuki, D.F.Measday, J.P.Roalsvig - Phys.Rev. C35, 2212 (1987).
1988Du09	Total Nuclear Capture Rates for Negative Muons. J.P.Dufour, R.Del Moral, F.Hubert, D.Jean et al Phys.Lett. 206B, 195 (1988).
	Beta Delayed Multi-Neutron Radioactivity of ¹⁷ B, ¹⁴ Be, ¹⁹ C.
1988DuZT	J.P.Dufour, R.Del Moral, F.Hubert, D.Jean et al Proc. 5th Int.Conf.Nuclei Far from Stability, Rosseau Lake, Canada 1987, Ed., I.S.Towner, p.344 (1988).

REFERENCES FOR A=18(CONTINUED)

1988DuZZ	Spectroscopic Measurements with a New Method: The projectile-fragments isotopic separation. JP.Dufour, M.Beau, R.Del Moral, A.Fleury et al GSI-88-1, p.24 (1988).
1988Mu08	β -Delayed Multi-Neutron Radioactivity of ^{17}B , ^{19}C and ^{14}Be . A.C.Mueller, D.Bazin, W.D.Schmidt-Ott, R.Anne et al Z.Phys. A330, 63 (1988).
	β -Delayed Neutron Emission of ¹⁵ B, ¹⁸ C, ¹⁹ , ²⁰ N, ³⁴ , ³⁵ Al and ³⁹ P.
1988PoZS	N.A.F.M.Poppelier, J.H.de Vries, A.A.Wolters, P.W.M.Glaudemans - Proc. 5th Int.Conf.Nuclei Far from Stability, Rosseau Lake, Canada 1987, Ed., I.S.Towner, p.334 (1988). <i>A Shell-Model Study of Light Exotic Nuclei</i> .
1989Le16	M.Lewitowicz, Yu.E.Penionzhkevich, A.G.Artukh, A.M.Kalinin et al Nucl.Phys. A496, 477 (1989). β-Delayed Neutron Emission of the Isotopes ²⁰ C, ⁴⁰ , ⁴¹ , ⁴² P, ⁴³ , ⁴⁴ S.
1989Zh04	Z.Zhao, M.Gai, B.J.Lund, S.L.Rugari et al Phys.Rev. C39, 1985 (1989). Beta Decay of ¹⁸ N to Alpha Particle Emitting States in ¹⁸ O and a Proposed Search for Parity Violation in ¹⁸ O.
1991Pr03	M.S.Pravikoff, F.Hubert, R.Del Moral, JP.Dufour et al Nucl.Phys. A528, 225 (1991). The Beta Decay of ¹⁸ C.
1991Re02	P.L.Reeder, R.A.Warner, W.K.Hensley, D.J.Vieira, J.M.Wouters - Phys.Rev. C44, 1435 (1991).
1993Bu21	Half-Lives and Delayed Neutron Emission Probabilities of Neutron-RichLi-Al Nuclides. L.Buchmann, R.E.Azuma, C.A.Barnes, J.M.D'Auria et al Nucl.Instrum.Methods Phys.Res. B79, 330 (1993).
1993Ch06	A Study of Beta Delayed Alpha Emission from ¹⁶ N. WT.Chou, E.K.Warburton, B.A.Brown - Phys.Rev. C47, 163 (1993).
1993Pa14	Gamow-Teller Beta-Decay Rates for $A \le 18$ Nuclei. S.K.Patra - Nucl.Phys. A559, 173 (1993).
1993Po11	Relativistic Mean Field Study of Light Nuclei. N.A.F.M.Poppelier, A.A.Wolters, P.W.M.Glaudemans - Z.Phys. A346, 11 (1993). Properties of Exotic Light Nuclei.
1993ReZX	P.L.Reeder, H.S.Miley, W.K.Hensley, R.A.Warner et al Proc.6th Intern.Conf.on Nuclei Far from Stability + 9th In- tern.Conf.on Atomic Masses and Fundamental Constants, Bernkastel-Kues, Germany, 19-24 July, 1992, R.Neugart,
1993ShZW	 A.Wohr, Eds., p.623 (1993). Average Energy of Delayed Neutron Spectra: A = 9-20. B.M.Sherrill, S.A.Austin, D.Bazin, W.Benenson et al Proc.6th Intern.Conf.on Nuclei Far from Stability + 9th In-
	tern.Conf.on Atomic Masses and Fundamental Constants, Bernkastel-Kues, Germany, 19-24 July, 1992, R.Neugart, A.Wohr, Eds., p.891 (1993). Studies of Nuclei Far from Stability using Radioactive Beams at the NSCL.
1994KiZU	YK.Kim - Utah State Univ. Logan, Utah (1994). Measurement of the half-life, delayed neutron emission probability, delayed neutron average energy, and delayed charged
1994OzZY	particle energy spectrum for very neutron-rich helium through sodium nuclides. A.Ozawa, R.N.Boyd, J.Kolata, F.Chloupek et al RIKEN-93, p.45 (1994).
1994ReZZ	 Beta-Delayed Neutron Decay of ¹⁹C and Its Astrophysical Implications. P.L.Reeder, Y.Kim, W.K.Hensley, H.S.Miley et al Proc.Intern.Conf.Nuclear Data for Science and Technology, Gatlinburg, Tennesse, 9-13 May, 1994, J.K.Dickens, Ed., American Nuclear Society, Vol.1, p.324 (1994). Beta decay data for neutron-rich li-Cl nuclides.
1994Sc01	K.W.Scheller, J.Gorres, J.G.Ross, M.Wiescher et al Phys.Rev. C49, 46 (1994). Study of the β -Delayed Neutron Decay of ¹⁸ N.
1995Oz02	A.Ozawa, G.Raimann, R.N.Boyd, F.R.Chloupek et al Nucl.Phys. A592, 244 (1995). Study of the β -Delayed Neutron Emission of ¹⁹ C.
1995OzZY	A.Ozawa, R.N.Boyd, J.Kolata, F.Chloupek et al RIKEN-94, p.39 (1995). Beta-Delayed Neutron Decay of ¹⁹ C and Its Astrophysical Implications.
1995ReZZ	P.L.Reeder, Y.Kim, W.K.Hensley, H.S.Miley et al Proc.Intern.Conf on Exotic Nuclei and Atomic Masses, Arles, France, June 19-23, 1995, p.587 (1995).
1995Sc03	Beta Decay Half-Lives and Delayed Particle Emission from TOFI Measurements. K.W.Scheller, J.Gorres, S.Vouzoukas, M.Wiescher et al Nucl.Phys. A582, 109 (1995). Study of the β -Delayed Neutron Decay of ¹⁷ C and ¹⁸ C.
1995Ti07	D.R.Tilley, H.R.Weller, C.M.Cheves, R.M.Chasteler - Nucl.Phys. A595, 1 (1995). Energy Levels of Light Nuclei A = 18-19.
1997Ba54	X.Bai, J.Hu - Phys.Rev. C56, 1410 (1997). <i>Microscopic Study of the Ground State Properties of Light Nuclei</i> .
1997Co15	N.Coulier, G.Neyens, S.Ternier, K.Vyvey et al Acta Phys.Pol. B28, 407 (1997). Direct Determination of the Alignment of Projectile Fragments from a β-Anisotropy Level Mixing Resonance (LMR) Mea-
1997Ne01	surement. G.Neyens, N.Coulier, S.Ternier, K.Vyvey et al Phys.Lett. 393B, 36 (1997). Nuclear Spin Alignment and Static Moments of Light Projectile Fragments Measured with the Level Mixing Resonance
1998Co37	(<i>LMR</i>) Method. N.Coulier, G.Neyens, S.Teughels, G.Georgiev et al Nuovo Cim. 111A, 727 (1998). The Quadrupole Moment of ¹⁸ N, Measured with the Level Mixing Resonance (<i>LMR</i>) Method.

REFERENCES FOR A=18(CONTINUED)

1998Mu17	N.C.Mukhopadhyay, H.C.Chiang, S.K.Singh, E.Oset - Phys.Lett. 434B, 7 (1998). Inclusive Muon Capture in Light Nuclei.
1998Ne04	G.Neyens, N.Coulier, S.Teughels, S.Ternier et al Acta Phys.Hung.N.S. 7, 101 (1998). Quadrupole and Magnetic Moment Measurements on Spin-Aligned Projectile Fragments.
1998Og04	H.Ogawa, K.Asahi, K.Sakai, A.Yoshimi et al J.Phys.(London) G24, 1399 (1998). Static Moments of the ¹⁸ N Ground State.
1998OgZY	H.Ogawa, K.Asahi, K.Sakai, A.Yoshimi et al RIKEN-97, p.72 (1998).
1999He33	Measurements of the ¹⁸ N Magnetic Moment and Electric Quadrupole Moment. H.Herndl, R.Hofinger, J.Jank, H.Oberhummer et al Phys.Rev. C60, 064614 (1999).
1999Ne01	Reaction Rates for Neutron Capture Reactions to C, N, and O Isotopes to the Neutron Rich Side of Stability. G.Neyens, N.Coulier, S.Teughels, G.Georgiev et al Phys.Rev.Lett. 82, 497 (1999).
	Magnetic Moment of the 1^- Ground State in ¹⁸ N Measured with a New β Level Mixing Nuclear Magnetic Resonance Technique.
1999Og03	H.Ogawa, K.Asahi, K.Sakai, A.Yoshimi et al Phys.Lett. 451B, 11 (1999). Magnetic Moment and Electric Quadrupole Moment of the ¹⁸ N Ground State.
1999OgZV	H.Ogawa, K.Asahi, K.Sakai, A.Yoshimi et al RIKEN-98, p.77 (1999). Magnetic Moment and Electric Quadrupole Moment of the ¹⁸ N Ground State.
2000AsZZ	K.Asahi, K.Sakai, H.Ogawa, H.Miyoshi et al RIKEN-AF-NP-371 (2000). Electromagnetic Moments of Neutron-Rich Nuclei Measured with Polarized Radioactive Ion Beams.
2000Oz01	A.Ozawa, O.Bochkarev, L.Chulkov, D.Cortina et al Nucl.Phys. A673, 411 (2000).
2000Zh42	Production Cross-Sections of Light Neutron-Rich Nuclei from ⁴⁰ Ar Fragmentation at About 1 GeV/nucleon. SG.Zhou, J.Meng, S.Yamaji, SC.Yang - Chin.Phys.Lett. 17, 717 (2000).
2001KaZY	Deformed Relativistic Hartree Theory in Coordinate Space and in Harmonic Oscillator Basis. Y.Kasugai, Y.Ikeda, H.Takeuchi - INDC(JPN)–188/U (JAERI-Conf 2001-006), p.190 (2001).
2001Oz03	Measurement of (n,p) Reaction Cross Sections for Short-Lived Products $(T_{1/2} = 0.6 \sim 13.8 \text{ s})$ by 14 MeV Neutrons. A.Ozawa, O.Bochkarev, L.Chulkov, D.Cortina et al Nucl.Phys. A691, 599 (2001).
20010203	Measurements of Interaction Cross Sections for Light Neutron-Rich Nuclei at Relativistic Energies and Determination of Effective Matter Radii.
2001Oz04	A.Ozawa, T.Suzuki, I.Tanihata - Nucl.Phys. A693, 32 (2001). Nuclear Size and Related Topics.
2001Re03	M.P.Rekalo, E.Tomasi-Gustafsson - Phys.Lett. 500B, 53 (2001). Associative Photoproduction of Charmed Particles Near Threshold.
2002Li40	XQ.Li, DX.Jiang, YL.Ye, H.Hua et al Chin.Phys.Lett. 10, 917 (2002). Isotopic Distributions of the ¹⁸ N Fragmentation Products in Coincidence with Neutrons on Targets ¹⁹⁷ Au and ⁹ Be.
2002Me12	J.Meng, SG.Zhou, I.Tanihata - Phys.Lett. 532B, 209 (2002).
2003Fr32	<i>The Relativistic Continuum Hartree-Bogoliubov Description of Charge-Changing Cross Section for C,N,O and F Isotopes.</i> R.H.France III, Z.Zhao, M.Gai - Phys.Rev. C 68, 057302 (2003).
2003Um02	Absolute branching ratio of β -delayed γ -ray emission of ¹⁸ N. A.Umeya, K.Muto - Nucl.Phys. A722, 558c (2003).
2004La24	Shell model study on E2 effective charges in light neutron-rich nuclei. G.A.Lalazissis, D.Vretenar, P.Ring - Eur.Phys.J. A 22, 37 (2004).
2004Ne16	Relativistic Hartree-Bogoliubov description of deformed light nuclei. V.O.Nesterov - Ukr.J.Phys. 49, 225 (2004).
	Application of the quasiclassical approximation for the analysis of properties of light atomic nuclei with high excess of <u>neutrons</u> .
2004Su23	T.Suzuki, H.Sagawa, K.Hagino - Yad.Fiz. 67, 1702 (2004); Phys.Atomic Nuclei 67, 1674 (2004). Electric Dipole Transitions in Neutron-Rich Nuclei.
2005Fo13	H.T.Fortune, R.Sherr - Phys.Rev. C 72, 034304 (2005). ¹⁸ Na: Mass excess and low-lying states.
2005Li05	JY.Liu, WJ.Guo, YZ.Xing, XG.Lee - Chin.Phys.Lett. 22, 65 (2005). Isospin Momentum-Dependent Interaction and Its Role on the Isospin Fractionation Ratio in Intermediate Energy Heavy
2005Li60	Ion Collisions. Z.H.Li, Y.L.Ye, H.Hua, D.X.Jiang et al Phys.Rev. C 72, 064327 (2005).
2006Kh08	β -decay of the neutron-rich nucleus ¹⁸ N. A.Khouaja, A.C.C.Villari, M.Benjelloun, D.Hirata et al Nucl.Phys. A780, 1 (2006).
	Reaction cross-section and reduced strong absorption radius measurements of neutron-rich nuclei in the vicinity of closed shells $N = 20$ and $N = 28$
2006Ko02	V.B.Kopeliovich, A.M.Shunderuk, G.K.Matushko - Phys.Atomic Nuclei 69, 120 (2006). Mass Splittings of Nuclear Isotopes in Chiral Soliton Approach.
2007Bu01	L.Buchmann, J.D'Auria, M.Dombsky, U.Giesen et al Phys.Rev. C 75, 012804 (2007). β -delayed α emission of ¹⁸ N: Broad $J^{\pi} = I^{-}$ states in the ¹⁴ C + α system.
2007Lo05	J.L.Lou, Z.H.Li, Y.L.Ye, H.Hua et al Phys.Rev. C 75, 057302 (2007).

Observation of a new transition in the beta-delayed neutron decay of ¹⁸N.

REFERENCES FOR A=18(CONTINUED)

2007No13	M.Notani, H.Sakurai, N.Aoi, H.Iwasaki et al Phys.Rev. C 76, 044605 (2007). Projectile fragmentation reactions and production of nuclei near the neutron drip line.
2008ReZZ	P.L.Reeder - Priv.Com. (2008).
2008ReLL 2008Wi05	M.Wiedeking, P.Fallon, A.O.Macchiavelli, L.A.Bernstein et al Phys.Rev. C 77, 054305 (2008).
	Nuclear structure of ^{18}N and the neighboring $N = 11$ isotones.
2008WiZT	M.Wiedeking, P.Fallon, A.O.Macchiavelli, J.Gibelin et al Proc.4th.Intern.Conf.Fission and Properties of Neutron-Rich Nuclei, Sanibel Island, Florida (2007); J.H.Hamilton, A.V.Ramayya, H.K.Carter, Eds., p.548 (2008). ¹⁶ C and ¹⁸ N: Lifetime Measurements of their First-Excited States.
2009De34	M.De Rydt, D.L.Balabanski, J.M.Daugas, P.Himpe et al Phys.Rev. C 80, 037306 (2009).
	g factors of ^{17}N and ^{18}N remeasured.
2010Mi08	T.I.Mikhailova, B.Erdemchimeg, A.G.Artyukh, M.Colonna et al Int.J.Mod.Phys. E19, 678 (2010).
	Fragment production in peripheral heavy ion collisions at Fermi energies in transport models.
2012Kw02	E.Kwan, D.J.Morrissey, D.A.Davies, M.Steiner et al Phys.Rev. C 86, 014612 (2012).
	Systematic studies of light neutron-rich nuclei produced via the fragmentation of 40 Ar.
2012Ro22	C.Rodriguez-Tajes, D.Cortina-Gil, H.Alvarez-Pol, T.Aumann et al Eur.Phys.J. A 48, 95 (2012).
	Gamma-ray measurements in the one-neutron knockout of ^{17}C , ^{19}N , ^{21}O and ^{25}F .
2012Yu07	C.Yuan, T.Suzuki, T.Otsuka, F.Xu, N.Tsunoda - Phys.Rev. C 85, 064324 (2012).
	Shell-model study of boron, carbon, nitrogen, and oxygen isotopes with a monopole-based universal interaction.
2013Ho21	C.R.Hoffman, M.Albers, M.Alcorta, S.Almaraz-Calderon et al Phys.Rev. C 88, 044317 (2013).
	Single-neutron excitations in ¹⁸ N.
2014StZZ	N.J.Stone - REPT INDC(NDS)-0658 (2014).
	Table of nuclear magnetic dipole and electric quadrupole moments.
2015Mo17	S.Momota, I.Tanihata, A.Ozawa, M.Notani et al Phys.Rev. C 92, 024608 (2015).
	Velocity-dependent transverse momentum distribution of fragments produced from ⁴⁰ Ar+ ⁹ Be at 95 MeV/nucleon.
2016Ma06	HL.Ma, BG.Dong, YL.Yan, HQ.Zhang et al Phys.Rev. C 93, 014317 (2016).
	Pygmy and giant dipole resonances in the nitrogen isotopes.
2016Ta07	I.Tanihata, S.Terashima, R.Kanungo, F.Ameil et al Prog.Theor.Exp.Phys. 2016, 043D05 (2016).
	Observation of large enhancements of charge exchange cross sections with neutron-rich carbon isotopes.
2017Ah08	S.Ahmad, A.A.Usmani, Z.A.Khan - Phys.Rev. C 96, 064602 (2017).
	Matter radii of light proton-rich and neutron-rich nuclear isotopes.
2018Fo04	H.T.Fortune - Phys.Rev. C 97, 034301 (2018).
	Mirror energy differences of $2s_{1/2}$, $1d_{5/2}$ and $1f_{7/2}$ states.
2018Fo17	H.T.Fortune - Phys.Rev. C 98, 024307 (2018).
	Matter radii of ^{16–23} N.
2018Ji07	W.G.Jiang, B.S.Hu, Z.H.Sun, F.R.Xu - Phys.Rev. C 98, 044320 (2018).
	Gogny-force-derived effective shell-model Hamiltonian.
2019Ba11	S.Bagchi, R.Kanungo, W.Horiuchi, G.Hagen et al Phys.Lett. B 790, 251 (2019).
	Neutron skin and signature of the $N = 14$ shell gap found from measured proton radii of $1^{7-22}N$.
2019Fo08	H.T.Fortune - Phys.Rev. C 99, 034309 (2019).
	Ratios of matter radii for isotones of light nuclei.
2019StZV	N.J.Stone - INDC(NDS)-0794 (2019).
	Table of Recommended Nuclear Magnetic Dipole Moments: Part I – Long-lived States.
2019Zh29	G.Zhu, S.W.Li, J.F.Beacom - Phys.Rev. C 99, 055810 (2019).
	Developing the MeV potential of DUNE: Detailed considerations of muon-induced spallation and other backgrounds.
2020Zi01	S.Ziliani, for the AGATA Collaborations - Acta Phys.Pol. B51, 709 (2020).
	Spectroscopy of Neutron-Rich Nitrogen Isotopes with AGATA + PARIS + VAMOS.
2020Zi03	S.Ziliani - Nuovo Cim. C 43, 107 (2020).
	Lifetime measurement in the femtoseconds range in neutron-rich light nuclei with the AGATA tracking array.
2021Wa16	M.Wang, W.J.Huang, F.G.Kondev, G.Audi, S.Naimi - Chin.Phys.C 45, 030003 (2021).

2021Wa16 M.Wang, W.J.Huang, F.G.Kondev, G.Audi, S.Naimi - Chin.Phys.C 45, 030003 (2021). *The AME 2020 atomic mass evaluation (II). Tables, graphs and references.*