¹¹₈O₃-1

¹¹₈O₃-1

Adopted Levels 2019We03

S(p)=-1.56×10³ 2017Wa10,2019We03

From S_{2p} =-4160 keV (2019We03), $\Delta M(^9C)$ =28.91 MeV and $\Delta M(^{11}O)$ =47.65 MeV.

Evidence supporting observation of the unbound ground state of ¹¹O has been reported in (2019We03). A multiplet of unresolved broad states peaked at $E(2p+{}^{9}C)\approx4.5$ MeV is observed; the analysis supports association with a group of four resonances having $J^{\pi}=3/2^{-}$ and $5/2^{+}$.

Theoretical Mass Estimates:

2012Ch40: The mass of ¹¹C was predicted using the Isobaric Multiplet Mass Equation. In the article, the authors used the ¹²Be(p,2n) reaction to identify the ¹¹Li_{g.s.} double isobaric analog state in ¹¹B at $E_x=33.57$ MeV 8. With this information, and using the appropriate analog state masses of ¹¹Li, ¹¹Be and ¹¹B, using the *a*, *b* and *c* terms of the IMME they predicted the mass excess of the ¹¹O ground state as $\Delta M=46.70$ MeV 84. In this case, ¹¹O is predicted to be unbound to 2p decay by 3.21 MeV 84. 2013Fo20:

A parametrization of mirror energy differences is developed and used to predict the ${}^{11}O_{g.s.}$ mass. The formula is presented as $MED=S_{2n}-S_{2p}=[a+bS_{2n}-cP(s^2)]Z_{<}/A^{1/3}$, where $P(s^2)$ is the fractional parentage in the $2s_{1/2}$ orbital. Using a=0.0228(7) (dimensionless), b=0.724(6) MeV and c=2.373(9) MeV (2013Fo01), $S_{2p}=-5.41$ MeV 11 is predicted.

2013Fo26, 2017Fo14:

In (2013Fo26) a potential model is developed to estimate the energies of the s²- and p-shell energies in ¹¹O, and the relationship between the two proton separation energy, S_{2p} , and the fractional occupancy, $P(s^2)$, is explored. The sequential decay (via ¹⁰N unbound states) and simultaneous 2p decay modes of ¹¹O are estimated in (2017Fo14) using their predicted S_{2p} =-4.49 MeV value. Their conclusion suggests, "Simultaneous decay is predicted to be comparable to or larger than sequential decay.".

Others:

See also (1974Ir04, 1987Sa15, 2000Po32).

¹¹O Levels

Cross Reference (XREF) Flags

A	${}^{9}\text{Be}({}^{13}\text{O},2p{+}^{9}\text{C})$	
---	--	--

E(level) ^{†‡}	$J^{\pi \dagger}$	$\Gamma (MeV)^{\dagger}$	$E_{rel.}(2p+{}^9C)$ (MeV)	XREF	Comments
0	(3/2-)	1.30 MeV	4.16	A	%2p≈100 E(level): (2019We03) observe a peak near E _{res} (2p+ ⁹ C)≈4.5 MeV that is reasonably explained assuming a four resonance multiplet.
0.49×10^{3}	$(5/2^+)$	1.06 MeV	4.65	Α	%2p≈100
0.69×10^{3}	$(3/2^{-})$	1.33 MeV	4.85	Α	%2p≈100
2.12×10^{3}	$(5/2^+)$	1.96 MeV	6.28	Α	%2p≈100

[†] From analysis of a 2p+⁹C relative energy spectrum, including comparison with the mirror ¹¹Li nuclear structure.

 $\ddagger E_{g.s.}$ from $E_{res}(2p+{}^{9}C)=4.16$ MeV.

¹¹₈O₃-2

⁹Be(¹³O,2p+⁹C) 2019We03

- The authors analysed the relative energy spectrum of 2p+⁹C products following 2-neutron knockout reactions from ¹³O ions. First evidence of any ¹¹O resonances is reported.
- A beam of 69.5 MeV/nucleon ¹³O ions, from the NSCL/A1900 fragment separator, was purified in the Radio Frequency Fragment Separator before impinging on a 1 mm thick ⁹Be target. The reaction products were detected using the HiRA High-Resolution position sensitive ΔE -E telescope array, which covered the polar angles $\theta_{lab}=2.1^{\circ}$ to 12.1° . A broad peak near $E_{res}(2p+{}^{9}C)\approx4.5$ MeV was observed in the total energy spectrum. The peak included contributions from $2p+{}^{9}C$, $2p+{}^{10}C$ and $2p+{}^{11}C$; however the $2p+{}^{10}C({}^{12}O)$ and $2p+{}^{11}C({}^{13}O)$ components were estimated and subtracted.
- A rigorous theoretical analysis of the resulting spectrum was carried out that included a comparison with the mirror ¹¹Li system. The authors found a reasonable fit to their spectrum by assuming the broad peak they observed could be associated with a collection of four unresolved $J^{\pi}=3/2^{-}$ and $5/2^{+}$ states.

¹¹O Levels

E(level) ^{†‡}	$J^{\pi \dagger}$	$\Gamma (MeV)^{\dagger}$	$E_{rel.}(2p+{}^9C)$ (MeV)	Comments
0	(3/2 ⁻)	1.30 MeV	4.16	%2p≈100 E(level): (2019We03) observe a peak near E _{res} (2p+ ⁹ C)≈4.5 MeV that is reasonably explained using a four resonance fit. The fit, which is guided by theory, is found to be favorable but not uniquely constrained.
0.49×10^{3}	$(5/2^+)$	1.06 MeV	4.65	%2p≈100
0.69×10^{3}	$(3/2^{-})$	1.33 MeV	4.85	%2p≈100
2.12×10^{3}	$(5/2^+)$	1.96 MeV	6.28	%2p≈100

[†] From analysis and comparison with ¹¹Li.

 $\pm E_{g.s.}$ from $E_{res}(2p+{}^{9}C)=4.16$ MeV.

REFERENCES FOR A=11

1974Ir04	J.M.Irvine, G.S.Mani, M.Vallieres - Czech.J.Phys. 24B, 1269 (1974).
177 1101	The Structure of Light p-Shell Nuclei.
1987Sa15	H.Sagawa, H.Toki - J.Phys.(London) G13, 453 (1987).
	Hartree-Fock Calculations of Light Neutron-Rich Nuclei.
2000Po32	I.V.Poplavsky - Bull.Rus.Acad.Sci.Phys. 64, 795 (2000).
	Estimated Masses of Some Light Nuclei.
2012Ch40	R.J.Charity, L.G.Sobotka, K.Hagino, D.Bazin et al Phys.Rev. C 86, 041307 (2012).
	Double isobaric analog of ^{11}Li in ^{11}B .
2013Fo01	H.T.Fortune - Phys.Lett. B 718, 1342 (2013).
	Systematic behavior of mirror energy differences for $Z=8$, 10 nuclei and the mass of ^{15}Ne .
2013Fo20	H.T.Fortune - Phys.Rev. C 87, 067306 (2013).
	Mass of ^{11}O .
2013Fo26	H.T.Fortune, R.Sherr - Phys.Rev. C 88, 034326 (2013).
	Potential-model estimate of the mass of $^{11}O(g.s.)$.
2017Fo14	H.T.Fortune - Phys.Rev. C 96, 014317 (2017).
	$2p \ decays \ of \ ^{11}O.$
2017Wa10	M.Wang, G.Audi, F.G.Kondev, W.J.Huang et al Chin.Phys.C 41, 030003 (2017).
	The AME2016 atomic mass evaluation (II). Tables, graphs and references.
2019We03	T.B.Webb, S.M.Wang, K.W.Brown, R.J.Charity et al Phys.Rev.Lett. 122, 122501 (2019).
	first Observation of Unbound ¹¹ O, the Mirror of the Halo Nucleus ¹¹ Li.