Adopted Levels

S(p)=-100 30 2017Wa10

The atomic mass excess of ⁸C is given as 35064 keV *18* in (2017Wa10). Using this mass excess value, the binding energy of ⁸C is 24.812 MeV *18*. In some of the theoretical articles referenced below, this is the quantity that is calculated. Sometimes the binding energy is given relative to the ⁴He+4p threshold which is 3.483 MeV *18*. ⁸C is unstable with respect to single proton decay, Q=98 keV, 2 proton decay, Q=2111 keV, 3 proton decay, Q=1517 keV and 4 proton decay, Q=3483 keV. Results reported in (2010Ch42) indicate that ⁸C decays by emitting two pairs of protons-⁸C→⁶Be+2p→(⁴He+2p)+2p. Also see (2011ChZW). For theoretical studies that include ⁸C see (1974Ir04, 1987B118, 1987Sa15, 1988Co15, 1996Gr21, 1996Su24, 1997Ba54, 1997Po12, 1998Wi10, 1999Ha61, 2000Wi09, 2001Co21, 2002Ba90, 2003Ba99, 2006Sa29, 2006Wi07, 2007Ma79, 2009Ba41, 2011ChZW, 2012My02, 2012My04, 2014Eb02, 2014Mi17, 2014My03). IMME studies including A=8 are reported in (1974Ro17, 1976Tr01, 1984An18, 1998Br09, 2011Ch53, 2013La29). Calculations of the ⁸C rms radii are reported in (2017Ka45).

⁸C Levels

Cross Reference (XREF) Flags

Α	${}^{9}\text{Be}({}^{9}\text{C}, {}^{8}\text{C})$
В	$^{12}C(\alpha, ^{8}He)$
С	$^{14}N(^{3}He,^{9}Li)$

E(level)	\mathbf{J}^{π}	Г	XREF	Comments
0	0+	130 keV 50	ABC	%2p=100 T=2 Γ: from ⁹ Be(⁹ C. ⁸ C) (2011Ch32); other values from ¹² C(α. ⁸ He) Γ=0.22 MeV

+8–14 (1974Ro17), ¹⁴N(³He,⁹Li) Γ =290 keV 80 (1976Ro04), ¹²C(α ,⁸He): either Γ =230 keV 50 from a Gaussian shaped fit or Γ =183 keV 56 from a Breit-Wigner shaped fit (1976Tr01). The higher statistics in (2011Ch32) compared to the earlier results leads to the choice of Γ =130 keV 50.

⁹Be(⁹C,⁸C) 2010Ch42,2011Ch32

- 2010Ch42: The authors measured the multiproton decay properties of ⁸C by measuring the complete kinematics of remnant α +4p decay products. The proton correlations indicate that the decay follows a ${}^{8}C \rightarrow {}^{6}Be+2p \rightarrow \alpha+2p+2p$ multi-step path. A beam of 70 MeV/nucleon ${}^{9}C$ was produced by fragmentation of a ${}^{16}O$ beam at the NSCL. The ${}^{9}C$ beam impinged on a ${}^{9}Be$ target and short lived unbound nuclei produced in the reactions were studied by reconstruction of the of the breakup particle kinematics. The proton-proton pairing correlations indicate that 92% 5 of events proceed through the $2p+{}^{6}Be_{g.s.}$ decay channel. Combined with results on ${}^{6}Be$, this indicates a ${}^{8}C \rightarrow {}^{6}Be+2p \rightarrow \alpha+2p+2p$ decay path. Data on ${}^{8}B*$ decay is consistent with 2p decay from ${}^{8}B*(10.61 \text{ MeV})$ which is the IAS of ${}^{8}C_{g.s.}$.
- 2011Ch32: The authors impinged a 70 MeV/nucleon ⁹C beam on a thick ⁹Be target and detected ejected reaction products with a large area position sensitive Δ E-E array. Reconstruction of the complete kinematics permitted an analysis of excitation energies, decay pathways and associated branching ratios for several nuclei. A beam of 150 MeV/nucleon ¹⁶O ions was fragmented in a thick ⁹Be target to produce a 70 MeV/nucleon ⁹C beam in the NSCL A 1900 fragment separator. The ⁹C beam impinged on a 1mm thick ⁹Be target and reaction products were detected in 14 position sensitive Δ E-E elements of the HiRA array. The coincident reaction products were analyzed via kinematic energy reconstruction to evaluate excitation energies and decay paths. The authors obtained the ⁸C mass excess Δ M(⁸C)=35.030 MeV *30* and the widh Γ =130 keV *50*.

⁸C Levels

E(level)	Г	Comments
0	130 keV 50	Obtained mass excess 35.030 MeV.

 ${}_{6}^{8}C_{2}$

¹²C(α,⁸He) **1974Ro17,1976Tr01**

1974Ro17: E=156 MeV, measured Q of ⁸He spectrum, σ , deduced ⁸C mass excess and width. This is the article in which ⁸C is first recognized (2012Th01). The differential cross section was found to be about 20 nb/sr at $\theta_{lab}=2^{\circ}$. The mass excess of ⁸C was found to be $\Delta M(^{8}C)=35.30$ MeV 20. As indicated above, ⁸C decays by proton emission. Assuming a Gaussian line shape, the width of observed ⁸C state is found to be $\Gamma=0.22$ MeV +8–14.

Since the ⁸He spectrum is the observed quantity in this experiment, a change in the measured mass of ⁸He would lead to a change in the mass of ⁸C. In (1974Ce05) a more accurate value of the mass defect of ⁸He led to a revision of the measured mass defect of ⁸C, $\Delta M(^{8}C)=35.38$ MeV 17.

1976Tr01: E=123.5 MeV, measured σ , deduced mass excess and width. The mass excess of ⁸C was found to be $\Delta M(^{8}C)$ =35.10 MeV 3. The width was found to be Γ =230 keV 50 assuming a Gaussian fit and 183 keV 56 assuming a Breit-Wigner fit. An IMME study of A=8 nuclei is reported in this article.

⁸C Levels

E(level)	Г	Comments
0	230 keV 50	Γ : from (1976Tr01), other value Γ =0.22 MeV +8-14 (1974Ro17).

¹⁴N(³He,⁹Li) **1976Ro04**

1976Ro04: The ³He beam with energy E=76 MeV from the MSU cyclotron collided with a target of either a solid melamine $(C_3N_6H_6)$ or N_2 gas and the ⁹Li spectrum was observed. Measured laboratory cross sections with approximately 40% uncertainties are $d\sigma/d\omega=3$ nb/sr and 5 nb/sr at $\theta_{lab}=8^{\circ}$ and 10°. The authors determined that the mass excess of ⁸C to be $\Delta M(^8C)=35.06$ MeV 5. Assuming a Gaussian shape for the line shape, the width was found to be $\Gamma=290$ keV 80.

⁸C Levels

 $\frac{E(\text{level})}{0} = \frac{\Gamma}{290 \text{ keV } 80}$