Adopted Levels 2011Gr13

The nucleus ¹⁸Be is unbound to neutron and multi-neutron decay; it has not been experimentally observed.

A theoretical model developed in 2011Gr13 in suggests ¹⁸Be is a candidate for "true" 4n decay. Within the article they suggest 2n- and 4n-decay may provide a manifestation of neutron radioactivity that is analogous to 2-proton decay. They develop a model for estimating resonance widths where the effective few-body "centrifugal barrier" increases rapidly as the number of emitted particles increases. The resonance lifetime depends mainly on the configuration and decay energy of the valence neutrons.

The authors suggest using a 1-proton knockout reaction from ¹⁹B as a means of populating ¹⁸Be, which can then be studied using in-flight decay spectroscopy, for example ¹H(¹⁹B, ¹⁸Be -> 4n+¹⁴Be).

Also see (2009Yu07) who evaluate the N=14 and 16 shell closures. They find N=14 shell closure has disappeared in Be and C isotopes, but that it persists in O and Ne isotopes. Also see (2006Ko02) who predict the ¹⁸Be binding energy.

TUNL Nuclear Data Evaluation

REFERENCES FOR A=18

2006KO02	V.B.Kopeliovich, A.M.Shunderuk, G.K.Matushko - Phys.Atomic Nuclei 69, 120 (2006).
2009YU07	CX.Yuan, C.Qi, FR.Xu - Chin.Phys.C 33, Supplement 1, 55 (2009).
2011GR13	L.V.Grigorenko, I.G.Mukha, C.Scheidenberger et al Phys.Rev. C 84, 021303 (2011).