Adopted Levels

S(p)=-960 80 2017Wa10

Theoretical works:

2013Fo01: Analyzed mirror N=8, 10 and Z=8, 10 nuclides to develop a parametrization based on the difference in the 2-neutron/2-proton separation energies $(S_{2p}-S_{2n})$ and the amount of S² strength in the ground state wavefunction.

2013Ti01: Developed an improved Kelson-Garvey mass relations analysis, which relates the mass difference systematics of similar sets of mirror nuclides to predict unknown masses.

2000Po32: Calculated mass excesses by comparison with mirror nuclides.

¹⁵Ne Levels

Cross Reference (XREF) Flags

A ${}^{12}C({}^{17}Ne,{}^{15}Ne)$

E(level) [†]	\mathbf{J}^{π}	Г	XREF	Comments
0 1.90×10 ³ 8	(3/2 ⁻)	0.59 MeV 23	A	 %2p=100 E(level): First observation at E(¹³O+2p)=2522 keV 66. This corresponds to a mass excess=40215 keV 69. J^π: From mirror symmetry with ¹⁵B. Decays via 3-body ¹⁴O+2p decay. E(level): From E(¹³O+2p)=4.42 MeV 4.

[†] Excited states deduced using ¹³O and p mass excesses from (2017Wa10).

¹²C(¹⁷Ne,¹⁵Ne) 2014Wa09

- The authors analyzed the kinematic relations between ^{13,14,15}O+2p coincidences and deduced information on ^{15,16}Ne levels. The main emphasis was on the first observation of ¹⁵Ne.
- A beam of 500 MeV/A ¹⁷Ne ions was produced by fragmenting ²⁰Ne nuclei on a Be target. The ¹⁷Ne ions impinged on either carbon or polyethylene targets that were positioned at the ALADIN large-gap dipole magnet target position. The protons and oxygn isotope reaction products were detected in separate arrays, which determined their momenta following ¹⁷Ne breakup.
- The relative energy spectra of $2p+^{13,14,15}O$ products were analyzed to determine the $^{15,16,17}Ne$ states populated in the reactions. Analysis of $^{15}O+2p$ events, which involved $^{17}Ne*(1764 \text{ keV})$ with $E(^{15}O+2p)=831 \text{ keV}$ 12 (observed at $E(^{15}O+2p)=881 \text{ keV}$ 5), was used as a calibration reaction. A systematic correction of the relative energy spectrum based on the analysis (detailed in F. Warmers, private communication, May 28, 2014) was applied to all relative energy spectra. Analysis of the $^{14}O+2p$ products, which populated $^{16}Ne*(1.4, 3.2 \text{ MeV})$, provided a verification of the method.
- The ¹³O+2p relative energy spectrum revealed three structures: a peak at $E(^{13}O+2p)=2.522$ MeV that is associated with ¹⁵Ne_{g.s.}, a peak at $E(^{13}O+2p)=4.42$ MeV that is associated with the first excited state and a broad group at $E(^{13}O+2p) \approx 6.9$ MeV that is associated with multiple unresolved states.
- Analysis of the ¹³O+p and p+p correlations indicates that the ¹⁵Ne_{g.s.} decay proceeds via 3-body decay to the continuum. Therefore sequential decay via ¹⁴F, and 2p decay do not play a role in the decay.

¹⁵Ne Levels

E(level) [†]	J^{π}	Г	Comments	
0	$(3/2^{-})$	0.59 MeV 23	%2p=100	
			E(level): First observation at $E(^{13}O+2p)=2522$ keV 66. This corresponds to a mass excess=40215 keV 69.	
			J^{π} : From mirror symmetry with ¹⁵ B.	
			Decays via 3-body ¹³ O+p+p decay.	
$1.90 \times 10^3 8$	$(5/2^{-})$	<100 keV	E(level): From $E({}^{13}O+2p)=4.42$ MeV 4.	
5×10^{3}		2.5 MeV	E(level): Broad structure attributed to multiple unresolved states, $E(^{13}O+2p)=6-9$ MeV.	

[†] Excited states deduced using ¹³O and p mass excesses from (2017Wa10).

REFERENCES FOR A=15

- 2000Po32 I.V.Poplavsky - Bull.Rus.Acad.Sci.Phys. 64, 795 (2000).
- Estimated Masses of Some Light Nuclei. H.T.Fortune - Phys.Lett. B 718, 1342 (2013). 2013Fo01
- Systematic behavior of mirror energy differences for Z=8, 10 nuclei and the mass of ¹⁵Ne. J.Tian, N.Wang, C.Li, J.Li Phys.Rev. C 87, 014313 (2013).
- 2013Ti01
- Improved Kelson-Garvey mass relations for proton-rich nuclei. F.Wamers, J.Marganiec, F.Aksouh, Yu.Aksyutina et al. Phys.Rev.Lett. 112, 132502 (2014). 2014Wa09 *First Observation of the Unbound Nucleus*¹⁵*Ne.*
- 2017Wa10 M.Wang, G.Audi, F.G.Kondev, W.J.Huang et al. - Chin.Phys.C 41, 030003 (2017). The AME2016 atomic mass evaluation (II). Tables, graphs and references.