Adopted Levels 2021Ji15

S(p)=-17. 70 2021Ji15

In (2021Ji15) S_{4p} =-4865 keV 35; using masses from (2021Wa16) this implies ΔM =42025 keV 35, S_{2p} =-3462 keV 40 and S_p =-17 keV 70.

Theoretical Developments:

- In (1997Pa38) a relativistic mean field theory approach was utilized that predicted binding energies of either E_b =93.286 MeV or 95.238 MeV.
- A time dependent Hartree-Fock-Bogoliubov theory study of even A Mg isotope ground state properties (2011Eb04) predicted ¹⁸Mg should be stable with respect to proton decay by 200 keV. These results are also reported in (2014Eb02).
- An improved Kelson-Garvey model mass analysis of proton rich nuclei (2013Ti01) deduced ¹⁸Mg was bound with E_b =92.589 MeV 32, ΔM =43.306 MeV 32, S_p = -0.672(39) MeV and S_{2p} = -4.233 MeV 34.
- In (2013Fo13), a simple potential model used known spectroscopic factors to calculate the ¹⁸Mg ground state as the mirror image of ¹⁸C. Results were given as $E(2p+^{16}Ne)=3.87$ MeV *10*, corresponding to $S_{1p}=-820$ keV *140* and $S_{2p}=-3870$ keV *100*. Later, in (2016Fo20) the same author developed a simple parameterization of the mirror image differences of several Mg isotopes to obtain the 2 proton separation energies. For ¹⁸Mg, $S_{2p}=-3.84$ MeV *35* was obtained and found in agreement with the (2013Fo13) prediction.
- In (2019Sa58), predictions of ¹⁸Mg ground state properties (charge density, neutron and proton radii, deformation parameter, etc.) obtained from both a relativistic mean field theory analysis and the Nillson-Strutinsky method were compared.
- A Gamov shell model was used by (2021Mi10) to calculate ground state energies and widths of the ¹⁵⁻¹⁸C isotopes along with the mirror ¹⁵F, ¹⁶Ne, ¹⁷Na and ¹⁸Mg parameters. The model framework assumed a ¹⁴O core plus valence nucleon picture. For ¹⁸Mg a J^π=0⁺ ground state and a 2⁺ excited state are predicted around S_{2p}≈-3.8 MeV and S_{2p}=-5.3 MeV, respectively. Note: S_{2p}(¹⁶Ne)≈-1.4 MeV, so ¹⁸Mg_{g.8} is predicted with S_{4p}≈-5.2 MeV. See also (Li, et al., Physics 3 977 (2021)).

¹⁸Mg Levels

Cross Reference (XREF) Flags

A ${}^{9}\text{Be}({}^{20}\text{Mg}, {}^{18}\text{Mg})$

E(level)	Jπ†	Г	¹⁴ O+4p Invariant Mass (MeV)	XREF	Comments
0	-	0.12 MeV 10		Α	%2p=100
1.84×10 ³ 14	2+	0.27 MeV 15	6.71 14	Α	%2p=100

[†] From systematics.

⁹Be(²⁰Mg,¹⁸Mg) 2021Ji15

2021Ji15: XUNDL dataset compiled by TUNL (2022).

- The authors analyzed the ¹⁸Mg (¹⁴O+4p) excitation spectra produced in ²⁰Mg reactions on a ⁹Be target. The present letter reports the first observation of ¹⁸Mg resonances produced via 2n knockout reactions from ²⁰Mg.
- A beam of 103 MeV/nucleon ²⁰Mg ions, from the NSCL/A1900 fragment separator, impinged on a 1 mm thick ⁹Be target positioned at the S800 target position. Residual protons were momentum analyzed using a position sensitive annular Si-CsI(Tl) Δ E-E array that covered $\theta_{polar}=1.2^{\circ}$ to 10.1°. The scintillating-fiber array (SFA) provided precise emission angle information for heavier products ejected along the beam direction before they were momentum analyzed using the S800 spectrometer. The invariant mass spectrum (E_T) was deduced from analysis of the complete ¹⁴O+4p particle kinematics.
- Two peaks are found in the spectrum; the ground state is identified at E_T =4865 keV 35 while a second state (presumably with J^{π} =2⁺) is observed at E_T =6.71 MeV 14. After correcting for the experimental resolution, the widths Γ =115 keV 100 and 266 keV 150 are deduced for the ground and first excited states, respectively.
- The authors developed a Monte Carlo model to analyzed the energy spectra of the four sub-systems (i.e. ¹⁴O+p, ¹⁴O+2p, ¹⁴O+3p and p+p) and to gain insight into details of the ¹⁸Mg_{g.s.} decay process. The measured data are consistent with two sequential 2p emissions, i.e. ¹⁸Mg_{g.s.} \rightarrow 2p+¹⁶Be_{g.s.} \rightarrow 2p+^{(2p+¹⁴O_{g.s.}). However, the authors caution that their model is not strongly sensitive to contributions from ¹⁸Mg sequential 2p decay via broad ¹⁷Na states.}

Analysis of the $\Delta E(0^+-2^+)$ systematics for nearby nuclei suggests a disappearance of N=8 magicity in the Mg isotopes.

¹⁸Mg Levels

E(level)	$J^{\pi \dagger}$	Г	¹⁴ O+4p Invariant Mass (MeV)	Comments
0	0^{+}	0.12 MeV 10	4.865 35	%2p≈100
1.84×10 ³ 14	2+	0.27 MeV 15	6.71 14	%2p≈100

[†] From systematics.

REFERENCES FOR A=18

1997Pa38	S.K.Patra, R.K.Gupta, W.Greiner - Int.J.Mod.Phys. E6, 641 (1997).					
	Relativistic Mean-Field Theory and the Structural Properties of Ne,Mg,Si,S,Ar and Ca Nuclei from Proton- to Neutron-Drip					
201151.04	Lines.					
2011Eb04	S.Ebata, T.Nakatsukasa, K.Yabana - J.Phys.:Conf.Ser. 312, 092023 (2011).					
	<i>Linear response calculation using the canonical-basis TDHFB with a schematic pairing functional.</i>					
2013Fo13	N.Fotiades, M.Devlin, R.O.Nelson, T.Granier - Phys.Rev. C 87, 044336 (2013).					
	Low-spin states in 86 Kr from the (n,n') reaction.					
2013Ti01	J.Tian, N.Wang, C.Li, J.Li - Phys.Rev. C 87, 014313 (2013).					
	Improved Kelson-Garvey mass relations for proton-rich nuclei.					
2014Eb02	S.Ebata, T.Nakatsukasa, T.Inakura - Phys.Rev. C 90, 024303 (2014); Erratum Phys.Rev. C 92, 069902 (2015).					
	Systematic investigation of low-lying dipole modes using the canonical-basis time-dependent Hartree-Fock-Bogoliubov					
	theory.					
2016Fo20	H.T.Fortune - Phys.Rev. C 94, 044305 (2016).					
	Masses of ^{17,18,19,20} Mg.					
2019Sa58	G.Saxena, M.Kumawat, M.Aggarwal - Int.J.Mod.Phys. E28, 1950101 (2019).					
	Search for exotic features in the ground state light nuclei with $10 \le Z \le 18$ from stable valley to drip lines.					
2021Ji15	Y.Jin, C.Y.Niu, K.W.Brown, Z.H.Li et al Phys.Rev.Lett. 127, 262502 (2021).					
	First Observation of the Four-Proton Unbound Nucleus ¹⁸ Mg.					
2021Mi10	N.Michel, J.G.Li, F.R.Xu, W.Zuo - Phys.Rev. C 103, 044319 (2021).					
	Proton decays in 16 Ne and 18 Mg and isospin-symmetry breaking incarbon isotopes and isotones.					
2021Wa16	M.Wang, W.J.Huang, F.G.Kondev, G.Audi, S.Naimi - Chin.Phys.C 45, 030003 (2021).					
	The AME 2020 atomic mass evaluation (II). Tables, graphs and references.					