Adopted Levels

 $S(p) = -4.5 \times 10^3 SY$ 2017Wa10

The ⁵Be nucleus is particle unbound to proton decay; no resonances have been experimentally observed.

2013Ti01 gives ⁵Be mass defect as 34.10 MeV *12* by improved Kelson-Garvey systematics. Using this value for the ⁵Be mass defect, the ground state of ⁵Be would be 4.59 MeV *12* above the ³He+2p threshold.

The 2016 mass table (2017Wa10) gives the estimated mass defect of ⁵Be as 37.1 MeV 20. Using this value, the ground state of ⁵Be would be 7.6 MeV 20 above the ³He+2p threshold.

Negative experimental results:

3 He(3 He,n) 5 Be:

1967Ad05: ³He beams from CIT and Stanford accelerators with energies from 18 MeV to 26 MeV collided with ³He in a gas target and the neutron spectrum measured. No structure was observed corresponding to ⁵Be states. It was concluded that any ⁵Be states must be at least 4.2 MeV above the ³He+2p threshold.

Theory:

1981Be10: The author presented a shell model calculation of A=5 nuclei with the goal of testing the T=3/2 IMME for A=5. His calculated binding energy for 5 Be is 1.5 MeV. This gives a mass defect of 35.7 MeV and a resonance energy of 6.2 MeV relative to the 3 He+2p threshold. There is no mention of the J^{π} value for the state.

2003Ar18: The authors used a three body cluster model with effective interactions that give reasonable results for other nearby nuclei as well as $p+^3He$ phase shifts. The authors suspect that the absence of a tensor component in their effective interaction may be of significance. They obtained the following results, where the resonance energies are given relative to the $^3He+2p$ threshold.

Note that the 3/2⁺ and 5/2⁺ states are nearly degenerate and very broad and are not likely to show up in reactions as separate resonances.

See other more general theoretical analyses in (1975Be31, 1981Ka39, 1982Ng01, 2004Sa50).

theoretical estimate from (2003Ar18)

\mathtt{J}^{π}	E_{R} (MeV)	$\Gamma_{\rm R}$ (MeV)
1/2+	3.15	3.62
5/2 ⁺	4.5	5.6
3/2 ⁺	4.6	6.3

TUNL Nuclear Data Evaluation

REFERENCES FOR A=5

1967Ad05	E.G.Adelberger, A.B.McDonald, T.A.Tombrello, F.S.Dietrich, A.V.Nero - Phys.Letters 25B, 595 (1967).
	A Lower Limit on the Mass of ⁵ Be.
1975Be31	M.Beiner, R.J.Lombard, D.Mas - Nucl.Phys. A249, 1 (1975).
	Self-Consistent Calculations of Ground State Properties for Unstable Nuclei.
1981Be10	J.J.Bevelacqua - Nucl.Phys. A357, 126 (1981).
	Shell-Model Calculations in the $A = 5$ System.
1981Ka39	G.P.P.Kamuntavichyus - Yad.Fiz. 34, 661 (1981).
	Lower Limits on the Bound State Energies of Atomic Nuclei.
1982Ng01	Nguyen Tien Nguyen, I.Ulehla - Czech.J.Phys. B32, 1040 (1982).
	The Light 1P-Shell Nuclei.
2003Ar18	K.Arai - Phys.Rev. C 68, 034303 (2003).
	Resonance states of ${}^{5}H$ and ${}^{5}Be$ in a microscopic three-cluster model.
2004Sa50	C.Samanta - Acta Phys.Hung.N.S. 19, 161 (2004).
	A New Mass Formula and New Neutron and Proton Magic Numbers in Light Nuclei.
2013Ti01	J.Tian, N.Wang, C.Li, J.Li - Phys.Rev. C 87, 014313 (2013).
	Improved Kelson-Garvey mass relations for proton-rich nuclei.
2017Wa10	M. Wang, G. Audi, F.G. Kondev, W. J. Huang et al Chin. Phys. C 41, 030003 (2017).
	The AME2016 atomic mass evaluation (II). Tables, graphs and references.