Adopted Levels

 $Q(\beta^{-})=19.82\times10^{3}$ 13; $S(n)=0.96\times10^{3}$ 10 2024Mo02

S(2n)=-840 keV 30 from (2024Mo02).

 $Q(\beta^{-})$: From the mass excesses of ¹⁶Be and ¹⁶B given in (2024Mo02) and (2021Wa16), respectively. S(n): From S_n(¹⁶Be)=S_{2n}(¹⁶Be)-S_n(¹⁵Be), where S_n(¹⁵Be)=-1800 keV *100* (2013Sn02) as recommended by (2021Wa16).

See general theoretical analysis of ¹⁶Be in: 1981Se06, 1985Po10, 1987Sa15, 2002Ne24, 2006Ko02, 2008Um02, 2009Yu07, 2012It04, 2015Ka02, 2017Lo03 (see also 2016LoZU), 2018Fo07, 2018Ca09, 2019Fo09, 2019Ca03, 2020It02, 2022Yu02, 2022Gu11, and 2023Mu11.

¹⁶Be Levels

Cross Reference (XREF) Flags

- А
- В
- ¹H(¹⁷B,2p) ⁹Be(¹⁷B,¹⁶Be) ⁹Be(⁴⁰Ar,¹⁶Be) С

E(level)	$J^{\pi \dagger}$	Г	XREF	Comments
0	0+	0.32 MeV 8	Ab	 %2n=100 (2024Mo02,2012Sp01) XREF: b(0). E(level),Γ,J^π: From (2024Mo02). E(level): (2012Sp01) reported that the ground state is unbound to 2n decay by 1.35 MeV 10 and has a width of Γ=0.8 MeV +1-2 (2012Sp01). However, the limited energy resolution of this experiment resulted in the observation of a broad structure comprising the unresolved ground+first excited states. The superior energy resolution of (2024Mo02) resolved these states, which are measured with much higher statistics. (2024Mo02) reports that the ground state is unbound to 2n decay by 0.84 MeV 3. Decay is through dineutron emission (2024Mo02, 2012Sp01). A realistic 3-body modeling by (2024Mo02) showed that the ground state manifests itself with a
1.31×10 ³ 6	2+	0.95 MeV 15	Ab	 strong dineutron-like configuration. Mass excess(¹⁶Be_{g.s.})=56.93 MeV <i>13</i> (2024Mo02). Using the deduced mass excess from (2024Mo02), the evaluator determined the mass of ¹⁶Be as 16.06112 u <i>14</i>. %2n=100 (2024Mo02) XREF: b(0). E(level), Γ, J^π: From (2024Mo02). E(level): The first excited state is unbound to 2n decay by 2.15 MeV <i>5</i>. (2024Mo02): This state decays by dineutron emission. As a result of a realistic 3-body modeling, it was found that this state exhibits a diffuse n-n spatial distribution.

[†] From shell model calculations by (2024Mo02).

1 H(17 B,2p) 2024Mo02

2024Mo02: The authors populated the ground and first excited states of ¹⁶Be by proton knockout from a ¹⁷B beam and investigated their structure and decay by measuring the ¹⁴Be+2n decay products using an experimental configuration which offered better energy resolution and an improved acceptance relative to the measurement of (2012Sp01).

- A ¹⁷B beam with E~277 MeV/nucleon was produced from fragmentation of a ⁴⁸Ca beam on a thick Be target at the RIBF facility in RIKEN. The ¹⁷B beam was purified using the BigRIPS fragment separator and impinged on a 15-cm-thick liquid hydrogen target at the MINOS target position. The ¹⁶Be nuclei were produced via the ¹H(¹⁷Be,2p) reaction. The protons were measured using the MINOS TPC. The ¹⁶Be nuclei decayed in flight, and the ¹⁴Be and neutrons from this decay were momentum analyzed using the SAMURAI spectrometer and the NEBULA array, respectively.
- The reaction vertex was reconstructed with a 5-mm position resolution using the two reaction protons' trajectories and event-by-event beam tracking. The excitation spectrum was obtained from the reconstruction of the relative energy of ¹⁴Be+n+n decay products using an invariant mass analysis. The ground and first excited states were observed with high statistics and are well resolved. The mass excess of ¹⁶Be_{g.s.} was deduced. Some excess counts were measured above ~4 MeV, which were attributed to a non-resonant continuum or broad, weakly populated higher-lying structures.
- A shell model calculation was performed using the WBP Hamiltonian, and the predictions are in good agreement with the experimental results. The decays of the observed ¹⁶Be states were investigated using Dalitz plots supported by simulations. No evidence for sequential decay via ¹⁵Be states was observed. Both the populated states decay via direct 2n emission. A 3-body modeling of ¹⁴Be+n+n was performed to study the nature of these decays. The authors emphasized the importance of using realistic wave functions that evolve with time to describe the decay. Such a treatment was missing in (2012Sp01). Moreover, the earlier work did not consider the n-n final state interaction, which oversimplified their 2-body (¹⁴Be+2n) decay study. The results of the present 3-body decay are in good agreement (except the predicted widths) with the experimental ones and support the dineutron emission from both of the observed states.

¹⁶Be Levels

E(level)	$J^{\pi \dagger}$	Г	Comments	
0	0^{+}	0.32 MeV 8	%2n=100	
			E(level): The ground state is unbound to 2n decay by 0.84 MeV 3. Decay is through dineutron emission. A realistic 3-body modeling showed that the ground state manifests itself with a strong dineutron-like configuration.	
			Using $S_{2n}(^{16}Be)$ and mass excess $(^{14}Be)=39.95$ MeV 13 from (2021Wa16), the mass excess of $^{16}Be_{g.s.}$ was deduced to be 56.93 MeV 13. The uncertainty is dominated by the mass excess of ^{14}Be .	
			Using the deduced mass excess from (2024Mo02), the evaluator determined the mass of ¹⁶ Be as 16.06112 u <i>14</i> . These results supersede the earlier results of (2012Sp01), where the ground and first excited states were apparently unresolved.	
$1.31 \times 10^3 6$	2^{+}	0.95 MeV 15	%2n=100	
			E(level): The first state is unbound to 2n decay by 2.15 MeV 5. This state decays by dineutron emission. As a result of a realistic 3-body modeling, this state exhibits a diffuse n-n spatial distribution.	

^{\dagger} From shell model calculations by (2024Mo02).

⁹Be(¹⁷B,¹⁶Be) 2012Sp01

- 2012Sp01: The authors populated a broad state associated with the ground state of ¹⁶Be by fragmenting ¹⁷B nuclei. They studied ¹⁶Be decay by measuring complete ¹⁴Be+2n kinematics. The aim was to determine the ¹⁶Be mass and evaluate n-n correlations in search of dineutron decay.
- The ¹⁶Be nuclei were formed in a 2 step process: first a 120 MeV/nucleon ²²Ne beam was fragmented in a 2938 mg/cm² Be target to produce ¹⁷B ions that were purified in the A1900 at the MSU/NSCL, second the ¹⁷B beam at 53 MeV/nucleon impinged on a 470 mg/cm² ⁹Be target where the ¹⁶Be nuclei were formed by fragmentation.
- The ¹⁶Be nuclei decayed in flight and the residual ¹⁴Be+2n were momentum analyzed using the 43° Sweeper dipole magnet and the MONA array. Kinematic energy reconstruction indicated the particle unbound ¹⁶Be ground state is at $E_{rel}(^{14}Be+2n)=1.35$ MeV *10*. Further analysis of the ¹⁴Be+n and n+n energy and angular correlations were consistent with dineutron emission from ¹⁶Be, and were inconsistent with either sequential decay through ¹⁵Be or simultaneous 3-body breakup into the ¹⁴Be+n+n continuum. See also (2013Th04).
- The most recent study by (2024Mo02) finds a similar spectrum to that of Fig. 2a in (2012Sp01). As a result of much higher statistics and a better energy resolution achieved by (2024Mo02), it is apparent that (2012Sp01) observed the unresolved ground+first excited states of ¹⁶Be.

¹⁶Be Levels

E(level) [†]	\mathbf{J}^{π}	Г	Comments
0	0^{+}	0.8 MeV 2	%2n=100
			E(level): A broad Γ =0.8 MeV +1-2 group is reported to dineutron decay with
			$E(^{14}Be+2n)=1.35$ MeV 10. Subsequent results by (2024Mo02) suggest this group is the
			unresolved ground+first excited states of ¹⁶ Be. Therefore, the results of (2012Sp01) were not
			used for the Adopted dataset.

[†] Unresolved ground+first excited states.

⁹Be(⁴⁰Ar,¹⁶Be) 2003Ba47

2003Ba47: The authors analyzed the ⁴⁰Ar+⁹Be fragmentation products in search of evidence for particle bound states in ¹⁶Be.

- A beam of 140 MeV/nucleon ⁴⁰Ar ions, from the NSCL coupled cyclotron facility, impinged on a 1.5 g/cm² ^{nat}Be target. The resulting fragmentation products were momentum analyzed using the A1900 fragment separator. The products were detected using a position sensitive PPAC, a 500 μ m thick Si Δ E detector and a stopping thickness plastic E scintillator that were located at the final focal plane of the device. The time difference between a thin plastic scintillator located at the intermediate image of the separator and the thick stopping detector were compared to determine the time-of-flight (ToF) between the two image planes. The particle identification at the focal plane was determined using both Δ E-E and Δ E-ToF techniques.
- No events corresponding to ¹⁶Be were observed. By comparison, ^{6,8}He, ^{9,11}Li, ^{12,14}Be, ^{17,19}B and ²⁰C nuclides were observed at the focal plane. The measured intensity of ¹⁹B was expected to be an order of magnitude lower than that of ¹⁶Be. As a result, the authors conclude ¹⁶Be is unstable to neutron emission. See also (2004Th15).

REFERENCES FOR A=16

- 1981Se06 M.Seya, M.Kohno, S.Nagata - Prog.Theor.Phys.(Kyoto) 65, 204 (1981). 1985Po10 N.A.F.M.Poppelier, L.D.Wood, P.W.M.Glaudemans - Phys.Lett. 157B, 120 (1985). 1987Sa15 H.Sagawa, H.Toki - J.Phys.(London) G13, 453 (1987). 2002Ne24 V.A.Nesterov - Iader.Fiz.Enerh. 3 no.1, 22 (2002). T.Baumann, N.Frank, B.A.Luther, D.J.Morrissey et al. - Phys.Rev. C 67, 061303 (2003). 2003Ba47 2004Th15 M.Thoennessen - Acta Phys.Hung.N.S. 21, 379 (2004). 2006Ko02 V.B.Kopeliovich, A.M.Shunderuk, G.K.Matushko - Phys.Atomic Nuclei 69, 120 (2006). A.Umeya, G.Kaneko, T.Haneda, K.Muto - Phys.Rev. C 77, 044301 (2008). 2008Um02 C.-X.Yuan, C.Qi, F.-R.Xu - Chin.Phys.C 33, Supplement 1, 55 (2009). 2009Yu07 M.Ito - Prog.Theor.Phys.(Kyoto), Suppl. 196, 289 (2012). 2012It04 2012Sp01 A.Spyrou, Z.Kohley, T.Baumann, D.Bazin et al. - Phys.Rev.Lett. 108, 102501 (2012). 2013Sn02 J.Snyder, T.Baumann, G.Christian, R.A.Haring-Kaye et al. - Phys.Rev. C 88, 031303 (2013). M.Thoennessen, Z.Kohley, A.Spyrou, E.Lunderberg et al. - Acta Phys.Pol. B44, 543 (2013). 2013Th04 Y.Kanada-Enyo - Phys.Rev. C 91, 014315 (2015). 2015Ka02 2016LoZU A.E.Lovell, F.M.Nunes, I.J.Thompson - Proc.21sth Int.Conf. on Few Body Problems in Physics, Chicago, IL, USA, May 18-22, 2015, C.Elster, et al. (Eds.), p.06015 (2016); EPJ Web of Conf. Vol. 113 (2016). 2017Lo03 A.E.Lovell, F.M.Nunes, I.J.Thompson - Phys.Rev. C 95, 034605 (2017). 2018Ca09 J.Casal - Phys.Rev. C 97, 034613 (2018). 2018Fo07 H.T.Fortune - Eur.Phys.J. A 54, 51 (2018). J.Casal, J.Gomez-Camacho - Phys.Rev. C 99, 014604 (2019). 2019Ca03 2019Fo09 H.T.Fortune - Phys.Rev. C 99, 044318 (2019). 2020It02 N.Itagaki, T.Fukui, J.Tanaka, Y.Kikuchi - Phys.Rev. C 102, 024332 (2020). M.Wang, W.J.Huang, F.G.Kondev, G.Audi, S.Naimi - Chin.Phys.C 45, 030003 (2021). 2021Wa16
- 2022Gu11 J.Guo, D.H.Chen, X.-R.Zhou, Q.B.Chen, H.-J.Schulze Chin.Phys.C 46, 064106 (2022).
- 2022Yu02 Q.Yuan, S.Q.Fan, B.S.Hu, J.G.Li et al. Phys.Rev. C 105, L061303 (2022).
- 2023Mu11 B.Mukeru, M.B.Mahatikele, G.J.Rampho Phys.Rev. C 107, 064313 (2022).
- 2024Mo02 B.Monteagudo, F.M.Marques, J.Gibelin, N.A.Orr et al. Phys.Rev.Lett. 132, 082501 (2024).