Adopted Levels

 $Q(\beta^{-})=20.86\times10^{3} \ 10; \ S(n)=-1.80\times10^{3} \ 16; \ 2012Wa38,2013Sn02$

Values computed using ΔM =49821 keV 100 from 2013Sn02. This value compares with ΔM =49760 keV 400, which was estimated in 2012Wa38.

Theoretical works:

2006Ko02: A chiral soliton model with a \approx 30% rescaling of the Skyrme constant is used to estimate the mass excess of A=6 to 32 nuclides Also see calculations in (1987Sa15, 1985Po10, 1981Se06).

2015FO04: Shell model analysis of ¹⁵Be with an emphasis on evaluating the s- and d-shell single particle energies.

¹⁵Be Levels

Cross Reference (XREF) Flags

- **A** 2 H(14 Be, 15 Be)
- **B** ${}^{9}\text{Be}({}^{17}\text{C}, {}^{15}\text{Be}2\text{p})$

E(level)	J^{π}	Г	XREF	Comments
0	(5/2+)	0.58 MeV 20	A	%n≈100 Observed in the ¹⁴ Be _{g.s.} +n relative energy spectrum at E_{rel} =1.8 MeV 1. In this case the mass excess is Δ M=49821 keV 100.

J^{π}, Γ : from 2013Sn02.

 ${}^{15}_{4}\text{Be}_{11}$ -2

²H(¹⁴Be,¹⁵Be) 2013Sn02

The authors populated a state in the neutron unbound ¹⁵Be nucleus and measured its decay energy. This constitutes the first positive observation of any level in ¹⁵Be.

An $E(^{14}Be)=59$ MeV/nucleon beam, produced by fragmentation of a ^{18}O beam on a ^{9}Be target, impinged on a 435 mg/cm² deuterated polyethylene target. The produced ^{15}Be nuclei decayed in the target; levels decaying to the ^{14}Be ground state were characterized by measurement of the neutron momentum (in the MoNA array) and the ^{14}Be momentum (in the focal plane detectors of a large-gap dipole magnet). Neutrons and ^{14}Be particles were detected in coincidence mode. The kinematic reconstruction of the $^{14}Be+n$ relative energy yields a broad resonance at $E_{res}=1.8$ MeV *1* with $\Gamma=575$ keV 200. This level is identified as the lowest $J\pi=5/2^+$ state of ^{15}Be .

Two states are predicted in the low-energy region of ¹⁵Be; one with $J\pi=3/2^+$ and another with $J\pi=5/2^+$. The $J\pi=3/2^+$ state is unbound by at least 1.54 MeV (2011Sp01) and is expected to decay to the $J\pi=2^+$ first excited state of ¹⁴Be, which decays via ${}^{14}\text{Be}^* \rightarrow {}^{13}\text{Be}+n \rightarrow {}^{12}\text{Be}+2n$. Observation of the $J\pi=3/2^+$ state will be difficult.

The predicted order of the $J\pi=3/2^+$ and $5/2^+$ states is controversial. The present $J\pi=5/2^+$ state is accepted as the ground state since it is the only level observed experimentally.

¹⁵Be Levels

E(level)	\mathbf{J}^{π}	Г	Comments
0	(5/2+)	0.58 MeV 20	$\%$ n \approx 100 Observed in the ¹⁴ Be _{g.s.} +n relative energy spectrum at E _{rel} =1.8 MeV <i>1</i> .

⁹Be(¹⁷C,¹⁵Be2p) 2011Sp01

The present work was motivated by a study of the ${}^{16}\text{Be}_{g.s.}$ decay mechanism, which could be expected to 1-n or 2-n decay, depending on the ${}^{15}\text{Be}$ mass.

A beam of 55 MeV/A ¹⁷C ions impinged on a 470 mg/cm² ⁹Be target at the NSCL MoNA/Sweeper dipole magnet target position. Following 2p removal events in the ⁹Be target, the experiment was configured to measure the momenta of ¹⁴Be ions using the sweeper dipole magnet and the momenta of neutrons using the MoNA neutron array. No peaks were observed in the kinematic reconstruction of ¹⁴Be + neutron events. The authors discuss the possible case where ¹⁵Be decays to the ¹⁴Be*(1.54 MeV) state, which is known to decay to ¹²Be+2n. However, the statistics were not sufficient to analyze the ¹²Be+3n events. It is suggested that ¹⁵Be must be unbound by 1.54 MeV for this decay to occur.

REFERENCES FOR A=15

- 1981SE06 M.Seya, M.Kohno, S.Nagata - Prog.Theor.Phys.(Kyoto) 65, 204 (1981).
- 1985PO10 N.A.F.M.Poppelier, L.D.Wood, P.W.M.Glaudemans - Phys.Lett. 157B, 120 (1985).
- 1987SA15
- H.Sagawa, H.Toki J.Phys.(London) G13, 453 (1987). V.B.Kopeliovich, A.M.Shunderuk, G.K.Matushko Phys.Atomic Nuclei 69, 120 (2006). 2006KO02
- A.Spyrou, J.K.Smith, T.Baumann et al. Phys.Rev. C 84, 044309 (2011). 2011SP01
- 2012WA38
- M.Wang, G.Audi, A.H.Wapstra et al. Chin.Phys.C 36, 1603 (2012). J.Snyder, T.Baumann, G.Christian et al. Phys.Rev. C 88, 031303 (2013). 2013SN02
- H.T.Fortune Phys.Rev. C 91, 034314 (2015). 2015FO04